<- previous    index    next ->

Lecture 28j, PDE toroid geometry

Extending PDE's to toroid geometry

solve PDE in toroid boundary

First refinement Another view of refinement Toroid center at 0,0,0 can be translated and rotated r1, r2, theta, phi mapped to x,y,z x = (r1+r2*sin(phi))*cos(theta) y = (r1+r2*sin(phi))*sin(theta) z = r2 * cos(phi) 0 ≤ theta ≤ 2Pi 0 ≤ phi ≤ 2Pi 0 < r2 < r1 Area = (2*Pi*r1)*(2*Pi*r2) infinitesimal area = dtheta*r1*dphi*r2 Volume = (2*Pi*r1)*(Pi*r2*r2) infinitesimal volume = dtheta*r1*dphi*r2*dr2 Equation (r1-sqrt(x^2+y^2))^2 + z^2 = r2^2 r2, x, y, z mapped to r1, theta, phi (r2 taken as constant) theta = arctan(y/x) phi = arccos(z/r2) r1 = x/cos(theta) - r2*sin(phi) or r1 = y/sin(theta) - r2*sin(phi) no divide by zero r1, x, y, z mapped to r2, theta, phi (r1 taken as constant) theta = arctan(y/x) fix angle by quadrant x1 = r1*cos(theta) y1 = r1*sin(theta) phi = arctan(sqrt((x-x1)^2+(y-y1)^2)/z) fix by quadrant r2 = sqrt((x-x1)^2+(y-y1)^2+z^2) PDE for testing: r1 constant, r2 is r, theta is t, phi is p dU^2(r1,r2,t,p)/dr2^2 + dU^2(r1,r2,t,p)/dt^2 + dU^2(r1,r2,t,p)/dp^2 = f(r1,r2,t,p) U(r,t,p):=r*r*(1+sin(t))*(1+cos(p)); 2 U(r, t, p) := r (1 + sin(t)) (1 + cos(p)) Urr(r,t,p):=diff(diff(U(r,t.p),r),r); Urr(r, t, p) := D[1, 1](U)(r, t . p) Urr(r,t,p):=diff(diff(U(r,t,p),r),r); Urr(r, t, p) := 2 (1 + sin(t)) (1 + cos(p)) Utt(r,t,p):=diff(diff(U(r,t,p),t),t); 2 Utt(r, t, p) := -r sin(t) (1 + cos(p)) Upp(r,t,p):=diff(diff(U(r,t,p),p),p); 2 Upp(r, t, p) := -r (1 + sin(t)) cos(p) f(r,t,p):=Urr(r,t,p)+Utt(r,t,p)+Upp(r,t,p); 2 f(r, t, p) := 2 (1 + sin(t)) (1 + cos(p)) - r sin(t) (1 + cos(p)) 2 - r (1 + sin(t)) cos(p) simplify(f(r,t,p)); 2 2 2 + 2 cos(p) + 2 sin(t) + 2 sin(t) cos(p) - r sin(t) - 2 r sin(t) cos(p) 2 - r cos(p) f(r2,t,p) = 2.0*(1.0 + cos(p) + sin(t) + sin(t)*cos(p)) - r2*r2*(cos(p) + sin(t) + 2.0*sin(t)*cos(p)) Ub(r2,t,p):=r2*r2*(1.0+sin(t))*(1.0+cos(p)); Dirichlet boundary
<- previous    index    next ->

Other links

Go to top