Comparative Study of On-line Algorithms for the Elevator-Scheduling Problem

Sasikanth Avancha

  Dipanjan Chakraborty

Vasundhara Puttagunta

10 December, 1999

Abstract

The main goal of this paper is to define criteria for quality of a schedule for an elevator and study how some on-line algorithms perform. We have studied five on-line algorithms -  Random (RAND), First Request First (FRF), Maximum Request First (MRF), Circular (CIRC), and Shortest Distance First (SDF). Our findings show that the CIRC algorithm gives the best performance in comparison to the other on-line algorithms. When the number of floors is low, the MRF algorithm also works well. We have made a serious attempt to implement an optimal off-line algorithm for the problem and compare the on-line algorithms against it. However, we have found that the task of computing an optimal off-line solution is non-trivial in terms of time complexity. Therefore, it has not been possible to make a reasonable comparison.

Keywords: On-line algorithm, off-line algorithm, competitive ratio, elevator scheduling, Load-factor, RAND, FRF, MRF, CIRC, SDF, LEDA.


1. INTRODUCTION
Scheduling is a theoretical area inspired by applications in practical computer system. Scheduling is usually characterized by a sequence of input requests or jobs. The machine(s) serving these requests or processing these jobs are required to do so in way such that the objective function governing the schedule is minimized. The objective function depends on the problem at hand. 

An on-line algorithm is one that receives the input sequence of requests and performs an immediate action in response to each request. Decisions regarding the next request to service and resources to allocate for this service must be made without actual knowledge of the future. On-line algorithms can however make use of the (statistical) nature of requests until the present to make this decision. The notion of an on-line algorithm actually formalizes the realistic scenario, where the whole input sequence is not readily available. Instead, the input sequence is learnt piece by piece and the algorithm has to decide to best course of action to take at that point in time.

An off-line algorithm, in direct contrast, knows the whole input sequence before it begins to process any requests. It has the luxury of being able to make all its decisions such that the final schedule is optimal. An off-line algorithm, therefore, is guaranteed to give an optimal solution. This is obvious because it knows the future and thus will choose that sequence of requests that minimizes or maximizes the objective function. However, not infrequently, it may be a non-trivial task to compute the optimal off-line solution.

Lack of knowledge of the future makes it harder to define a performance measure for an on-line algorithm. This is because, whatever decisions the on-line algorithm takes in response to an initial sequence of requests, future requests may arrive in a sequence that cause it to make the bad choices in terms of the objective function. 

One way to measure the effectiveness of an on-line algorithm is by its competitive ratio. It is defined as the worst-case ratio between the cost of an on-line algorithm and that of the corresponding off-line algorithm. Thus, an on-line algorithm is (-competitive if for each input request the objective value of the schedule produced by the algorithm is at most ( times larger than the optimal objective value.

2. Elevator-Scheduling Problem

In a multi-storied building people use the elevator to travel between floors. Elevators are also used for industrial and purposes and in mines for transporting people or goods from one altitude to another. There may be more than one elevator. The problem is to schedule the elevator in “the best possible way” -  defined more precisely as the objective function.
 The objective function could be different in different situations. For example,

· Minimize the distance covered by the elevator (in industrial applications).

· Maximize the number of requests served per unit time.

· Minimize the average response time per request.

· Minimize the average waiting time per request.

We consider the case of a multistoried building where people use the elevator to travel between different floors. We make the following assumptions:

i. There is only one elevator we are concerned with.
ii. The requests for the elevator are uniformly distributed.
iii. The elevator stops at a floor for a constant amount of time.
iv. The elevator takes constant amount of time to travel between any two successive floors.
v. The elevator has infinite capacity.    
3. RESEARCH QUESTION, MOTIVATION AND APPLICATION
3.1 Research Question: In this project we have attempted to answer the following question,

Which on-line algorithm
 best approximates the optimal off-line algorithm (if one exists) for the elevator-scheduling problem?

To answer this question, we need

· To define the objective function or the goal in the problem.

· To define the on-line algorithms we wish to compare.

· The optimal off-line algorithm.

· The performance metrics for the on-line algorithms.

Objective function: We chose the third criteria among those listed in section 2, i.e., minimization of average response time per request since it is the most appropriate metric for determining the schedule of the elevator in the problem we have considered.

Definition: The response time of a request r,

Tres(r) = Twait(r) + Tservice(r)      -------  (1)
Twait(r):  the time the request R waits before entering the elevator. 

Tservice(r): the time that request R is inside the elevator before coming out.

On-line Algorithms: We considered the following five on-line algorithms:

· Randomized (RAND): The elevator randomly chooses the next floor to which it goes.

· First Request First (FRF): This is analogous to the FIFO algorithm with a variation that takes into account the fact that more than one request may be serviced on any floor i.e., the elevator goes to the floor that has the earliest request pending. 

· Circular (CIRC): The elevator always travels in a circular fashion servicing requests on the way, i.e., from the ground floor to the last floor and back to the ground floor.

· Shortest Distance First (SDF): The elevator will service requests from the floor at the shortest distance from the current floor. 

· Maximum Requests First (MRF): The elevator goes to the floor that has maximum number of requests pending until that instance.

Off-line Algorithm
: The offline solution to this problem is non-trivial. It is found to belong to NP. For the purpose of comparison we implemented a naive off-line algorithm for this problem. We have experimentally determined that its time complexity increases exponentially for any set of requests beyond a small size – of the order of tens of requests. Therefore, no optimal solution could be found in order to compare with the solutions produced by the on-line algorithms. This comparison would give us the values for the competitive ratios of the on-line algorithms.

3.3 Motivation & Application

As mentioned in section 2, elevator-scheduling problems are very common. The elevator-scheduling problem in general represents a class of scheduling problems. This study is further motivated by the fact that the disk-scheduling problem (the problem of scheduling the read/write head of the memory disk to serve read/write requests) has a striking similarity to the elevator problem.

4. Overview of the Algorithms & Data Structures used

4.1 Online Algorithms

Input:   -    Five  sequences of requests of 

generated   by                     

GenerateRequests.

· SIM_TIME: time for  

      which the elevator operates.

· F: the number of floors

· FLOOR_TIME: time for which the lift waits at each floor.

· TRAVEL_TIME: the time taken by the elevator to travel between two immediate floors.

Output: The average response time per request served by the elevator at the end of the simulation time.

Algorithm Details:

1. Randomized

RAND( )

{

Initialize();
Current_floor=0;

while(currTime <SIM_TIME) do

{

1.Serve the requests having this floor as destination.

2.Calculate the response_times of the requests served

3.Accept the pending requests on this floor into the elevator.

4Determine the next floor to go to randomly
5.Go to the selected floor.

6.Update current_time.

}

avg_response_time=total_response_time/total_number_of_requests_served;

return avg_response_time;

}

Explanation:


The Initialize() functiuon described above initializes the current_time and the queues (Qi). 

2. First Request First

FRF( )

{

Initialize();

while(currTime <SIM_TIME) do

{

1.Serve the requests having this floor as destination.

2.Calculate the response_times of the requests served

3.Accept the pending requests on this floor into the elevator.

if(there are any pending requests)

next_floor <- the floor having the minimum time stamp for the requests pending

go to the floor

update the current time

}

avg_response_time=total_response_time/total_number_of_requests_served;

return avg_response_time;

}

3. Circular

CIRC( )

{

Initialize( );
Current_floor=0;

while(currTime <SIM_TIME) do

{

1.Serve the requests having this floor as destination.

2.Calculate the response_times of the requests served

3.Accept the pending requests on this floor into the elevator.

4 next floor <- Determine(current_floor);

5.Go to the next floor.

6.Update current_time.

}

avg_response_time=total_response_time/total_number_of_requests_served;

return avg_response_time;

}

int Determine(current_floor)

{

1.if(lift is going up and is not in the highest floor)

increment the current_floor;

else

decrement the current _floor;

2.if (lift is going down and is not at the bottom floor)

decrement the current_floor;

 else increment the current_floor;

return current_floor;

}

4. Shortest Distance First 

SDF( )

{

Initialize();

while(currTime <SIM_TIME) 

{

1.Serve the requests having this floor as destination.

2.Calculate the response_times of the requests served

3.Accept the pending requests on this floor into the elevator.

4 next floor <- Determine(current_floor);

5. if (next_floor=-1) then wait for one request to come;

6.Go to the next floor.

7.Update current_time.

}

avg_response_time=total_response_time/total_number_of_requests_served;

return avg_response_time;

}

int Determine(current_floor)

{

1.if(requests are pending)

  return the floor having the minimum distance from the current floor and also having a request waiting

2. if( no requests are pending)

return –1

}

5. Maximum Requests First

MRF( )

{

Initialize();

while(currTime <SIM_TIME) do

{

1.Serve the requests having this floor as destination.

2.Calculate the response_times of the requests served

3.Accept the pending requests on this floor into the elevator.

4 next floor <- Determine(current_floor);

5. if (next_floor=-1) then wait for one request to come;

6.Go to the next floor.

7.Update current_time.

}

avg_response_time=total_response_time/total_number_of_requests_served;

return avg_response_time;

}

int Determine(int current_floor)

{

1.(requests are pending at floors)

 determine the floor having the maximum queue length;

return the floor_number;

2.(no requests are pending at any floors)

return –1;

}

6. GenerateRequests


The requests have been generated assuming a pseudo random type input distribution of the requests. That is, the inter-arrival time of the requests has been assumed to vary randomly within a fixed range of values. Also, for running the on-line algorithms, the input queues were never assumed to have run out of requests before the simulation time was over. We used the standard function rand() available in the C math library to generate the request  time stamps. The destinations were chosen as a random value between the floors (0 to F-1). We generated five sets of input data by changing the seed of the rand() function to generate different sets of random values.

Off-line Algorithm:

· For the offline algorithm we consider each request r(id,t,s,d) to be two separate requests of the type r((id,t,d,b), where,
id: the request number. It is unique for each request.

      t: time at which this request was    

      made,

      s: floor at which the request arrived

d: floor to which the requester wants  to go i.e., the destination floor.

b: is 0 if it corresponds to the source request and is 1 if it is to the destination request i.e., corresponding to each request r(t,s,d) will be two requests r((id,t,s,0) and r((id,t,d,1).

Now, waiting times of the requests are considered in determining the response time. We however need to take care of the fact that there these two requests must be served in a fixed order.

Notation:

· F:
 the number of floors in the building.

· fi:
floor at which the elevator makes it’s ith stop.

· Si,tx:
set of requesters at the floor fi at time tx that can get into the lift at that time(when the elevator stops at the floor fi at that particular time)

= { rx(id,tx,s,b) /  rx has not  been served       

          & s = fi
          &TimeReached(fi)<tx<TimeLeft(fi) 

          &if b=1 then rx(id,tx,d,0) is already 

            served.}

· TimeAtFloor(fi) = TimeAtFloor(fi-1)  

                                 + TimeTaken(fi-1, fi)     

                                 + TimeWait(fi)

      =  0 when i = 0

· TimeTaken(fx , fy):  The time taken for the lift to travel from fx to fy.

      = TRAVEL_TIME.| fx – fy|
    

            (our assumption)

· TimeWait(fx): Time for which the lift stays in the floor fx before moving to the next stop.

      = FLOOR_TIME    (our assumption)

· FLOOR_TIME, TRAVEL_TIME: constants

· WaitingTime(rx): the time that it took for the request, rx to get into the lift.

Input:   -    Five  sequences of requests of 

generated   by                     

GenerateRequests.

· SIM_TIME: time for  

      which the elevator operates.

· F: the number of floors

· FLOOR_TIME: time for which the lift waits at each floor.

· TRAVEL_TIME: the time taken by the elevator to travel between two immediate floors.

Output: The average response time per request served by the elevator at the end of the simulation time.

Initialize PossibilityQ

OnePossibility=BestSoFar(PossibilityQ)

while(Not DoneWithRequests

(OnePossibility))

{

 for i = 1 to lastFloor

          NextFloor of OnePossibility = i

          W += ( WaitingTime(rx)

      // rx(Si,tx and W is the waiting   

time of the OnePossibility so far.

          This is the newPossibility

         AddToPossibilityQ(newPossibility)

end for

OnePossibility = BestSoFar(PossibilityQ)

}

end while

Explanation : The PossibilityQ is a linked list that has explored paths so far. It is a sorted linked list, sorted by the waiting time so far on the requests. We pick up the node that has the least waiting time so far to explore further. The BestSoFar(), removes the schedule so far with least waiting time and removes it from the PossibilityQ. The algorithm terminates, when the picked possibility(scheduling possibility), OnePossibility is done with all the requests. The worst case time complexity would be O(Fn), when there are n/2 requests and F floors.

5. Leda 
5.1 IMPLEMENTATION

The Circular algorithm has been implemented in LEDA. We chose the ‘queue’ object from the LEDA library to simulate the arrival of input requests. The queue object uses a linked list as its primary data structure. The methods in this object are top(), pop(), append(), empty(), and clear().All operations take time O(1), except clear which takes time O(n), where n is the size of the queue. The floors of the elevator are indices of an array. Each floor is associated with a set of queue objects. The main difference between the LEDA implementation and the C implementation is the ease of simulation of input request arrivals. The methods in the queue object enabled us to easily keep track of pending requests, requests being served (those in the elevator) and requests completely served.

5.2 COMPLEXITY

The space complexity of the LEDA implementation is comparable to that of the C implementation and is also O(F*T). The graph in Figure 8 shows the running time of the LEDA implementation versus that of the C implementation. It is observed that as the input arrival rate increase, the LEDA implementation takes a longer time than the corresponding implementation of the circular algorithm from scratch. The reason for this difference in running time is interpreted as follows: In our C implementation we access each input request from contiguous memory. The LEDA implementation, on the other hand, must manipulate a linked list (representing the queue) for each access of the input request. Thus, as the input arrival rate increases, more manipulations of the queue are required and hence the running time increases.

5.3 COMMENTS ON LEDA 

We have found that it is quite easy to implement algorithms in LEDA. In our implementation, the queue object is defined in the library as an object containing methods that perform the standard operations on a queue. The underlying data structure is a linked list. Thus, accessing and manipulating nodes in the queue is a task made simple, by calling the required methods. The advantage of creating such objects is obviously, the elimination of the process of “re-inventing the wheel”. 

The problems we faced when working with LEDA include, the lack of proper explanation of the various objects and methods in the manual, the lack of sufficient number of examples in the manual and of course, the lack of a thorough knowledge of C++ on our part. The manual and documentation assume a very high level of C++ knowledge on the part of the user. Specifically, compilation of programs while attempting to use the array method was very difficult.

6. RESULTS

The results have been summarized in the graphs shown at the end of this report. The following conclusions can be drawn from the graphs:

· CIRC performs the best irrespective of  input arrival rate, simulation time, and number of floors. 

· MRF performs well when there are a small number of floors.

· The performance of RAND remains nearly constant but it consistently returns the worst response times of all algorithms.

· The average response time returned by SDF increases with the input arrival rate. It consistently performs worse than RAND when the arrival rate is at the higher end.

· Performance of FRF is in between MRF and RAND.

7. CONCLUSION: 

A comparative study of some on-line algorithms for the elevator-scheduling problem has been attempted in this work. We have tried to answer the proposed research question using experimental analysis and have succeeded in a limited way. The CIRC algorithm gives the best performance in comparison to the other on-line algorithms. When there are less number of floors, the MRF algorithm also works well. Changes in waiting time of the lift on each floor and the time the lift takes to travel between floors only changes in the average response times proportionally and not the relative performance of the on-line algorithms. There was a serious attempt to implement the optimal off-line solution. It does not help us to get the solution for any reasonable size of requests therefore there is no way we can compare the on-line algorithms with the optimal solution.  We have achieved our goal of comparing the performance of a set of on-line algorithms for the elevator-scheduling problem.

8. REFERENCES
[1] Amos Fiat, Gerhard J. Woeginger (Eds.). Online Algorithms: The State of the Art. Volume 1442, Lecture Notes in Computer Science, Springer 1998.

[2] Richard M. Karp. On-line Algorithms versus Off-line Algorithms: How much is it worth to know the future ? In Proc. 12th World Computer Congress, pages 416-429, 1992.

[3] Y. Rompogiannakis, et al. Disk Scheduling for Mixed-Media Workloads in a Multimedia Server. In Proc. 6th ACM International Multimedia Conference, 1998.

[4] Brandon German. A Comparative Analysis of Algorithms for the Bin Packing Problem. Web-site: 

cs.ua.edu/reu/1998_stuff/German/index.html

[4] Kurt Mehlhorn, et al. The Leda User Manual Version 4.0. Web-site: www.mpi-sb.mpg.de/LEDA/MANUAL/MANUAL.html
ACKNOWLEDGEMENTS
We thank the peer reviewers, Arthi Aiyyangar and Sharath Rajashekar for giving us a very useful feedback on our first attempt at this report. We executed all programs on systems in the Graduate Computer Laboratory in the CS department. We also used systems in UCS labs for writing parts of this report.




































� Graduate student, � HYPERLINK mailto:Savanch@umbc.edu ��savanc1@umbc.edu�


� Graduate student, � HYPERLINK mailto:dchakr1@umbc.edu ��dchakr1@umbc.edu�


� Graduate student, � HYPERLINK mailto:vputta1@umbc.edu ��vputta1@umbc.edu�


This work was done as a part of the course-work for CMSC 641 (Graduate Course: Design and analysis of  Algorithms) at University of Maryland Baltimore County. � HYPERLINK http://www.umbc.edu ��www.umbc.edu�


� We considered five on-line algorithms, RAND, FRF, MRF, CIRC, SDF


� Algorithm described in section 4.





1
7

