
Veri�cation of the Redundancy Management

System for Space Launch Vehicle �

A Case Study

Oleg Sokolsky?, Mohamed Younisy, Insup Leez, Hee-Hwan Kwakz and Je� Zhouy

? Computer Command and Control Company, 2300 Chestnut St., Su. 230,

Philadelphia, PA 19103. sokolsky@cccc.com
y AlliedSignal Advanced Systems Technology Group, 9140 Old Annapolis Rd.,

Columbia, MD 21045. fyounis,zhoug@batc.allied.com
z Department of Computer and Information Systems, University of Pennsylvania,

Philadelphia, PA 19104. flee,heekwakg@saul.cis.upenn.edu

Abstract

In the recent years, formal methods has been widely recognized as e�ective tech-
niques to uncover design errors that could be missed by a conventional software en-
gineering process. This paper describes our experience with using formal methods in
analyzing the Redundancy Management System (RMS) for a Space Launch Vehicle.
RMS is developed by AlliedSignal Inc. for the avionics of NASA's new space shuttle,
called VentureStar, that meets the expectations for space missions in the 21st century.
A process-algebraic formalism is used to construct a formal speci�cation based on the
actual RMS design speci�cations. Analysis is performed using PARAGON, a toolset
for formal speci�cation and veri�cation of distributed real-time systems. A number
of real-time and fault-tolerance properties were veri�ed, allowing for some errors in
the RMS pseudocode to be detected. The paper discusses the translation of the RMS
speci�cation into process algebra formal notation and results of the formal veri�cation.

1 Introduction

In July 1996, the National Aeronautics and Space Administration (NASA) launched a very

ambitious project to build the next generation of space shuttles for the 21th century. NASA

wants the new spacecraft, which is named VentureStar, to be reusable for multiple missions

�This work was supported in part by AFOSR F49620-95-1-0508, ARO DAAH04-95-1-0092, NSF CCR-

9415346, NSF CCR-9619910, and ONR N00014-97-1-0505.

1



and to be able to reach the target orbit in a single stage. One of the driving principles of the

program is to reduce the cost of future space 
ights to encourage private companies to install

their payload. After soliciting designs from di�erent airframe companies, NASA appointed

Lockheed Martin Corp. for building a proof-of-concept prototype for the VentureStar (Fig-

ure 1), called the X-33, that will eventually lead to the Reusable Launch Vehicle (LRV).

AlliedSignal Aerospace is a major subcontractor to Lockheed Martin Corp. on the project

to develop the avionics of VentureStar.

Figure 1: The Future VentureStar Reusable Launch Vehicle

A quad-redundant open system architecture is to be used for the avionics of VentureStar

(only triple-redundant architecture is used for the X-33 prototype). The architecture devi-

ates radically from traditional designs by integrating multiple 
ight critical control within

the same cage. The integrated platform hosts the 
ight manager and the mission manager,

both are regarded as highly critical control functions on the spacecraft since they manip-

ulate control surfaces to compensate for aerodynamic instability. To avoid losing multiple

highly critical controls by a single failure, redundant components are used. Four cages with

similar con�guration are included to provide fault-tolerance. The cages are deployed with a

redundancy management system (RMS), developed by AlliedSignal Inc. RMS, as illustrated

next, provides fault detection, containment and recovery and maintains consistency between

the redundant components.

2



Formal specification

Analysis

RMS design
(pseudocode)

RMS requirements
(English)

Figure 2: Formalization of the RMS

Fault tolerance is critical to the operation of VentureStar. To gain additional con�dence

in correctness of the RMS, we undertook a formal analysis of the RMS design. Formal

methods rely on mathematical semantics of the formalism to provide rigorous analysis of

speci�cations. Numerous case studies show that formal analysis can uncover design errors

that are missed by a conventional software engineering process [10]. Exhaustive veri�cation

of real-time systems is a very resource-consuming task. Given the current state-of-the-art

in the area of formal methods, only systems of moderate size can be analyzed. For a formal

veri�cation project to succeed, a relatively small safety-critical component of the system has

to be identi�ed. The RMS of VentureStar provides an excellent example of such safety-

critical component. A speci�cation of the RMS, based on the pseudocode used in the design

process, was constructed. The speci�cation uses the formalism of real-time process-algebra

ACSR [14]. After construction, the speci�cation was analyzed for compliance with the set of

RMS requirements, which were also given a formal representation. Analysis was performed

using PARAGON toolset [4] that follows the ACSR speci�cation paradigm. The overall

scheme of the approach is demonstrated in Figure 2.

Related work. Several other tools for formal analysis of system speci�cations are available.

Among the most widely used are SPIN [11], SCR� [8] and the Concurrency Workbench [5].

Tools like HyTech [9], COSPAN [1], and SMV [15] are popular for analysis of hardware and

hybrid systems. Compared to these tools, PARAGON is more oriented towards speci�cation

of real-time systems. In addition to capabilities for quantitative timing analysis, PARAGON

allows notions of priorities and shared resources, common in design of real-time systems, to

3



be used in system speci�cations.

The outline of the paper is as follows: Section 2 describes the RMS design and imple-

mentation, as well as requirements for the RMS. Section 3 presents PARAGON [4], the

speci�cation and veri�cation toolset for distributed real-time systems that was used to an-

alyze the RMS. The formal speci�cation of the RMS and its requirements is discussed in

Section 4. The paper concludes with the summary of veri�cation results in Section 5.

2 The Fault Tolerant Architecture

Tolerance of faults, typically, can be realized in four steps [13]. The �rst step is to detect

an error. Second the fault that caused the error has to be contained to prevent fault prop-

agation to other system components. Then, the required diagnosis is performed to �nd the

location (zone) of the fault. Finally, the appropriate recovery procedure is invoked including

recon�guration if necessary. Fault-tolerance is achieved by using redundancy. Such redun-

dancy can be a replica used in case of failure to supply the same function. Two schemes,

passive and active replication, are commonly used to replicate servers that fail independently.

Active replication [16], also known as primary-backup, relies on one or more backup units.

The primary computer propagates checkpoints (execution states) to backups. If the primary

fails one of the backups will takeover. Active replication needs an external fault detection

mechanism and provides very limited fault coverage. Therefore, active replication is not

used for mission critical applications. On the other hand, passive replication masks faults

by removing their e�ects. Faults are masked by executing voting algorithms that select the

most reliable response from the replicated computers [12, 7]. Redundancy management is

necessary to synchronize the execution of multiple computers into a common clock and to

vote on data to detect and mask faults. However, managing the redundancy requires over-

head to keep consistency between replicas and this overhead can increase the complexity of

the application development process.

The AlliedSignal research team has developed the Multi-computer Architecture for Fault

4



Tolerance (MAFT) to support the development of real-time mission critical applications [12,

18]. The philosophy used in the MAFT architecture is to separate redundancy management

and fault-tolerance support from the applications (e.g., control functions, etc.) so that the

overall development complexity and e�ort of dependable systems can be reduced. The archi-

tecture is scalable to support as many redundant components as needed by the fault coverage

requirements. Using this approach, a system developer can concentrate on system applica-

tion design and can rely on the redundancy management system, RMS, to provide system

executive functions such as cross-channel synchronization, and data voting to achieve fault

tolerance and redundancy management at the system level. This divide-and-conquer strat-

egy is important for a complex system-engineering task so that it can be broken down into

smaller and easily manageable tasks. It avoids the ad-hoc design processes for implementing

fault-tolerant systems, and o�ers an e�ective mean to integrate design dependability into

real-time, mission-critical system development.

A MAFT-based fault tolerant architecture consists of multiple processing nodes, called

application processors or simply AP. Each AP performs exactly the same functions. Every

node is connected to an RMS processor. All of these RMS nodes are mutually connected

through direct communication links. The RMS and AP partitioning can be either logical or

physical. The RMS may be a software kernel that shares the same processor with application

tasks, resulting in only logical partition. The RMS may also be a hardware device that is

physically separated from the AP processor. The number of redundant nodes (AP nodes) is

selected based on the criticality level and the types of faults that the system should handle. A

sample four-channel RMS system model is depicted in Figure 3. Every channel is considered

as a fault containment zone. Faulty channels will be excluded from the voting process. Thus,

a fault in a channel cannot propagate to a�ect other healthy channels.

Using this architecture, every application function will be executed multiple times si-

multaneously on di�erent nodes (four in this example). Every application function will

periodically send data to the associated RMS module via the direct communication links.

Every RMS module will then send that data to all other RMS nodes through dedicated

5



RMS RMS RMS RMS

Application
Processor

Application
Processor

Application
Processor

Application
Processor

I/O I/O I/OI/O

Cross Channel Data Links

Fault Tolerant Bus

Figure 3: A four-channel RMS based fault-tolerant system

communication links, called Cross Channel Data Link (CCDL). After receiving all copied

data, every RMS module will perform voting and send back the voted data values that will

be used by the application for further computation. The voted data can be used to mask

the error generated by a faulty application node to restore system health and integrity. In

addition, RMS maintains a global system health status identifying both healthy and faulty

nodes based on the deviation from the voted data. Moreover, RMS maintains synchronized

execution of all the redundant application processors by sending periodic synchronization

messages to overcome any clock skew e�ect. Thus, RMS basically masks faults by excluding

erroneous data and provides fault detection, containment, diagnosis and recovery. The ap-

proach is such that RMS functions are transparent to the application processors, and they

are available to the system developer as system services.

By providing such system service functions for the X-33 vehicle management computer,

RMS plays an essential role in maintaining the availability and safety of the vehicle. Con-

sequently, rigorous engineering design and implementation processes and fault avoidance

techniques are extremely critical to verify the correctness of RMS. Since the development of

truly diverse N-versions [2] is not feasible due to the substantial increase in costs, a single

generic fault in the design or implementation of RMS may bring the whole system down

regardless the number of redundant components. In addition, RMS implementation for the

6



X-33 is mostly in software that increases the probability of subtle faults. Thus, veri�cation

and fault avoidance techniques, including the use of Formal Methods, are necessary to prove

the behavior of RMS before deployment. The next section summarizes both functional and

operational requirements of RMS for the X-33 VentureStar.

2.1 RMS Requirements for VentureStar

For the VentureStar, RMS has to be designed and implemented subject to a set of functional

and operational requirements. Operational requirements address the behavior of RMS in

both absence and presence of faults. They include performance, fault latency, errors reporting

and application processor interface. On the other hand, functional requirements include the

capabilities that RMS is expected to provide and the assumptions that both RMS and the

applications should make about each other. Figure 4 depicts the RMS interface with the

VMC on the X-33 VentureStar. The following are informal samples of the requirements:

1. RMS is to be designed to operate in a distributed environment where each VMC runs

a separate copy of RMS and operates in an input source congruence condition. That

is, exactly the same set of application tasks, and exactly the same schedule for the

tasks running on each VMC with exactly the same set of input data available to each

VMC at the same time.

2. RMS should complete its functional computation in a minor frame of 10 ms. A minor

frame is the period of the most frequently activated task.

3. For a three or more node system, RMS should operate normally with the failure of one

node.

4. The system should be able to tolerate any single fault with the following timing charac-

teristics: (1) transient, (2) permanent, and (3) intermittent. Any of these faults should

be contained in its originated node and should not be propagated to other nodes.

7



5. RMS should complete system recovery by excluding the faulty node in one major frame.

A major frame is the period of the least common multiple of tasks' frequencies.

6. The system should be able to readmit a fault-free node into the operating set within

one major frame in order to preserve system resources.

7. At startup RMS should synchronize with all other nodes to form the potential operating

set (OPS) incrementally. All nodes in the OPS should maintain a synchronization skew

of less than 0.1 ms.

8. RMS should use di�erent voting algorithms [12, 18] for di�erent types of data: (A)

Majority voting for �nite discrete data. (B) Mid-Value Selection voting for integer or


oating-point (IEEE single precision) numbers. (C) Mean of Medial Extremes voting

for system synchronization.

9. RMS should collect application data at the minor frame boundary, vote the data, and

signal the available of the voted data with the application data ready signal before the

next minor frame boundary.

10. Communications between each node's CCDL should be by serial link that runs at a

minimum speed of 8Mbps.

11. The CCDL shall be able to receive messages from multiple nodes (including itself)

simultaneously.

12. Messages sent through the CCDL should include error detection code to detect trans-

mission errors.

2.2 RMS Design Speci�cations

Since RMS and application partitioning can be either logical or physical, both software

and hardware implementation of RMS are feasible. RMS may be a software kernel that

8



Figure 4: RMS Context Diagram

Fault Tolerant
Executive

RMS System Data

Cross Channel
Data Link

Node ID

Status/Error

Time Count

Reset

Transmit Data

Channel Raw Data

(a)(b)

Raw Output

Voted Output

APP Data Ready

Frame Boundary

System Reset

VMC Input

Output
VMC Raw

Figure 5: Simpli�ed RMS Data Flow Diagram

shares the same processor with application tasks, resulting in only logical partition. RMS

may also be a hardware device that is physically separated from the application processor.

For the X-33, a dedicated VME-based computer board separate from the application hosts

RMS. A total hardware implementation of RMS makes the design less portable in spite of

providing superior performance. On the other hand, a full software implementation can be

easily ported to a di�erent platform although it may not meet the timing constraints. To

meet the performance goals for the VMC on the X-33 VentureStar, a hybrid approach is

used by providing most of the RMS functions in software, while implementing cross channel

communication between RMS nodes in hardware.

9



Thus, RMS consists of two parts as shown in Figure 5: (a) the Fault-Tolerant Executive

(FTE) and (b) the Cross-Channel Data Link (CCDL). The FTE performs the redundancy

management functions in software, whereas the CCDL performs cross-channel data commu-

nication in hardware. The FTE provides major RMS functions which include: maintaining

system synchronization (Synchronizer); voting on application data and RMS internal state

(Voter); error detection and fault isolation and recovery (Fault Tolerator); managing the

cross channel data link (Manage CCDL); performing built-in-test at startup (Diagnostics);

managing the application interface (Task Communicator); and, coordination of correct and

timely operations of all the functions above (Kernel). The Cross Channel Data Link (CCDL)

is designed as a mezzanine board that is seated on the VME card running the FTE. The

CCDL card provides the physical interface between the redundant nodes and performs error

checking on message transmission. Pseudo code is prepared for various components of the

FTE and reviewed by peers. In addition, a detailed design of the CCDL including schematics

is developed and veri�ed.

2.3 RMS implementation

RMS development follows various well-established software engineering process, for software

development, testing and validation. Peer reviews are conducted for the preliminary and

detailed design. In addition, code inspection is performed prior to debugging. A source

code control system is used to maintain consistency. The FTE is implemented in C using a

compiler from Diab Data. The �rst simplex version has been released in May 1997, and a

complete validated version will be delivered in early 1998.

3 The PARAGON Toolset

In order to gain additional assurance that the RMS design is correct with respect to the set

of requirements, we undertook a formal analysis for the design. The vehicle for this analysis

10



was chosen to be PARAGON [4], a toolset for spec�cation and veri�cation of distributed

real-time systems.

PARAGON is based on a real-time process algebra ACSR [14], and its counterpart,

visual speci�cation language GCSR [3]. Systems can be speci�ed either directly as process-

algebraic terms or using pictorial GCSR constructs. PARAGON is oriented towards large

systems and supports modular design of speci�cations. Modularity is achieved by allowing

to include parts of a speci�cation by reference and localization of events.

A PARAGON speci�cation represents a system speci�cation as a collection of processes

that execute in parallel. The processes communicate by exchanging messages. PARAGON

speci�cations use the notion of discrete time. Time passes synchronously in all processes

of the speci�cation. Processes can engage in time-consuming action, competing for shared

resources, or interact with each other via asynchronous communication channels. Such com-

munication is modeled by means of instantaneous events. The languages provide facilities

to express interrupts, exceptions, and timeouts in the processes. The formalism also em-

ploys the notions of shared resources and priorities that occur naturally in real-time system

design. Semantics of the underlying formalism allows users to construct and explore the

labeled transition system (LTS) generated by the speci�cation.

Instead of presenting syntax and semantics of ACSR and GCSR, we refer the reader

to [14, 4] for detailed exposition. In the following sections, fragments of the RMS speci�cation

are shown as examples, and the constructs that are used there are explained as needed.

PARAGON provides three major venues for analyzing real-time systems: state space

exploration, equivalence testing, and simulation. State space exploration and equivalence

testing provide exhaustive analysis by examining every reachable state of the speci�cation.

They operate on the LTS representation of the system being analyzed. The LTS for one or

more processes is produced by an algorithm that expands the process to produce a labeled

transition system representing all possible executions. The LTS construction algorithm also

prunes edges made unreachable by the semantics of the prioritized transition system, in most

11



cases reducing the size of the resulting LTS.

State space exploration analysis can be used to determine key properties of a system's

LTS. These include (1) number of states and transitions; (2) presence of deadlocked states; (3)

states capable of Zeno behaviors (i.e. in�nite sequences of instantaneous events); (4) states

that require synchronization to take place before time can progress; and (5) reachability of

speci�c externally observable events.

Deadlock detection is the most commonly employed veri�cation method in the PARAGON

framework. Many other veri�cation problems can be reduced to deadlock detection. For ex-

ample, a safety property that has to be analyzed can be transformed into an observer process

that is composed in parallel with the speci�cation. This observer process looks for violations

of the property and induces a deadlock when one is detected. An example of this technique,

applied to the RMS speci�cation, is shown in Section 4. When a deadlock is found, the

veri�cation algorithm produces an execution trace leading to the deadlocked state. This

trace can be used to �nd and correct the error that resulted in a deadlock.

Equivalence of two speci�cations can be analyzed with respect to several notions of

behavioral equivalences. Equivalence relations employed by the ACSR paradigm are closely

related to other commonly employed process-algebraic equivalences like strong and weak

bisimulations [17], but are sensitive to priorities of actions and events. Equivalence checking

is useful when a requirement is concerned with the global behavior of the system rather than

a local aspect of it. As with state-space exploration, equivalence checking algorithms provide

diagnostic information that points out the source of inequality of the two systems.

Simulation, unlike state space exploration techniques, does not provide exhaustive veri-

�cation of the speci�cation, but it allows the user to gain additional con�dence and under-

standing of the system by animating its execution. PARAGON provides for both automatic

and step-by-step user-guided simulation. Simulation is based on the same operational se-

mantics of PARAGON that is used to generate LTS of the speci�cation. Because of this,

simulation results are guaranteed to be consistent with veri�cation results. Simulation can

12



also be used to animate diagnostic information provided by veri�cation routines when anal-

ysis fails. This helps users to locate the source of a problem.

4 Formal Speci�cation of RMS

The goal of formal analysis of RMS design was to ensure that the design satis�es require-

ments. In order to achieve the goal, it was necessary to formalize both RMS requirements

and the RMS design.

4.1 Speci�cation of Requirements

In order to verify compliance of the RMS design with requirements, we had to translate the

original RMS requirements into a formal representation. The �rst step in this translation

was to classify requirements into several groups, each requiring a di�erent treatment.

First of all, it should be noted that not all requirements can be veri�ed using the approach

that we have taken in this project. This concerns, mainly, requirements that specify voting

of data and control information. Since the nature of the application data is abstracted away

in our speci�cation, some of the requirements lose meaning in this setting. One example is

requirement 8 (Section 2.1), which states that RMS should use di�erent voting algorithms

for di�erent types of data. Details of voting were not modeled in our approach under the

assumption that, whatever algorithm is used for voting, it produces correct results. We did

not attempt to verify CCDL requirements. Instead, we used them to guide our speci�cation

of CCDL.

The rest of the requirements can be partitioned into two large groups. The �rst group,

which we call local requirements, constrains operation of a single RMS node. Requirement

9 will be used as a running example of a local requirement.

Except for exchange of collected data between nodes, these actions are performed by each

RMS node independently. Since CCDL interactions are non-blocking, an execution of one

13



RMS node cannot interfere with executions of other nodes. Therefore, we can verify a local

requirement such as 9 by considering only one RMS node. This makes the state space that

needs to be considered during analysis much smaller.

The other large group contains requirements that depend on interaction between RMS

nodes. We refer to them as global properties. Examples of global requirements are 4-7

(Section 2.1).

Each requirement, stated originally in English, had to be translated into a more strict

form. In doing so, we often had to make the requirements more precise to make implied

assumptions explicit. In particular, in requirement 9, the obvious assumption is that the

node is in steady state mode,1 since no handling of data occurs otherwise.

Most local requirements, including 9, and some global requirements, such as 5, represent

safety properties. For veri�cation purposes, each safety property can be represented as an

observer process that runs in parallel with the rest of the speci�cation and detects violation

of the property in question. Translation of requirement 9 is illustrated in Figure 6. The

observer process waits until the node enters the steady state (event InSS), then observes

arrival of the minor frame boundary signal and proceeds to detect the required sequence of

operations. Once events get app data, vote data, and data ready are issued by the node,

the observer is satis�ed with the node's operation in this minor frame and waits for the

next frame boundary to arrive. If the frame boundary signal appears before the prescribed

sequence of operations is completed, then a violation of the requirement is detected. In that

case, the observer signals failure using the special fail event.

Veri�cation of properties such as described above is performed by testing reachability

of a fail event. Alternatively, one can test for the presence of deadlocks, introduced by

the observer when a violation is discovered. This latter method presumes that the analyzed

speci�cation, without the observer, is deadlock-free. This is true of our speci�cation of the

RMS, which is described below.

1A node enters steady state mode after it has synchronized with other nodes.

14



Figure 6: Example of a requirement speci�cation

To analyze requirements that are not safety properties, we had to resort to di�erent

approaches. For example, one of the requirements states that the RMS should tolerate any

single fault. To show that this holds, we had to demonstrate that behavior of the \ideal"

RMS speci�cation without faults is equivalent to behavior of the speci�cation after injection

of a fault. In order to decide such equivalence, the veri�cation tool has to explore state

spaces of the two speci�cations together. Due to the increased size of the problem, we were

not able to perform this kind of analysis so far. We are working to produce more abstract

speci�cation of the RMS that would allow us to achieve the goal.

4.2 Speci�cation of an RMS Node

The starting point of the formalization was chosen to be the pseudocode of the RMS com-

ponents, which was used in the design process. This helped us ensure that the formal

speci�cation is adequate to the actual design of RMS. On the other hand, the use of pseu-

docode allowed us to avoid the unnecessary details of the actual code. Intuitive semantics of

the pseudocode appear clear and unambiguous. Very few clari�cations were needed during

the translation of the RMS design into the formal representation. Those were provided by

the pseudocode designers.

15



Figure 7: Top-level RMS speci�cation

Figure 8: Formal speci�cation of the RMS node

The speci�cation is constructed as a parallel composition of three RMS nodes, referred

henceforth as nodes. Figure 7 demonstrates the top-level speci�cation. Events ccdl are used

by CCDL processes within each node for communication between nodes. Since communi-

cation between each pair of nodes is performed by a separate channel, all ccdl events are

made local by means of restriction.

Figure 8 represents the overall structure of the node speci�cation. Processes FTE and

CCDL correspond to the two components in Figure 5. In addition, process Timer represents

the hardware timer included in each node. Some of auxiliary processes representing in-

ternal variables of the node are not shown. Restrict attribute of the top-level construct

speci�es events that are used for internal communication between components (again, a

number of events is omitted to avoid cluttering the �gure). Events min frame boundary

16



and maj frame boundary shown here are generated by Timer process and used by the kernel

to detect minor and major frame boundaries, respectively. These events, however, cannot

be observed by other nodes and are therefore hidden. The speci�cation is parameterized by

the node number, ranging from 0 to 2. It is important for FTE and CCDL processes to know

their identity, since they have to communicate with other nodes by issuing and receiving

appropriate ccdl events. On the other hand, Timer process does not communicate with any

processes outside of the node. Therefore, it does not need to know the identity of the node.

Timer processes in every node are identical to each other. Timer speci�cation is parameter-

ized with the current value of local time, which is incremented with every tick of the timer.

As Figure 8 indicates, a timer starts counting at 0.

We have constructed a full speci�cation of the RMS. Ideally, we would like to use this

speci�cation to verify requirements. Unfortunately, due to the size of the state space of

the full speci�cation, we were unable to do it. However, the full speci�cation is not needed

to verify most of the properties. Therefore, it was possible to perform property-dependent

abstractions on the full speci�cation. Each such abstraction gave us a reduced speci�cation,

suitable for the veri�cation of a speci�c property. The abstractions are obtained by removing

details of function calls that are not related to the property in question. Timing of all function

calls is preserved to ensure that this abstraction does not alter behavior. For veri�cation

of local properties, which were analyzed on the single-node speci�cation, values of most

variables became unimportant and were disregarded, signi�cantly reducing the state space.

To verify global properties we had to explore the parallel composition of three nodes, to

consider values of variables, and to model asynchronous data transmissions through CCDL

channels. This increased the state space of the speci�cation considerably. Therefore, we

considered partial speci�cations. To analyze requirement 5, we constructed the speci�cation

that modeled only the steady state behavior of nodes for the duration of several minor

frames. In the initial state of this speci�cation, all nodes are in the OPS and no prior errors

have been detected. We also abstracted away details of the synchronization algorithm and

assumed that the bound on the skew between the nodes was correctly maintained. In each

17



veri�cation experiment, a fault was introduced in one of the components. We have considered

several di�erent failures of the voter and the CCDL. The speci�cation was constructed in the

modular fashion so that introduction of a fault in some component did not require changes

to the rest of the speci�cation. During the analysis, we monitored occurrence of two special

events. Event reset[n], for each node number n, is used by the speci�cation to denote

resetting of the node n when it detects an error in its operation. Event exclude[n1][n2]

occurs when node n1 detects faulty behavior of node n2 and removes it from its OPS.

5 Veri�cation Results

We performed veri�cation of a number of local RMS requirements. We analyzed 11 out of 32

requirements in the RMS speci�cation. Of the remaining requirements, 7 were not meaning-

ful in the context of the formal speci�cation. Attempts to verify most global requirements

failed during the analysis stage due to excessive memory requirements.

Although only a fraction of the requirements was analyzed, we have discovered several

violations of the requirements. In particular, we found a large segment of code that was

supposed to be executed in every minor frame, but was only visited once per major frame.

This immediately made several of the requirements, including requirement 9, fail. The

problem was traced to a misplaced parenthesis in the kernel pseudocode.

After the parenthesis problem had been �xed, we performed veri�cation of failed require-

ments again. Veri�cation of requirement 9 still failed. We discovered that, although each

of the operations prescribed by the requirement was performed in each minor frame, the

order of the operations was di�erent. According to the pseudocode, the node delivered data

prepared in the previous frame at the beginning of the next frame. Therefore, voting and

delivery of data were separated by a minor frame boundary contrary to the requirement.

Another requirement that failed during analysis stated that fault isolation should be

performed in each minor frame. This was discovered by a simple tester process that ex-

18



Fault Type No. of frames No. of states/ Analysis time, Memory requirements,

to exclusion transitions seconds Mbytes

no faults N/A 20228/69448 400 270

voter, const 1 3 10948/29922 460 439

CCDL, const 1 5 27247/92916 1320 702

Table 1: Veri�cation of a global property

pected strict alternation of minor frame boundary signals and calls to a recovery function.

It turned out that these two requirements had been modi�ed in the course of the RMS

design. Subsequently, designers of the FTE made the necessary changes directly to the

code. The pseudocode, however, has never been updated, and did not comply with the new

requirements.

Requirement 5 (exclusion of a faulty node) is the only global property that we were

able to analyze so far. We introduced faults into voter of node 2 and into CCDL channel

from node 0 to node 2. For all types of faults we modeled, we observed events reset[2],

exclude[0][2], and exclude[1][2]. That is, the faulty node was reset and the two good

nodes performed exclusion as required. In all cases, exclusion was achieved within one major

frame. The summary of experimental results for several of the faults is presented in Table 1.

The speci�cation contains 3 FTE control processes, 3 timer processes, 9 CCDL control

processes, and 1 observer process, as well as 36 3-bit integer and 189 boolean variables. The

large number of concurrent processes makes representation of a global state in the LTS more

complex. This explains high memory requirements and veri�cation time. Reduced size of

the LTS in some of the experiments is caused by a fast reset of the faulty node.

6 Conclusions and Future Work

We were quite surprised to discover errors in the RMS speci�cation. The fact that preliminary

RMS X-33 implementation had been successfully delivered allowed us to assume that most

19



problems had been discovered during the design stage. None of the errors uncovered during

this e�ort was present in the actual implementation of RMS and, to the best of our knowledge,

the current RMS implementation complies with all the requirements. The source of all errors

is the discrepancy between the pseudocode and the actual code. This discrepancy may have

an impact if the FTE pseudocode is used later for maintenance or modi�cation of the RMS.

The translation of the pseudocode into a set of ACSR processes was conducted by hand.

We found this to be a lengthy and error-prone process. In fact, majority of discovered

errors turned out to be introduced during translation. While translation by hand may be

unavoidable with informal design notations like pseudocode, it is very desirable to develop

automatic or semi-automatic translations for more rigorous design notations, for example

UML [6].

E�orts to verify the RMS speci�cation are still under way. We keep re�ning abstractions

used in property-dependent speci�cations in order to come up with smaller speci�cations

that can be processed with the available hardware.

References

[1] R. Alur and R.P. Kurshan. Timing analysis in COSPAN. In Hybrid Systems III, LNCS

1066, pages 220{231. Springer-Verlag, 1996.

[2] A. Avizienis and J. P. J. Kelly. Fault tolerance by design diversity: Concepts and

experiments. Computer, 17(8):67{80, August 1984.

[3] H. Ben-Abdallah, I. Lee, and J.-Y. Choi. A graphical language with formal semantics for

the speci�cation and analysis of real-time systems. In Proceedings of IEEE Real-Time

Systems Symposium. IEEE Computer Society Press, December 1995.

[4] Hanêne Ben-Abdallah, Duncan Clarke, Insup Lee, and Oleg Sokolsky. PARAGON:

A Paradigm for the Speci�cation, Veri�cation, and Testing of Real-Time Systems. In

IEEE Aerospace Conference, pages 469{488, Feb 1-8 1997.

[5] Rance Cleaveland, Joachim Parrow, and Bernhard Ste�en. The concurrency workbench:

A semantics-based tool for the veri�cation of concurrent systems. ACM TOPLAS, 15(1),

1993.

20



[6] H.-E. Eriksson and M. Penker. UML Toolkit. J. Wiley & Sons, 1997.

[7] H. Kopetz et al. Distributed fault-tolerance real-time systems: The mars approach.

IEEE Micro, pages 25{39, February 1989.

[8] C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw. SCR*: Toolset for specifying and

analyzing requirements. In Proceedings of the Tenth Annual Conference on Computer

Assurance (COMPASS '95), pages 109{122, June 1995.

[9] T. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: The next generation. In Proceedings

of the 17th IEEE Real-Time Systems Symposium, 1996.

[10] M.G. Hinchey and J.P. Bowen, Eds. Applications of Formal Methods. Prentice Hall

Intl., 1995.

[11] G. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.

[12] R. Kieckhafer, C. Walter, A. Finn, and P. Thambidurai. The maft architecture for

distributed fault tolerance. IEEE Transactions on Computers, pages 398{405, April

1988.

[13] K. Kim. Design of real-time fault-tolerant computing stations. In Proceedings of the

NATO Advanced Study Institute of Real-Time Computing, October 1992.

[14] I. Lee, P. Bremond-Gregoire, and R. Gerber. A process algebraic approach to the

speci�cation and analysis of resource-bound real-time systems. Proceedings of the IEEE,

82(1), January 1994.

[15] K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem.

Kluwer Academic Publishers, 1993.

[16] A. Mehra, J. Rexford, H. Ang, and F. Jahanian. Design and evaluation of a window-

consistent replication service. In Proceedings of the �rst IEEE Real-Time Technology

and Applications Symposium, May 1995.

[17] Robin Milner. A Calculus of Communicating Systems. LNCS 92, 1980.

[18] P. Thambidurai, A.M. Finn, R.M. Kieckhafer, and C.J. Walter. Clock synchroniza-

tion in maft. In Proceedings of IEEE 19th International Symposium on Fault-Tolerant

Computing, pages 142{149, 1989.

[19] J. Zhou. Design capture for system dependability. In Proceedings of Complex Systems

Engineering Synthesis and Assessment Workshop, pages 107{119, Silver Spring, MD,

July 1992. NSWC.

21


