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Abstract 

Recent years have witnessed a growing interest in the application of wireless sensor networks in 

unattended environments. Nodes in such applications are equipped with limited energy supply 

and need careful management in order to extend their lifetime. In order to conserve energy, many 

of the routing protocols proposed for wireless sensor networks reduce the number of transmitted 

packets by pursuing in-network data aggregation. Almost all of the aggregation schemes 

presented in the literature strive to save sensor�s energy while considering unconstrained data 

traffic. However, aggregation extends the queuing delay at the relay nodes and can thus 

complicate the handling of latency-constrained data. In this paper, we analyze the conditions for 

effective aggregation of data traffic that is subject to end-to-end delay constraints. We present an 

algorithm for achieving maximal possible energy saving through data aggregation while meeting 

the desired level of timeliness. A Weighted Fair Queuing based mechanism for packet 

scheduling is employed at each node in order to perform service differentiation and ensure 

bounded delay for constrained traffic. The performance of the proposed approach is qualified via 

simulation.  The simulation results have demonstrated that the proposed approach provides a 

balance between energy consumption and timeliness level. 

Keywords: Sensor networks, In-network data aggregation, Rea-time communication, Energy-

aware design, QoS routing. 

1 Introduction 

Recent advances in microelectronics and low-power design have led to active research in large-

scale, highly distributed systems of miniaturized wireless sensors [1]. Each sensor is capable of 
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measuring ambient conditions in its vicinity and reporting the sensed data on a radio channel. 

Over the last few years, the design of sensor networks has gained increasing attention due to 

their potential in a number of civil and military applications. For example, a network of sensors 

can be used to gather meteorological variables such as temperature and pressure. These 

measurements can be used in preparing forecasts or detecting harsh natural phenomena. In 

disaster management situations such as earthquakes, sensor networks can be used to selectively 

map the affected regions directing emergency response units to survivors. In combat zones, 

sensor networks can assist in surveillance missions and detect moving targets, chemical gases, or 

presence of micro-agents. Sensors in such applications are typically unattended and their 

batteries cannot be recharged. Therefore, energy-aware network operation becomes essential in 

order to extend the lifetime of the deployed sensors.  

An important energy saving mechanism for sensor nodes is to exploit in-network data 

aggregation. In wireless sensor networks the raw sensed data is typically forwarded to a sink 

(gateway) node for processing. The main idea of in-network data aggregation is to eliminate 

unnecessary packet transmission by filtering out redundant sensor data and/or by performing an 

incremental assessment of the semantic of the data, e.g. picking the maximum temperature 

reading. Recent research on data aggregation in sensor networks focused on generating optimal 

aggregation trees for reduced energy consumption. The proposed mechanisms promote path 

sharing as much as possible and therefore trade increased per node queuing delay, and 

consequently boost the overall delivery latency, for further energy savings [2][3][4]. Moreover, 

significant attention has also been dedicated by the database community to the development of 

lightweight query languages and tool suite that enables task level analysis of the potential 

aggregation [5][6][7].  

The increasing interest in the use of sensor networks in real-time applications introduces new 

challenges for the in-network data aggregation. For instance, in monitoring applications some 

queries that are subject to aggregation may require a bounded response time in order to ensure 

timely reaction to important findings. A typical query can be specified as �Report the average 

(maximum, minimum, etc.) measurement (temperature, pressure, radiation, etc.) in a certain 

region within D time units every T time units�, where D < T. When processing such query, in-

network data aggregation should not only be performed in an energy-efficient manner but should 

also achieve timeliness for some designated paths from the source nodes to the gateway. Other 
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applications of energy-efficient delay-constrained data aggregation include real-time target 

tracking in battle environments and critical relaying of after-shock events in disaster 

management environments.  

In this paper, we consider sensor network setups that involve the collection of both real-time 

and non-real-time data. Under normal conditions data are routed in a best-effort manner with 

flexible latency bounds. Contemporary in-network aggregation techniques are employed in order 

to save communication-related energy consumption. Real-time data are generated and relayed to 

the gateway in response to delay-sensitive queries. While in-network aggregation of real-time 

data will still be highly desirable, the timeliness of the delivery of real-time packets has to be 

guaranteed.  Meeting the timing constraints would require clever management of the packet 

queues at the relaying nodes in order to provide differentiated services based on the type of 

traffic. In-network data aggregation may extend the buffering time and thus may negatively 

impact the latency for delivering real-time packets.  This paper investigates the problem of 

efficient in-network data aggregation of delay-constrained traffic in wireless sensor networks. 

We employ the Weighted Fair Queuing (WFQ) methodology [8][9][10] to schedule packets at 

relay nodes according to their type. WFQ enables the estimation of cumulative queuing delay on 

a path for non-burst traffic.  We formally derive conditions for on-time packet delivery over an 

aggregation tree. We further present an algorithm that sets routes for maximal possible in-

network data aggregation while meeting end-to-end delay constraints.   

In the balance of this section we describe the sensor network architecture that we consider 

and summarize related work on in-network data aggregation. In section 2, we analyze the issues 

related to in-network aggregation of delay-constrained traffic and propose an algorithm for 

efficient aggregation of real-time packets. Section 3 discusses the algorithm�s validation in a 

simulated environment and evaluates its performance. Finally we conclude the paper in section 4 

with a summary and an outline of future research directions.  

1.1 Sensor Network Architecture 

A set of sensors is spread throughout an area of interest to monitor possible events in this area. 

The sensors are battery-operated with diverse capabilities and types and are empowered with 

limited data processing engines. The mission for these sensors is dynamically changing to serve 

the need of one or multiple command nodes. Command nodes can be stationary or mobile. A 

gateway node is a less energy-constrained node deployed in the physical proximity of sensors. 
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The gateway is responsible for organizing the activities at sensor nodes to achieve a mission, 

fusing data collected by sensor nodes, coordinating communication among sensor nodes and 

interacting with command nodes. The gateway node sends to the command node reports 

generated through fusion of sensor readings, e.g. tracks of detected targets. The command node 

presents these reports to the user and performs system-level fusion of the collected reports for 

overall situation awareness. In this paper we only consider stationary gateway and sensor nodes. 

All the sensors are assumed to be within the communication range of the gateway node. The 

architecture is depicted in Fig. 1. 

The sensor is assumed to be capable of operating in an active mode or a low-power stand-by 

mode. The sensing and processing circuits can be powered on and off.  In addition the radio 

transmitter and receiver can be turned on and off and the transmission power can be programmed 

for a required range. It is also assumed that the sensor can act as a relay to forward data from 

another sensor. Moreover, a sensor is 

assumed to switch between generating real-

time and non-real-time data. It is worth 

noting that most of these capabilities are 

available on some of the advanced sensors, 

e.g. the Acoustic Ballistic Module from 

SenTech Inc. [11]. The gateway node is 

assumed to know its location, e.g. via the 

use of GPS. While the gateway will take 

charge of sensor organization based on the 

mission, we assume knowledge of which 

sensors need to be active in signal 

processing.  

1.2 Related Work 

Although significant efforts have been dedicated to performing data aggregation for sensor 

networks [2]-[7][12][13], to the best of our knowledge, no prior work has investigated the 

handling of end-to-end delay requirements for queries that utilize aggregate functions. Some 

researchers have looked at latency issues from different perspectives. For instance, the approach 

of Intanagonwiwat et al. [3] exploits latency and credibility trade-off in order to propose a 

Command Node

Command Node

Command Node

Command Node

Sensor nodes

Gateway Node 

Command Node

Command Node

Command Node

Command Node

Sensor nodes

Gateway Node 

Fig. 1: Three-tier sensor network architecture 
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solution to the problem of �How long a node should wait before aggregating and sending its data 

to its parent?�, where a parent denotes the next hop. The more it waits the better the credibility 

i.e. the significance of the result based on the number of contributing sensors. On the other hand, 

waiting too much can increase the end-to-end delay. However, they neither propose an algorithm 

to construct the aggregation tree nor consider a latency bound for the data. Our approach on the 

other hand constructs an aggregation tree for real-time packets and strives to meet the required 

bound on the end-to-end delay when two types of traffic coexist in the network.  

Another in-network data aggregation scheme that aims at minimizing the end-to-end delay is 

proposed in [12]. This scheme does not consider any latency bound but tries to minimize the 

average end-to-end delay by concatenating multiple packets into one at the MAC layer. The idea 

is to limit the medium access contention so that the packet queuing delay will be reduced. 

Moreover, they use a feedback mechanism at each sensor node to adjust the number of 

concatenated packets based on the current traffic conditions. However, the proposed feedback 

mechanism is too complex for a resource constrained sensor node. Moreover, they just consider 

MAC layer and there is no optimization at network layer. When the concatenated packet is 

dropped then the recovery process will be very expensive, diminishing the energy and latency 

gains. 

In [2], finding the optimal aggregation tree is modeled as a minimum Steiner tree problem. 

Since forming the minimal Steiner Tree is an NP-hard problem, three sub-optimal solutions were 

proposed. The suggested schemes include the Center at the Nearest Source (CNS), in which data 

is aggregated at the source nearest to the destination; Shortest Path Trees (SPT), where data is 

sent along the shortest path from source to gateway and aggregated at common intermediate hops 

along the way; and Greedy Incremental Trees (GIT), which builds an aggregation tree 

sequentially to merge paths. This work however does not deal with end-to-end delay constraints. 

Nonetheless, we use the SPT heuristic in our approach to build an initial aggregation tree, as we 

explain in the next section.  

An interesting study that considers data aggregation subject to latency constraints is reported 

in [13]. The paper proposes packet scheduling algorithms for data gathering in real-time 

monitoring applications using a technique called modulation scaling. The idea is to model the 

transmission energy using the Quadrature Ampitude Modulation (QAM) scheme, which 

represents the energy consumption as a function of the modulation frequency. By adjusting the 
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bit rate at each node, significant energy saving can be achieved while keeping the latency in 

check. While this work considers a similar problem, our approach does not employ any 

modulation scaling techniques. Moreover, we consider mixed types of traffic which is not the 

case in their work.  

2 Efficient Aggregation of Delay-Constrained Data 

In this section we analyze the issues of performing in-network aggregation of delay-constrained 

traffic and describe our approach for addressing them. The following subsection serves as an 

extended problem statement. Section 2.2 summarizes how we support the routing of real-time 

data packets.  Section 2.3 is dedicated to discussing our approach for building an aggregation 

tree that maximizes energy savings while ensuring timeliness.   

2.1 Issues of Aggregating Constrained Traffic  

Achieving the least energy consumption through data aggregation has been modeled as a 

minimum Steiner tree problem [2]. Given a graph G = (V, E), where V is the set of vertices and E 

is the set of weighted edges, and a subset S ⊂  V of required vertices, a Steiner tree is a sub-graph 

of G that includes all the vertices in S and has the minimum sum of weights. The Steiner tree of 

all the vertices when S=V, simply defines the minimum spanning tree of G. The links on the 

minimum Steiner tree, assuming a perfect aggregation of all packets, corresponds to the minimal 

number of packet transmissions and consequently the least communication energy.  

When we consider mixed-type traffic where real-time and non-real-time traffic coexist, data 

aggregation becomes more challenging. In that case, we need to consider delay requirements for 

real-time data along with energy consumption of both real-time and non-real-time traffic. The 

problem can be stated as follows: Given a gateway and a set of sensors that can continually 

generate non-real-time data along with intermittent real-time data and an initial data aggregation 

tree for non-real-time data, propose a mechanism that strives to meet the end-to-end delay 

constraints of real-time data while providing maximal possible in-network data aggregation for 

both traffic. This problem can be modeled as finding a constrained Steiner tree, which achieves 

both minimum cumulative weights (energy consumption) and meets a certain bound (end-to-end 

delay) for each source-gateway pair. Delay-constrained minimum Steiner tree is shown to be NP-

hard [15].  
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Since the aggregation tree will be built initially based on the flow of non-real-time data, the 

tree may need to be modified/re-established to handle the intermittently involved real-time 

traffic. There is a trade-off between performing in-network data aggregation and achieving 

timeliness. While using the initial data aggregation tree allows maximum path sharing and helps 

in reducing the number of packet transmissions, it boosts the queuing delay at relay nodes due to 

increased inbound traffic and waiting time for the arrival of the data packets to be aggregated. 

The increased queuing time can risk the timeliness of constrained traffic and thus can 

overshadow the energy savings of the in-network aggregation. Our approach, as we later explain, 

utilizes a service differentiation mechanism to control the queuing time and modifies the routes 

as needed in order to ensure timeliness. In the next subsections, we first describe the underlying 

service differentiation mechanism and then explain our approach for conducting efficient delay-

constrained in-network data aggregation. 

2.2 Supporting Real-time Packets  

When the real-time traffic emerges, we need a service differentiation mechanism to handle both 

types of traffic and provide end-to-end guarantees for real-time data. In order to provide such 

service differentiation, we employ the Weighted Fair Queuing (WFQ) packet scheduling 

methodology at each node. WFQ has been shown to provide, in statistical term, an upper bound 

on path delay for a leaky bucket constrained flow [10]. In [16], we have used the WFQ packet 

scheduling technique for ensuring end-to-end delay bounds for time-constrained sensor data. 

Such solution however, does not consider any data aggregation at intermediate nodes enroute and 

all the processing is done at the gateway. In this paper, WFQ will be used along with data 

aggregation and activated at the point where real-time data is involved in the network. Before 

explaining our data aggregation mechanism, in this subsection we give a brief background on 

WFQ and how we employ it at the constrained sensor nodes. 

To support real-time traffic, each sensor node applies a packet scheduling discipline that 

approximates Generalized Processor Sharing (GPS) [8]. GPS achieves exact weighted max-min 

fairness by dedicating a separate FIFO queue for each session (flow) and serving an infinitely 

small amount of data from each queue in a weighted round robin fashion. The packetized version 

of GPS is called Weighted Fair Queuing (WFQ). One interesting property of WFQ is that when 

combined with leaky bucket constrained sources, it can provide upper end-to-end delay bounds 

for each flow [9][10]. Assuming flow i is constrained by a leaky bucket with parameters (σi, ρi), 
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the maximum end-to-end delay (transmission + queuing delay) for a packet of flow i under 

WFQ, given in [10], is: 

 

While WFQ is flow based, we use an approximation of WFQ by considering each real-time 

sensor node as a source of different real-time flow but with only one real-time queue at each 

relay node for the incoming packets of these multiple flows (Fig. 2) [16]. This model is used due 

to two reasons. First, having a different queue for each real-time flow will be inefficient in terms 

of the storage capacity of a sensor node. Second, the real-time flows are generated dynamically 

depending on the number of active real-time source sensors. Since the number of such flows can 

change during the sensing activity, having one queue will reduce the maintenance overhead.  

The service ratio �r� is the bandwidth ratio and is used in allocating the amount of bandwidth 

to be dedicated to the real-time and non-real-time traffic on a particular outgoing link. This value 

is also used to calculate the service rate for each type of traffic on that particular node, with rmµ  

and (1- rm)µ being respectively the service rate for real-time and non-real-time data on sensor 

node m. In this case, rm for the real-time queue on a node is the summation of link shares 
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•  C is the link bandwidth 
•  σi is the maximum burst size for leaky bucket on flow i
•  ρi is the average data rate of the flow i 
•  Pmax(i) is maximum packet size for flow i 
•  Pmax is maximum packet size in the network 
•  gi

m is the service rate on node m for flow i 
•  g(i) is the minimum of all service rates for flow i 
•  M is the number of nodes on path of flow i 
•  Фi

m is the link share on node m for flow i 
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delay constraint is met.  

We argue that calculating the r-values and setting the routes is not a major burden in terms of 

energy and timeliness since it is handled by the gateway itself before the real-time packet 

generation has started.  

2.3 Aggregation Tree for Real-time Traffic 

As mentioned earlier, we consider a scenario where a sensor network application sets initial 

routes for data to be collected and aggregated periodically. However, at times the gateway 

queries certain regions for further critical information whose delivery would be subject to latency 

constraints. In our approach we first establish the initial routes to maximize the potential of in-

network data aggregation of non-real-time traffic. We use the Shortest Path Trees heuristic, 

discussed in [2]. This heuristic tries to build a minimum weight Steiner tree by finding the 

shortest path between each source to the gateway and then combining the overlapping paths. In 

the absence of real-time traffic, in-network aggregation is performed without attention to packet 

delivery delay. It should be noted that we do not aggregate real-time flows with non-real-time 

flows.  

Before the sensor nodes start generating real-time data in response to a request from the 

gateway, for each source our algorithm checks whether current routes can meet the delivery 

deadline or not. This is done by trying to find a valid r-value for each relay node on the path 

from a source to the gateway when both real-time and non-real-time traffic coexist in the 

network. Note that a valid r-value should be in [0, 1]. If the timeliness is violated, i.e. an r-value 

between 0 and 1 cannot be found, a new route should be searched. When searching for that route, 

the best alternative should be the one providing data aggregation the most and meeting the 

deadline. Therefore a node disjoint path will be the last option in the search process.  

Let us call the longest path in terms of hops to the gateway in the region to be the main 

stream. The aim is to find a valid r-value for that route in order to meet the end-to-end delay 

bounds. Once such a valid r-value can be found, paths for other real-time sources should be 

checked. We call the route, if any, from each real-time source to this main stream as sub-

branches and for each of these sub-branches we compute the r-value for a feasible delay-

bounded path. If all the relay nodes on this sub-branch, from the source till the connection node 

to the main stream, have been found to have a valid r-value, we argue that all the source nodes 

generating real-time traffic and connecting the main stream will achieve the desired end-to-end 
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delay bounds. Before explaining the reasoning behind this argument, we introduce the two 

lemmas. The following notation is used in the balance of this subsection: 
 

P(s, G) : Path from the source node s to the gateway G 

rs : r-value for node s 

RT : Set of sources that generate real-time data 

Ψ(s)  : The number of hops from node s to the gateway 

D(s,G) : End-to-end delay from node s to gateway 

Γ : End-to-end delay bound for the application 

Θj : The shared node for the path from source j to gateway 

⊕  : Associative aggregation operator  

 

Lemma 1: If there are multiple real-time flows f1, f2,�., fn sharing the same relay node i, they 

can be combined into a single flow fi.  

Proof: Since the shared relay node has the ability to aggregate packets from the flows passing 

thought it, Packet(i)←Packet(f1)⊕ Packet(f2)⊕ �⊕ Packet(fn). However, all involved packets 

should be available at the time of aggregation. Therefore, each arriving packet from a flow is 

aggregated incrementally until processing all of them. Finally, the relay node will have only one 

packet, yielding one outgoing flow.   !  

Note that the incremental aggregation at the node will diminish the potential for buffer 

overflow since multiple packets would otherwise need to be stored in the buffer waiting for 

aggregation. Moreover, the nodes close to the gateway that are expected to be heavily loaded 

with real-time data will be relieved. By taking advantage of the decreased number of flows, we 

can guarantee end-to-end delay bounds for the sources sharing the same path on the aggregation 

tree. This also helps in reducing the number of transmissions in the network and hence provides 

significant energy savings for sensor nodes. We now prove how such end-to-end delay guarantee 

can be achieved by introducing the following lemma: 

Lemma 2: If there is a path P(si, G) with 10 <≤ sr  ),( GsPs i∈∀  and 
RTj

ji sMaxs
∈∀

Ψ=Ψ ))(()( , then 

Γ≤),( GsD j  }{ ij sRTs −∈∀  if 10| <≤∃ ss rr  ),( jjsPs Θ∈∀ .  
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Proof: If each node on P(si, G) has a valid r-value and 

P(si, G) is the longest path from real-time sensors to the 

gateway, the other sources of real-time data will have 

sub-branches merging at some relay nodes on P(si, 

G).The data packets generated at those sources will 

reach the relay (aggregator) nodes before the packets of 

si  reach them since 10| <≤∃ ss rr  ),( jjsPs Θ∈∀  and 

P(si,G) is the longest path. The aggregator node will generate a single outgoing flow as proved 

with Lemma 1. Hence, the existing r-value will be sufficient to serve this single flow (see Fig. 3). 

Therefore, once a valid r-value can be found for every real-time source then the end-to-end delay 

requirements will be satisfied without any further actions.   ! 

In some circumstances we may not be able to find a feasible r-value for all the nodes on the 

longest path to the gateway. In that case, our algorithm designates the second longest path to the 

gateway as a potential main stream and checks for an appropriate r-value. This process continues 

until the main stream is identified. Then, the data aggregation process will be similar, based on 

Lemma 1 and 2. However, we need to look for alternative routes for packets pursuing 

disqualified paths, when a valid r-value cannot be found. In order to achieve timeliness, we 

consider less energy efficient paths from the affected sources to the gateway. It should be noted 

that path sharing is still desirable for in-network data aggregation when searching for the 

alternate routes. Therefore, we first try to connect to the main stream at a later point, i.e. at a 

relay node on the path that is closer to the gateway, by finding routes from the corresponding 

real-time sources to that relay. The process continues until a route with a valid r-value from each 

affected source to the gateway 

can be found.  It should be 

noted that we may end up with 

a node disjoint path to the 

gateway when all the potential 

aggregation routes are explored.  

A pictorial illustration of a 

sample situation is depicted in 

Fig. 4. We consider the route 
Fig. 4: a) Initial routes b) Adjusting the routes when real-time 
sources involved for timeliness of real-time packets. 
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Fig. 3: Combining multiple flows 
into one with data aggregation.
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from A to G the main stream initially. However, since an r-value cannot be found for the nodes 

on that path, we changed the main stream to B-G path. Node A had to find a node disjoint path to 

G in order to find feasible r-value for its nodes. Node C and D joins the main stream at the 

aggregation nodes E and F respectively. 

Our proposed algorithm for handling aggregate queries such as min, max, average etc., in 

sensor networks in the presence of mixed-type traffic is outlined in Fig. 5. In lines 1-2, we form 

the initial aggregation tree. In line 3, we find the path with the maximum number of hops to the 

gateway and designate it as the main stream. When real-time data is involved, we need to find a 

feasible r-value for the main stream as shown in line 4. If it is not possible, then we pick the next 

longest route as the main stream 

until a feasible r-value can be 

found for the selected path to the 

gateway as shown in lines 5-8. 

After picking the main stream, we 

compute the r-values for the sub-

branches connecting to this stream 

in lines 9-11. In lines 12-13, the r-

value of an aggregator node is 

adjusted due to the reduction of 

multiple inbound flows to just one 

outgoing flow (Lemma 1). We 

then find alternative less energy 

efficient paths yet meeting the 

end-to-end delay bounds for the 

sources which could not find a 

valid r-value earlier, as shown in 

lines 15-19. This alternative path 

either tries to connect to the main 

stream at later points if possible or 

left as a node disjoint path to the 

gateway. 
Fig. 5: Pseudo code for data aggregation and re-computing r-
values 

1  Find the shortest path for each source to G  
2  Combine the overlapping links to form the aggregation tree
 

/* Determine the main stream to the gateway in the region  
    When the real-time data is involved */ 
3  main_stream " ( ))( iRTs

sMax
i

Ψ
∈∀

 

4  if (
isi rstreammains |_∈∃ ∉ [0,1]) 

5  repeat 
6   main_stream" next longest path 
7  until  )(|_ ii srstreammains ∈∀  ∈  [0, 1] 
8  endif 
 

/* Find necessary r-values*/ 
9   for ( RTsi∈∀ sharing with main_stream) do 
10         ),( GsPj i∈∀  compute rj // To meet the latency  
11 endfor 
 

/*Adjust r-values due to aggregation */ 
12  for (each kΘ on main_stream) do 
13 

k
rΘ

 " 
)(

)(
kchildrenl

lrMax
Θ∈

// max r-value of its children     

14  endfor 
 

/*modify the routes that do not have feasible r-value initially 
*/ 
15   for ( RTsi∈∀ such that ji rGsPj |),((∈∃  ∉  [0, 1]) do 
16 repeat  
17       Find another less energy-efficient Pnew(si, G) 
18       Try connecting to the main_stream 
19 until ji rGsPj |)),((∈∀  ∈  [0, 1] 
20 endfor 
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3 Experimental Validation 

The effectiveness of our approach is validated through simulation. This section describes the 

underlying network operation, simulation environment, performance metrics and experimental 

results. 

3.1 Validation Setup 

We have adapted the system architecture of [17] for validating our approach. The gateway 

electively engages some sensors in probing the surroundings based on missions that are assigned 

to the network. Unselected sensors can switch to a low-energy sleep mode. The gateway 

broadcasts the routing table prior to starting or resuming data transmission. The link cost is a 

function of the sender�s energy reserve and the distance between the transmitter and receiver. 

Rerouting is triggered by either an application-related event that requires the involvement of 

different set of sensors, a need for a more efficient network topology or the depletion of the 

battery of an active node. During this process, the gateway runs the routing algorithm and sends 

new routes to each node and informs each sensor about its new state. 

In the validation experiments, the network consists of varying number of sensor nodes (50 to 

250) randomly placed sensors deployed in a 500×500 m2 area. The gateway initial position is 

determined randomly within the area boundaries. A free space propagation channel model is 

assumed [18] with the capacity set to 2 Mbps. The size of a data packet is 10 Kbit [11]. Each 

node is assumed to have an initial energy of 5 joules. A node is considered nonfunctional if its 

energy level reaches 0. The transmission range for a sensor node is assumed to be 100m [19]. 

We assumed a link error rate of 0.01. For a node that is actively sensing the environment, packets 

are generated at a constant rate. Each packet has an energy field that is updated during the packet 

transmission to calculate the total energy consumption in the network. In the experiment we 

assume that the network is tasked with a habitat monitoring application, where all sensors are 

actively probing the environment reporting delay-unconstrained data. Intermittently the gateway 

queries a random region getting some nodes (about 10% of the deployed sensors) to generate 

real-time data.  

While each node is generating non-real time packets periodically to send to the gateway, the 

set of sensing nodes for real-time data exchange is selected based on a delay-constrained query 

specification in a certain region of the deployment area. These nodes are called real-time sensors 

and they generate data for a certain amount of time during the simulation. Packets, generated by 
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such sensors, are labeled as of real-time type and treated differently at the relaying nodes. The r-

value is initially assumed to be 0 and is recalculated as real-time sensing begins. The default end-

to-end delay requirement for real-time data is taken to be 0.08 sec [20]. We assume perfect 

aggregation, i.e. multiple packets can be combined into one after aggregation.  

3.2 Performance Metrics and Results 

The goal of the performance experiments is to qualify the impact of aggregation of real-time data 

on both energy and timeliness metrics and to capture the effect of traffic density and network 

size on how our approach performs. As a base for comparison, we have used the initial SPT 

aggregation algorithm without considering any service differentiation and packet scheduling at 

the nodes. In addition, we compared our WFQ based aggregation approach to the one without 

considering any aggregation at the nodes.  In the graphs SPT indicates the baseline approach, 

WFQ indicates the approach employing packet scheduling but no aggregation and WFQ-AGG 

refers to our algorithm. We have used the following performance metrics: 

•  Deadline Miss Ratio: This is one of the most important metrics in real-time applications, which 

indicates the number of packets that could not meet the specified delivery deadline.  

•  Total energy: This indicates the total energy consumption in transmission and reception of all 

packets in the network. This metric along shows how efficient the algorithm is with respect to 

energy consumption.  

We have applied 5 distinct seeds in order to generate random network topologies. Separate 

simulation experiments were performed for each topology. Each simulation lasted 2000 sec. We 

observed that with 90% confidence level, the simulation results stay within 6%-10% of the 

sample mean.  

Timeliness: We have measured the effect of aggregation on timeliness. Recall that data 

aggregation can increase the queuing delay at relay nodes since it strives to combine paths and 

waits for the arrival of all packets to be aggregated.  Figures 6 to 8 compare the rate of missing 

packet delivery deadline for our algorithm to that achieved by both SPT and WFQ-AGG.  In Fig. 

6, we have fixed the network size and varied the packet generation rate measured in terms of the 

inter-packet time (round). At low rate the queuing delay introduced by aggregation becomes 

negligible and our algorithm performs similar to the baseline case of no aggregation of real-time 

data. At high rate the queuing delay becomes excessive and hurts timeliness. We observe that at 
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both low and high rates, SPT causes most of the 

real-time packets to miss their deadlines since 

WFQ packet scheduling is not employed.  

Figures 7 and 8 capture the effect of the size of 

the network on timeliness.  For both high and low 

data generation rates, WFQ and WFQ-AGG 

perform significantly better than SPT in terms of 

hit ratio for real-time data because of the similar 

reason stated above. When comparing WFQ and 

WFQ-AGG, for high rates, the increase in miss rate m

in Fig. 7. This is very much expected as hinted in F

small networks the impact of the generation rate on re

hand, at low rates the effect of aggregation on timelin

performance of the WFQ and WFQ-AGG is very sim

network sizes.  

Energy: Looking at the total energy consumption in

approach, as expected, conserves significant energy c

total energy consumption is very close to the baselin

consequently maximum energy, saving is possible. Fi

helped in achieving about 30% additional energy sav

impact is more obvious when the number of senso
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sensors, more path sharing and hence more in-network aggregation is possible. Since processing-

related energy consumption is much less than wireless communication, in-network data 

aggregation provides a significant reduction in the number of transmissions in the network. 

Therefore, more energy savings are possible as the network scales. Similar observation can be 

made regarding the packet generation rate as seen in Fig. 10. For high packet density the energy 

savings grows in significance compared to the WFQ. 

Collective analysis of all performance graphs indicates that there is a trade-off between the 

level of energy conservation and timeliness. Noting that we try to stick to a tree that maximizes 

the potential for aggregating non-real-time data, timeliness of constrained traffic is always going 

to be hard to achieve under heavy traffic. We thus envision that an application level analysis 

would be necessary to qualify the importance of timeliness in comparison to energy 

conservation. For large networks or under high rate of real-time packets, it may be necessary to 

sacrifice the level of aggregation of contemporary traffic.  

4 Conclusion 

In this paper, we have presented an efficient approach for providing timeliness in sensor 

networks when in-network data aggregation is utilized. The proposed approach initially forms an 

aggregation tree that suits contemporary best-effort traffic and utilizes WFQ in order to support 

on-time delivery of delay-constrained (real-time) data. The idea is to identify the longest path in 

terms of hop counts on the aggregation tree for which the end-to-end delay is acceptable. A work 

around mechanism is presented to ensure timeliness of packets on unfeasible paths by adjusting 
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the tree so that the packets are aggregated at another relay node that is closer to the gateway 

(sink) node. 

We analytically proved that when a feasible path is found for the longest path in terms of hop 

counts among the real-time sources, the other sources connecting to this longest path can meet 

the end-to-end delay bounds. The effectiveness of the proposed approach is verified through 

simulation. Simulation results show that our approach provides significant increase in timeliness 

at the price of a slight increase in energy consumption when compared to non-QoS-aware 

aggregation. The approach maintains the same level of timeliness for low traffic rates and 

slightly increases deadline misses for reasonably higher rate. Our future plan includes extending 

the presented framework to support mobile nodes and exploring the effect of complex 

aggregation operators on timeliness and energy.  

References 

[1] I. F. Akyildiz, et al., �Wireless sensor networks: a survey�, Computer Networks, Vol. 38, pp. 393-

422, March 2002. 

[2] B. Krishnamachari, D. Estrin, and S. Wicker. �The Impact of Data Aggregation in Wireless Sensor 

Networks�, In Proceedings of International Workshop on Distributed Event-Based Systems, 2002. 

[3] C. Intanagonwiwat, D. Estrin, R. Govindan, and J Heidemann, "Impact of Network Density on Data 

Aggregation in Wireless Sensor Networks", in Proceedings of the 22nd International Conference on 

Distributed Computing Systems, Vienna, Austria, July 2002. 

[4] Yuan W., Krishnamurthy S.V., and Tripathi, S.K., �Synchronization of Multiple Levels of Data 

Fusion in Wireless Sensor Networks,� IEEE GLOBECOM 2003. 

[5] S. Madden, M. Franklin, J. Hellerstein, W. Hong, " TAG: A Tiny Aggregation Service for ad hoc 

Sensor Networks," OSDI Conf., Boston, December 2002. 

[6] Mohamed A. Sharaf,  Jonathan Beaver, Alexandros Labrinidis and Panos K. Chrysanthis, TiNA: A 

Scheme for Temporal Coherency-Aware in-Network Aggregation, ACM MobiDE'03, San Diego, 

CA,2003. 

[7] A. Demers et al, "The Cougar Project: A Work-in-Progress Report," ACM SIGMOD Record, vol. 34, 

no. 4, Dec. 2003. 

[8] A. K. Parekh and G. Gallager, �A generalized processor sharing approach to flow control in 

integrated services networks: The single-node case�, IEEE Trans. on Networking, vol. 1, no. 3, pp. 

344-357, June 1993. 



18 

[9] A. Demers et al., �Analysis and simulation of a fair queuing algorithm� in Journal of Internetworking 

Research and Experience, pp 3-26, October 1990.  

[10] A. K. Parekh and G. Gallager, �A generalized processor sharing approach to flow control in 

integrated services networks Services Networks: The Multiple Node Case�, in the Proceedings of 

IEEE INFOCOM 1993. 

[11] Data sheet for the Acoustic Ballistic Module", SenTech Inc., http://www.sentech acoustic.com/  

[12] T. He, B.M.Blum, J. A. Stankovic, T. F. Abdelzaher, "AIDA: Adaptive  Application Independent 

Aggregation in Sensor Networks", in Special issue on dynamically adaptable embedded systems, 

ACM Transaction on Embedded Computing System, 2003 

[13] Yang Yu, Bhaskar Krishnamachari and Viktor K. Prasanna, "Energy-Latency Tradeoffs for Data 

Gathering in Wireless Sensor Networks," in IEEE Infocom 2004. 

[14] J. Hou and B. Wang, "Multicast routing and its QoS extension: Problems, algorithms and Protocols," 

IEEE Networks, Jan./Feb. 2000. 

[15] V. P. Kompella et al., �Multicast Routing for multimedia communication,� IEEE/ACM Transactions 

on Networking, pp. 286-292, 1993. 

[16] K. Akkaya and M. Younis, "Energy-aware routing of time-constrained traffic in wireless sensor 

networks," in the International Journal of Communication Systems, Special Issue on Service 

Differentiation and QoS in Ad Hoc Networks (to appear)  

[17] M. Younis et al.,, �Energy-Aware Routing in Cluster-Based Sensor Networks�, in the Proceedings of 

IEEE/ACM MASCOTS2002, Fort Worth, Texas, October 2002. 

[18] J.B. Andresen et al., �Propagation Measurements and Models for Wireless Communications 

Channels,� IEEE Communications Magazine, Vol. 33, No. 1, January 1995. 

[19] A. Chandrakasan, et al., "Power Aware Wireless Microsensor Systems", Keynote Paper ESSCIRC, 

Italy, 2002. 

[20] K. Danilidis et al., �Real-time Tracking of Moving Objects with an Active Camera,� Real-Time 

Imaging Journal, Vol. 4, No.1 pp.3-20. February 1998. 

 

 

http://www.sentech-acoustic.com/

	Introduction
	Sensor Network Architecture
	Related Work

	Efficient Aggregation of Delay-Constrained Data
	Issues of Aggregating Constrained Traffic
	Supporting Real-time Packets
	Aggregation Tree for Real-time Traffic

	Experimental Validation
	Validation Setup
	Performance Metrics and Results

	Conclusion

