
Preprint 0 (2000) 1{36 1

The First International Trading Agent Competition:

Autonomous Bidding Agents

Edited by �

Peter Stone

AT&T Research, 180 Park Ave., Room A273, Florham Park, NJ 07932
E-mail: pstone@research.att.com

Amy Greenwald

Department of Computer Science, Brown University, Box 1910, Providence, RI 02912
E-mail: amygreen@cs.brown.edu

This article provides an overview of strategies developed for the Trading Agent

Competition held in July, 2000 in Boston. Highlighted are the common and distinct

features of twelve agent strategies developed in �ve nations in terms of (i) bidding

strategy, (ii) allocation strategy, (iii) special approaches, and (iv) team motivations.

Keywords: automated trading agent, auctionbot, e-commerce, multiagent systems

1. Introduction

The �rst Trading Agent Competition (TAC) was held in Boston, MA on

July 8, 2000. It was organized by Michael Wellman and Peter Wurman,1 with the

support of a group of researchers and developers at the University of Michigan's

Arti�cial Intellgence Laboratory. The goals of the tournament included providing

a benchmark problem in the complex domain of e-marketplaces, and motivating

researchers to apply unique approaches to a common task.

This article reports on the competition from the participants' perspective.

It describes both the task-speci�c details of, and the general motivations behind,

twelve of the competing agents (see Table 1).2 The participants' motivations

illuminate the general applicability of the TAC setup and its relevance to today's

research agendas. We present the task-speci�c details of the particular agent

strategies as instantiations of the participants' varied research agendas. Agent

designs are reported in terms of (i) bidding strategy, (ii) allocation strategy, (iii)

special approaches, and (iv) team motivations.

� This article is the result of the e�orts of many people. The agent descriptions were originally

written by team members as listed in Table 1 and Appendix A.
1 Dr. Wurman is now at North Carolina State University
2 All participants were invited to contribute; those who chose to do so are represented herein.

2 Greenwald and Stone / Autonomous Bidding Agents

Agent Country Designers

ATTac�� USA Peter Stone, Michael Littman,

Satinder Singh, Michael Kearns

RoxyBot�� USA Justin Boyan, Amy Greenwald

Aster�� USA Andrew Goldberg, Umesh Maheshwari

UmbcTAC�� USA Youyong Zou

ALTA�� Russia Andrey Tarkhov, Dmitry Uspensky,

Eugene Vostroknautov

DAIHard�� USA Rajatish Mukherjee, Partha Dutta, Sandip Sen

RiskPro�� Sweden Magnus Boman, Sven-Erik Ceedigh

T1�� Sweden Lars Olsson, Erik Aurell, Lars Rasmusson,

Martin Aronsson, Per Larsson, Glenn Lawer

Nidsia� Switzerland Nicoletta Fornara, Luca Maria Gambardella,

Marco Colombetti

EZAgent� USA Betsy Strother

UATrader USA Daniel Zeng, Jiang Zhu, Bart Wilson

EPFLAgent Switzerland Omar Belakhdar, Patrice Jaton, Boi Faltings

Table 1

The TAC agents represented in this article, their countries, and their designers. Semi-�nalists

are indicated by an asterisk (�), �nalists by two asterisks (��).

The remainder of this article is organized as follows. Section 2 summarizes

the intricacies of the TAC domain. In Section 3, we highlight the common and

contrasting approaches taken in the general strategic design of TAC agents. The

heart of this article is found in Sections 4{15, which contain the details of the

agent strategies. We conclude in Section 16 with participants' suggestions as to

how the design of future trading agent competitions might be improved.

2. Market Game

A TAC agent is a simulated travel agent whose task is to organize itineraries

for a group of clients who wish to travel from TACTown to Boston and back again

during a �ve day period. Travel and entertainment goods are traded at twenty-

eight auctions that run simultaneously for �fteen minutes. An agent's objective

is to secure the goods necessary to satisfy the particular desires of its clients, but

to do so as inexpensively as possible. An agent's score is the di�erence between

the utilities it earns for its clients and the agent's expenditures. In this section,

we summarize the design of a TAC game instance; full details are available at

http://tac.eecs.umich.edu.

Greenwald and Stone / Autonomous Bidding Agents 3

2.1. Supply

The market supply consists of three types of travel goods: (i) ights to

and from Boston, (ii) hotel room reservations at two competing hotels, namely,

the Grand Hotel and Le Fleabag Inn, and (iii) entertainment tickets for the

Boston Red Sox, the Boston Symphony, and Phantom of the Opera. There is

a separate auction corresponding to every combination of travel good and day,

yielding twenty-eight auctions in total: eight ight auctions (there are no inbound

ights on the �fth day, and there are no outbound ights on the �rst day), eight

hotel auctions (two hotel types and four nights), and twelve entertainment ticket

auctions (three entertainment event types and four nights). All auctions are

simultaneous. The rules of the various auctions are as follows:

� An in�nite supply of ights is sold by the \TAC seller", a specially designated

supplier, at continuously clearing auctions in which prices follow a random

walk. Prices are initialized between $250 and $400, and perturbed every 30{

40 seconds by a random value uniformly selected in the range [$-10, $10], but

con�ned within the bounds of $150 and $600. No resale of ights is permitted.

� The TAC seller also makes available sixteen hotel rooms per hotel per night,

which are sold at open-cry, ascending, multi-unit, sixteenth-price auctions. In

other words, the winning bidders are those who bid among the top sixteen,

and these bidders uniformly pay the sixteenth-highest price. Transactions clear

when the auctions close, which typically occurs at the end of a game instance,

although these auctions are subject to early closing after random periods of

inactivity. No bid withdrawal or resale in hotel auctions is permitted.

� Entertainment tickets are traded among TAC agents in continuous double

auctions, where agents can act as either buyers or sellers, and transactions

clear continuously. Each agent receives an initial endowment of tickets for

each event on each night|zero with probability 1/4, one with probability

1/2, and two with probability 1/4. Ticket resale is permitted.

2.2. Demand

A TAC game instance pits eight trading agents against one another, with

each agent representing eight clients. The market demand is determined by the

sixty-four clients' preferences. Each client is characterized by a random set of

preferences for ideal arrival and departure dates (IAD and IDD, respectively,

which range over days 1 through 4), a grand hotel room reservation value (HV,

which takes integer values between 50 and 150), and reservation values for each

of the three types of entertainment events (RV, SV, and TV|integers between

0 and 200|for Red Sox, symphony, and theater, respectively). A sample set of

preferences appears in Table 2; these preferences were those of the clients assigned

to ATTac during game 3070 of the competition.

4 Greenwald and Stone / Autonomous Bidding Agents

Client IAD IDD HV RV SV TV

1 2 5 73 175 34 24

2 1 3 125 113 124 57

3 4 5 73 157 12 177

4 1 2 102 50 67 49

5 1 3 75 12 135 1110

6 2 4 86 197 8 59

7 1 5 90 56 197 162

8 1 3 50 79 92 136

Table 2

ATTac's client preferences in game 3070.

The job of each TAC agent is to assemble a feasible package of goods for

each of its clients. A package is characterized by arrival and departure dates (AD

and DD, respectively, ranging over days 1 through 5), a hotel type (H, which

takes on value G for Grand Hotel or F for Le Fleabag Inn), and entertainment

tickets (I(j; k) is an indicator variable that represents whether or not the package

includes a ticket on night j to event k 2 fr; s; tg; we also write R1, for example, to

indicate that the package includes a Boston Red Sox ticket on night 1). In order

to obtain positive utility for a client, an agent must construct a feasible package

for that client; otherwise, the client's utility is zero. A feasible package is one in

which (i) the arrival date is strictly less than the departure date, (ii) the same

hotel is reserved during all intermediate nights, (iii) at most one entertainment

event per night is included, and (iv) at most one of each type of entertainment

ticket is included. Given a feasible package, a client's utility for that package is

calculated as follows:

utility = 1000 � travelPenalty + hotelBonus + funBonus (1)

where

travelPenalty = 100(jIAD �ADj+ jIDD�DDj)

hotelBonus=

�
HV if H = G

0 otherwise

funBonus=
P

j [I(j; r)RV + I(j; s)SV + I(j; t)TV]

At the end of a TAC game instance, the agents must assign the goods they

acquired to their clients. The �nal set of goods acquired by ATTac in game 3070

is listed in Table 3. R, S, and T denote tickets to the Red Sox, symphony, and

theater, respectively; G and F denote the Grand Hotel and Le FleaBag Inn,

respectively; I and O denote inbound and outbound ights, respectively. Given

the client preferences in Table 2 and the goods in Table 3, ATTac allocated goods

to clients as shown in Table 4. The total utility achieved was 9443.

Greenwald and Stone / Autonomous Bidding Agents 5

Good 1 2 3 4

R 1 1 1 2

S 1 1 0 0

T 1 0 1 1

G 4 1 0 0

F 1 2 3 3

I 5 2 1 0

O 4 1 0 3

Table 3

ATTac's �nal set of goods in game 3070.

Client AD DD H Tickets Utility

1 2 5 F R4 1175

2 1 2 G R1 1138

3 3 5 F T3, R4 1234

4 1 2 G | 1102

5 1 2 G S1 1110

6 2 3 G R2 1183

7 1 5 F S2, R3, T4 1415

8 1 2 G T1 1086

Table 4

ATTac's �nall allocation in game 3070. Total utility equals 9443.

3. General Strategies

In this section, we summarize the common features of the agents described in

this article, outline a range of di�erences among them, and give a brief high-level

overview of each agent's particular focus.

3.1. Common Approaches

The basic decisions that comprise TAC agents' inner bidding loops are listed

in Table 5. The details of making decisions 1, 2, and 3|on what goods to bid,

for how many of each good to bid, and at what price to bid|are postponed

until the speci�c agent strategies are described. The strategic timing of the

placement of bids, however, exhibited common features across agents, and is

described presently.

The timing aspects of TAC agents' bids in hotel auctions is particularly

intriguing. By virtue of the design of the TAC auctions, the supply of ights

is unlimited and their prices are predictable, while the supply of hotel rooms is

limited, and their prices are unpredictable. Given the risks associated with the

hotel auctions, together with their importance in securing feasible travel packages,

hotels were the most hotly contested items during the TAC competition.

6 Greenwald and Stone / Autonomous Bidding Agents

REPEAT

1. Decide on what goods to bid

2. Decide at what price to bid

3. Decide for how many to bid

4. Decide at what time to bid

UNTIL game over

Table 5

High-level overview of TAC agents' bidding decisions.

Recall from the companion article that TAC hotel auctions are ascending

(English) mth-price auctions subject to random closing times given suÆcient

levels of inactivity. Most TAC agents refrain from bidding for hotels early on,

unless (i) the ask price has not changed recently, implying that the auction might

close early, or (ii) the ask price is very low, in the hopes of being one of the winning

bidders should the auction indeed close early. Ultimately, the most aggressive

hotel bidding takes place at the \witching hour"|in the �nal few moments of

the game, although precisely when each agent determines individually. More

often than not TAC hotel auctions reduce to mth price sealed-bid auctions.

Inmth price sealed-bid auctions, the equilibrium bidding strategy for agents

whose valuations are among the topm is to optimize the trade-o� between bidding

too low, thereby risking losing an auction which should rightly have been won,

and bidding too high, thereby paying signi�cantly more than the m+ 1st price.

But since there was little bidding during the bulk of most games, agents revealed

little information about their clients' preferences throughout. As a result, �nal

hotel prices were unpredictable, including in particular the expected value of the

m+ 1st hotel price, making equilibrium behavior unlikely. (Allowing TAC hotel

auctions to close early after random periods of quiescence was an attempt by the

organizers to preclude this outcome.)

Not only were �nal hotel prices unpredictable, they often skyrocketed (see

Figure 1). Treating all current holdings of ights and entertainment tickets as

sunk costs, the marginal utility of an as-yet-unsecured hotel room reservation is

precisely the utility of the package itself.3 During the preliminary competition,

few agents bid their marginal utilities on hotel rooms. Those that did, however,

generally dominated their competitors; such agents were high-bidders, bidding

� $1000, always winning the hotels on which they bid, but paying far less than

their bids. Having observed a dominant strategy during the preliminary rounds,

most agents adopted this high-bidding strategy during the actual competition.

The result: many negative scores, as there were often greater than m high bids.

3As stated, this observation holds only when the length of stay is exactly one night; for longer

stays it relies on the further assumption that all other hotel rooms in the package are secured.

Greenwald and Stone / Autonomous Bidding Agents 7

0
5 10 15

200

400

600

800

1000

A
SK

 P
R

IC
E

 (
do

lla
rs

)

GAME TIME (minutes)

Typical Hotel Price Trajectory

Figure 1. A typical hotel price trajectory. The price increases gradually until near the end of

the game, at which point it skyrockets.

For example, a one-night package in which the hotel room is purchased

at the value of its marginal utility yields a negative score equal to the price of

ights and entertainment tickets; but an agent cannot do better than to bid its

marginal utility, since bidding any lower and therefore not purchasing the hotel

room yields precisely the same negative utility,4 whereas bidding any higher could

potentially yield an even more negative score. In the �nal competition, the top-

scoring TAC agents were those who not only bid aggressively on hotels, but

who also incorporated risk and portfolio management into their strategy in order

to reduce the likelihood of buying highly-demanded (and consequently often-

overpriced) hotel rooms.

In the ight auctions, prices are predictable; in particular, expected future

prices equal current prices. Since airline prices periodically increase or decrease by

a random amount chosen from the set f�10;�9; : : : ; 9; 10g with equal probability,

the expected change in price for each airline auction is 0.5 Thus, in terms of the

auction design, there is no incentive to bid on airline tickets before the witching

hour, since by waiting there is some chance of obtaining information about hotel

acquisitions. There are, however, substantial risks associated with delaying the

submission of bids. These risks arise from unpredictable network and server

delays, which sometimes have the undesirable e�ect of causing bids placed before

the end of a game instance to be received after the game's end.

4 Technically, this claim is not true of an mth price auction of m goods, although it is true of

an m+ 1st price auction of m goods. Thus, in the case of TAC hotel auctions, the claim only

holds true so long as the bid in question is not the mth highest bid.
5 Indeed, it can be shown that if the airline auctions are considered in isolation, waiting until

the end of the game to purchase tickets is an optimal strategy (except in the rare case where

the price hits the lower bound on its value).

8 Greenwald and Stone / Autonomous Bidding Agents

In order to cope with these risks, most agents dynamically computed the

length of their bidding cycles, and then placed their ight bids some calculated

amount of time before the end of a game. For example, a risk-averse agent might

compute the average length of its three longest bidding cycles, say l, and then

place its ight bids as soon as game time exceeds 900 � 2l seconds. A more

risk-seeking agent might place its ight bids after 900 �m seconds, where m is

the minimum length of its �ve most recent bidding cycles. In practice, ight bids

were placed anywhere from 5 minutes to 30 seconds before the end of the game

(see the \Visualizing Markets" sidebar). Recall that ight auctions are such that

agents who place a winning bid pay not their bid, but rather the current ask

price. Thus, at the time of their decision, most agents bid above the current

price|often, agents bid the maximum possible price, namely $600|to ensure

that these bids, which were placed at critical moments, would not be rejected

because of information delays resulting from network asynchrony.

3.2. Contrasting Approaches

TAC agents' bidding strategies di�er most substantially in the realm of

entertainment ticket auctions. While some agents focus on obtaining complete

packages, others make bidding decisions on travel packages alone (i.e., ights and

hotel rooms) without regard for entertainment packages, essentially breaking the

TAC problem down into two sub-problems, and then solving greedily. Although

simpler, the greedy strategy is not optimal. For example, if a client does not

already have a ticket to an event, then it is preferable to extend the client's stay

whenever the utility obtained by assigning that client a ticket to this event exceeds

the cost of the ticket and an additional hotel room plus any travel penalties

incurred. Similarly, it is sometimes preferable to sell entertainment tickets and

shorten a client's stay accordingly.

A further strategic dichotomy in TAC-agent design principles is evident

in the methods by which they allocate purchased goods to their clients.6 Some

agents focus on satisfying each of their clients in turn, whereas others make global

decisions regarding all their clients' interests simultaneously. This aspect of an

agent's design is relevant to both agent's on-going decisions as to what to bid on,

and to the �nal allocation of purchased goods to clients at the end of the game.

The top two teams' bidding strategies considered the TAC problem from a global

perspective, but most of the other agents used the greedy method of satisfying

each of their clients in turn. (One notable exception is the third highest scoring

agent, which used an heuristically-based intermediate approach.) Once again,

the greedy approach is suboptimal, as the following example demonstrates.

6 The general allocation problem is NP-complete, as it is equivalent to winner determination [4],

which in turn is equivalent to the weighted set-packing problem [8]. Moreover, exhaustive

search is computationally intractable even with as few as eight clients.

Greenwald and Stone / Autonomous Bidding Agents 9

Example 3.1. Consider two clients, A and B, with identical travel preferences,

and the following entertainment preferences: A values the symphony at $90, the

theater at $80, and baseball at $70; B values the symphony at $175, the theater

at $150, and baseball at $125. Suppose each client is to be in town on one and

the same night, and that there is one entertainment ticket of each type for sale

for $50 on that night. An agent using a greedy approach who considers client

A before client B will assign A the ticket to the symphony and B the ticket to

the theater, obtaining an overall utility of $140. It is optimal, however, to assign

A the ticket to the theater and B the ticket to the symphony, which yields an

overall utility of $155.

The percentage of optimal allocations reported by each agent during the

competition is listed inTable 6.7

Agent Aggregate Minimum Number

ATTac 100.0% 100.0% 13/13

RoxyBot 100.0% 100.0% 13/13

Aster 99.6% 98.0% 9/13

UmbcTAC 99.4% 94.5% 7/13

T1 98.8% 88.8% 7/13

DAIHard 98.3% 95.1% 1/13

ALTA 97.1% 90.4% 2/13

RiskPro 96.7% 88.1% 1/13

Betsy 98.2% 96.2% 0/6

nidsia 95.0% 80.7% 0/6

gekko 92.2% 54.8% 1/6

kuis 85.7% 73.4% 0/6

Table 6

The semi-�nalists listed in order of their e�ectiveness in optimizing �nal allocations during the

competition. The �rst measure (\Aggregate") is the percentage of the optimal utility (ignoring

expenditures) achieved with the reported allocation, aggregated over the 13 games each of

the top 8 agents played, and the 6 games each of the bottom 4 played. The second measure

(\Minimum") is the minimum among these aggregated values. The third measure (\Number")

is the number of times the agent reported an optimal allocation.

3.3. Overview

The remaining sections of this paper describe in detail the agents' particular

bidding and allocation strategies, and any special approaches and motivations.

To guide the reader, we now provide one sentence descriptions of each agent's

approach. The key to ATTac's success is its built-in adaptability, giving it the ex-

7 This information was provided by the TAC organizing team.

10 Greenwald and Stone / Autonomous Bidding Agents

ibility to cope with a wide variety of scenarios during the competition. RoxyBot

optimally solves the problems of allocation|assigning resources to clients|and

completion|determining what quantity of each resource to buy and sell|using

an innovative data structure called a priceline. Aster is an agent that is neither

strictly greedy, nor strictly optimal; instead its designers' goal was to create an

agent whose performance would be scalable, since they expect many situations

of practical interest to be more complex and less structured than TAC. UmbcTAC

conserves network bandwidth; on average, this agent updates its bidding data ev-

ery 4{6 seconds, providing a signi�cant advantage over the reported 8{20 second

delays experienced by competing agents. ALTA, the Arti�cial Life Trading Agent,

uses a search/allocation strategy based on genetic algorithms. DAIHard was de-

veloped by a research group that is interested in empirically studying, from the

buyer's perspective, the utility of participating in one or more auctions of vary-

ing types in which similar goods are sold. RiskPro is designed as a risk-averse,

rather than a risk-seeking, agent, equipped with security levels and threshold val-

ues that lead to decisions consistent with the risk attitude of the decision maker.

T1 was the unique entrant that came out of a development e�ort that created

a set of collusive agents designed to investigate the power of collusion in TAC.

Nidsia's team is researching the design of algorithms that construct optimal

bidding policies in combinatorial auctions for complementary and substitutable

goods. EZAgent was designed to perform e�ectively using simple heuristics. The

general bidding strategy employed by UATrader can be characterized as a \my-

opic" trading strategy with iterative adjustments based on neighborhood search.

EPFLAgent represents a distributed solution to the TAC game; it uses the CSP

formalism and caching to anticipate its decision-making needs which it outsources

to its Solver.

4. ATTac

ATTac placed �rst in TAC using a principled bidding strategy, which in-

cludes several elements of adaptivity . This adaptivity gave ATTac the exibility

to cope with a wide variety of possible scenarios during the competition. The

design of ATTac was motivated by the multiagent learning research interests of

its developers.

4.1. Bidding

At every bidding opportunity, ATTac begins by computing the most prof-

itable allocation of goods to clients (which we shall denote G�), given the goods

that are currently owned and the current prices of hotels and ights. (As speci�ed

in Section 4.3, ATTac actually usees predicted closing prices of the hotels based

on the results of previous game instances.) For the purposes of this computation,

ATTac allocates, but does not consider buying or selling, entertainment tickets. In

Greenwald and Stone / Autonomous Bidding Agents 11

most cases, G� is computed optimally using mixed integer linear programming,

as described in Section 4.2.

ATTac bids in two di�erent modes: passive and active. The passive mode,

which lasts until the witching hour, is designed to keep as many options open as

possible. During the passive mode, ATTac computes the average time it takes for

it to compute and place its bids, Tb. Call the time left in the game Tl. When

Tl � 2 � Tb, ATTac switches to its active mode, during which it buys the airline

tickets required by G� and places high bids for the required hotel rooms. ATTac

expects to run at most 2 bidding iterations in active mode.

Based on the current G�, its current mode, and Tl, ATTac bids for ights,

hotel rooms, and entertainment tickets. Full details of ATTac's strategy are avail-

able in [10]. Here we focus on strategies for bidding on entertainment tickets,

allocation of goods to clients, and adaptivity.

4.1.1. Entertainment Tickets

On every bidding iteration, ATTac places a buy bid for each type of en-

tertainment ticket, and a sell bid for each type of entertainment ticket that it

currently owns. In all cases, the prices depend on the amount of time left in the

game (Tl), becoming less aggressive as time goes on.

For each owned entertainment ticket E, if E is assigned in G�, let V (E) be

the value of E to the client to whom it is assigned in G�. ATTac o�ers to sell E

for min(200; V (E) + Æ) where Æ decreases linearly from 100 to 20 based on Tl.
8

ATTac uses a similar \sliding price" strategy for entertainment tickets that

it owns but did not assign in G� (because all clients are either unavailable that

night or already scheduled for that type of entertainment in G�).

Finally, ATTac bids to buy each type of entertainment ticket E (including

those that it is also o�ering to sell) based on the increased value of G� that

would be derived by owning E (i.e. G� is entirely recomputed with a hypothetical

additional resource). Again, a sliding price strategy is used, this time with the

buy price increasing as the game proceeds.

4.2. Allocation

As is evident from Section 4.1, ATTac, relies heavily on computing the current

most pro�table allocation of goods to clients, G�. Since G� changes as prices

change, ATTac needs to recompute it at every bidding opportunity. By using a

mixed-integer linear programming approach, ATTac was able to compute optimal

�nal allocations in every game instance during the tournament �nals | one of

only 2 entrants to do so (see Table 6).

The mixed-integer LP approach used by ATTac works by specifying the de-

sired output: a list of new goods to purchase, and an allocation of new and owned

8 $200 is the maximum possible value of E to any client under the TAC parameters.

12 Greenwald and Stone / Autonomous Bidding Agents

goods to clients, to maximize utility minus cost.

ATTac searches for optimal solutions to the de�ned linear program using

\branch and bound" search. This approach is guaranteed to �nd the optimal

allocation, and usually does so in under one second on a 600 MHz Pentium

computer.

4.3. On-Line Adaptation

ATTac was entered in TAC in large part due to the developers' research

interests in multiagent learning, and past success in agent tournaments [9]. Based

on the problem description, the domain appeared to be a good candidate for

applying machine learning techniques.

However, TAC was conducted in such a way that it was impossible to de-

termine how much each competitor was bidding in the auctions; only the current

ask prices are accessible. This precluded learning detailed models of opponent

strategies. ATTac instead adapts its behavior on-line in three di�erent ways:

1. ATTac decides when to switch from the passive to the active bidding mode

based on the observed server latency Tb during the current game instance

(see Section 4.1).

2. ATTac adapts its allocation strategy based on the amount of time it takes

for the linear program to determine optimal allocations in the current game

instance (see Section 4.2).

3. Perhaps most signi�cantly, ATTac is adaptive in its risk-management strategy

to account for potentially skyrocketing hotel prices. In Section 4.1, it was

stated that ATTac computesG� based on the current prices of the hotel rooms.

In fact, it uses the predicted closing prices of hotel auctions based on their

closing prices in previous games.

ATTac divided the 8 hotel rooms into 4 equivalence classes, exploiting symme-

tries in the game (hotel rooms on days 1 and 4 should be equally in demand

as should rooms on days 2 and 3), assigned priors to the expected closing

prices of these rooms, and then adjusted these priors based on the observed

closing prices during the tournament. Whenever the actual price for a ho-

tel was less than the predicted closing price, ATTac used the predicted hotel

closing price for computing all of its allocation values.

Empirical testing indicates that this strategy is extremely bene�cial in sit-

uations in which hotel prices do indeed escalate, while it does not lead to

signi�cantly degraded performance when they do not [10]. Indeed, ATTac

performed as well as the other top-�nishing teams in the early TAC games

when hotel prices (surprisingly) stayed low, and then out-performed the com-

petitors in the �nal games of the tournament when hotel prices rose to high

levels.

Greenwald and Stone / Autonomous Bidding Agents 13

5. RoxyBot

RoxyBot's algorithmic core is based on AI heuristic search techniques and

approximates optimal behavior. In particular, RoxyBot incorporates an optimal

solver for the problem of allocation|assigning purchased resources to clients

at the end of the game so as to maximize total utility|and an approximately

optimal solver for the more general problem of completion|�nding the optimal

quantity of each resource to buy and sell given current holdings and forecast

prices. This section describes the formulations of and solutions to these two

problems in the context of RoxyBot's overall strategy. The formulation of the

completion problem involves a novel data structure called a priceline, which is

designed to handle (estimated) closing prices, (estimated) supply and demand,

sunk costs, hedging, and arbitrage in a uni�ed way. RoxyBot's high-level strategy

is outlined in Table 7; full details are available in Boyan and Greenwald [3].

(A) REPEAT

1. Update current prices and holdings

2. Estimate clearing prices and build pricelines

3. Run completer to �nd optimal buy/sell quantities

4. Set bid/ask prices strategically

UNTIL game over

(B) Run optimal allocator

Table 7

RoxyBot's high-level strategy.

5.1. Allocation

We �rst describe the allocator, although it runs at the end of a game in-

stance, since it helps to motivate the completer algorithm that is used during

each bidding cycle. The allocator solves the following problem: given a set of

travel resources purchased at auction, and given the clients' utility functions de-

�ned over subsets of travel resources, how can the resources be allocated to the

clients so as to maximize the sum of their respective utilities? Although this

problem is NP-complete, an optimal solution based on A� search is tractable for

the dimensions of TAC. Indeed, using an intricate series of admissible heuristics,

RoxyBot managed to prune down the search tree of possible optimal allocations

from roughly 1020 to 103 or 104 possibilities, resulting in provably optimal al-

locations typically being discovered in just half of a second. RoxyBot produced

optimal allocations in 100% of the competition games.

14 Greenwald and Stone / Autonomous Bidding Agents

The A� search traverses a tree of depth 16. Search begins at the top of the

tree with the given collection of resources. At each level of the tree, a subset

of the remaining resources is allocated to a client and those resources are sub-

tracted from the pool. Levels 1 through 8 correspond to the decisions of which

legal travel package|i.e., combination of ights and hotel rooms|to assign to

clients 1 through 8, respectively. There are 21 such travel packages, including

the null package. Levels 9 through 16 of the tree correspond to the decisions

of which entertainment package|i.e., sets of entertainment tickets of di�erent

types on di�erent days|to assign to clients 1 through 8. There are 73 entertain-

ment packages, though many of these are infeasible due to earlier assignments

of travel packages. The heuristics compute an upper bound on a quantity|e.g.,

the maximum possible number of legal packages using good hotels, or arriving

on day 3|and then subject to these upper bounds, all as-yet-unassigned clients

are assigned their preferred package among those remaining, ignoring conicts.

Caching tricks employed at the start of each instance enable these heuristics to

be computed very quickly.

5.2. Completion

The completer that runs during each bidding cycle is the heart of RoxyBot's

strategy. Its aim is to determine the optimal quantity of each resource to buy

and sell, given current holdings and forecast closing prices. Like the allocator,

it considers all travel resources from a global perspective, and makes integrated

decisions about which hotels and ights to bid for, which entertainment tickets

to buy and sell, and how many of each. Unlike the allocator, the completer faces

the added complexity that the resources being assigned may not yet be in hand;

they may still need to be purchased at auction. Furthermore, in the case of

entertainment tickets, resources which are in hand might be more pro�tably sold

on the market than allocated to RoxyBot's own clients.

To reason about the resource tradeo�s involved, RoxyBot's completer relies

on a data structure called a priceline for each resource, which transparently han-

dles either one-sided or double-sided auctions, short-selling of resources, hedging,

and both limited and unlimited supply and demand. Using this construction, the

completer's task is much simpli�ed: a package's cost is computed by popping o�

the leading prices from the corresponding pricelines. The value of a package to a

client equals the client's utility for that package less its cost. Given the pricelines

and the corresponding client valuations of packages, A� search can be used to

�nd the optimal set of buying and selling decisions: i.e., how to \complete" the

current set of holdings by transforming it into an optimal set of holdings by game

end. Unfortunately, most of the A� heuristics used in RoxyBot's optimal allocator

were not applicable in the completer scenario, and running times for an optimal

completer occasionally took as long as 10 seconds. Nonetheless, using a greedy,

non-admissible heuristic, and a variable-width beam search over the same search

Greenwald and Stone / Autonomous Bidding Agents 15

space, in practice RoxyBot usually found an optimal completion within about 3

seconds of search. Therefore, during the competition, RoxyBot used beam search

rather than provably optimal A� search.

5.3. Estimation

RoxyBot's pricelines are data structures in which to describe the costs of

market resources. In auctions such as those fundamental to the TAC setup, how-

ever, costs are not known in advance. Therefore, the actual input to RoxyBot's

pricelines are but estimates of auction closing prices and estimates of market

supply and demand (current holdings are known). Inspired by its creators' pri-

mary research interest, RoxyBot was designed to use machine learning techniques

to produce these estimates. However, the �nal round of the TAC competition

was both too short and too di�erent (due to changing agent strategies) from the

preliminary rounds in order to e�ectively use most of the learning algorithms

that were developed. Only entertainment ticket price estimates were adaptively

set, using an adjustment process based on Widrow-Ho� updating [5]. In future

competitions, RoxyBot's creators hope that TAC will be more suited to the use

of learning algorithms for price-estimation based on bidding patterns observed

during a game instance and an agent's own clients' preferences.

6. Aster

Designed by members of the Strategic Technologies and Architectural Re-

search (STAR) Laboratory at InterTrust Technologies Corp., Aster �nished third

on competition day. Aster's framework for cost estimation is exible and can be

tuned to respond to strategic behavior of competing agents. Aster's allocation

heuristics are relatively simple and fast, and they produce high quality solutions.

Like RoxyBot, Aster runs a loop: during each iteration, Aster gets the

status of all auctions, estimates the costs of resources, computes a tentative al-

location based on estimated costs, and bids for some of the desired resources.

After all auctions close, Aster runs a sophisticated algorithm to compute the

�nal allocation.

6.1. Estimating Costs

Just as RoxyBot computes a priceline for each resource, Aster computes a

cost vector, whose ith entry gives the cost of holding or acquiring the ith copy

of that resource. Also like RoxyBot, when estimating costs, Aster observes the

principle that sunk costs are no costs. For ights, the estimated cost is zero for

tickets that are currently held, and the current ask price for additional tickets.

For hotels, estimating costs is tricky because both price and holdings are

uncertain until an auction closes. Aster predicts the closing price for a hotel

16 Greenwald and Stone / Autonomous Bidding Agents

room by linearly extrapolating previous ask prices based on current time. This

extrapolated price is then adjusted as follows: For rooms for which Aster holds

hypothetical winnings, the cost is reduced; the amount of this reduction depends

on the probability that these winnings would be ultimately realized (the higher

the bid, the higher the probability, and the lower the estimated cost). For addi-

tional rooms, the cost is increased exponentially to model potential increases in

closing prices due to Aster's own bids.

Since the AuctionBot only provides one bid and ask quote per entertainment

ticket, Aster assumes the cost of buying an additional ticket is the current ask

price, and that of further tickets is in�nite. For all tickets that Aster currently

holds, the (opportunity) cost of one ticket is set to the current bid price, while

the (opportunity) cost of all the remaining tickets is set to zero.

6.2. Tentative Allocation

On each iteration, Aster computes a tentative allocation of resources using a

local search algorithm that considers pairs of clients in turn, given estimated costs

and current holdings. It starts with a null allocation of resources to all clients.

Then it iterates over all pairs of clients, deallocating their current resources and

allocating new resources so as to maximize utility. This procedure uses the cost

vectors as stacks: deallocating a resource frees up the cost of the last allocated

copy, and allocating a resource incurs the cost of an additional copy. Repeated

iterations are conducted until utility does not improve.

6.3. Bidding

Aster bids using one of two strategies, depending on whether the stage of

the game is pre-commit (before the witching hour) or committed. Like ATTac,

Aster initiates its committed stage as late as feasible, based on previous delay in

accessing the AuctionBot, with the hope that it will be able to complete at least

one iteration during the committed stage. During the pre-commit stage, Aster

does not bid on ights; during the committed stage, Aster places all necessary

ight bids to achieve the current allocation.

In the pre-commit stage, Aster places limited bids on hotel rooms in the

hopes of capturing early closings. At the same time, Aster tries to avoid engaging

in price hikes by placing bids at the minimum allowable increment, namely the

ask price plus $1. Aster limits its bids for each client to at most two consecutive

nights, even if the allocator has scheduled the client for a longer stay. (With

at most two nights, if the hotel price on one night shoots up, Aster can drop

the expensive night without having purchased unnecessarily. If it were to bid for

more than two nights, and the price on a middle night were to shoot up, it could

get stuck with an extra room or two for the outer nights.) During the committed

stage, Aster bids for every night of each client's allocated stay. The amount of

these bids is equal to the utility due to that client.

Greenwald and Stone / Autonomous Bidding Agents 17

Aster's bidding strategy for entertainment tickets is independent of the

stage of the game. It sets the bid and ask prices for tickets using their utility in

the current allocation as well as pre-computed expected utilities for other trading

agents; the goal, of course, is to obtain greater utility than the other agents, not

to maximize one's own utility. In some games, Aster pro�ted by buying and

selling the same entertainment ticket.

6.4. Final Allocation

Aster uses heuristic search to compute its �nal allocation. It searches a

tree consisting of all possible travel packages (i.e., arrival dates, departure dates,

and hotel types) for all clients to compute the globally optimal allocation of its

travel goods to its clients. Then, at each leaf of this tree, Aster computes an

entertainment assignment by iterating over all pairs of clients deallocating and

reallocating entertainment tickets optimally until the entertainment allocation

cannot be improved.

The above search algorithm is not optimal because the entertainment ticket

assignment process is only locally optimal, but need not be optimal over all clients

viewed from the global perspective. Thus, after this �rst search terminates,

Aster starts another search in an attempt to compute an optimal entertainment

allocation over all clients while keeping their travel packages �xed. The allocation

heuristic performs well, usually �nding an optimal or a near-optimal solution (see

Table 6).

Aster uses pruning in both searches to cut down on execution time. Al-

though not provably optimal, Aster's designers believe that approximate ap-

proaches of this nature will scale better to larger games than exact approaches,

since the size of the search tree can be explicitly controlled.

7. UmbcTAC

UmbcTAC, created at University of Maryland Baltimore County, placed fourth

in the competition. By being sensitive to network load and adapting to network

performance, it received more frequent updates regarding the market prices than

did competing agents.

7.1. Bidding

UmbcTAC maintains the most pro�table itinerary for each client individually

based on the latest price quotes (as opposed to solving the full 8-client optimiza-

tion problem). UmbcTAC balances several strategies to avoid switching travel plans

too frequently against some strategies to encourage switching travel plans early

on:

18 Greenwald and Stone / Autonomous Bidding Agents

� When a client's itinerary is changed, the value of the goods that will no longer

be needed are subtracted from the value of the new itinerary as a penalty

for changing plans. Thus, the client's travel plans will not change unless the

new plan's pro�t overrides the value of wasted goods. Wasted goods that are

already won, or would be won if an auction closed immediately, are marked

as \free" goods: i.e., they are treated as sunk costs. As such, the price of free

goods is set to 0, which encourages their use in the itineraries of other clients.

� UmbcTAC only changes a client's travel plans if the pro�t di�erence between

the new and the old plans exceeds a threshold value (typically between $10

and $100).

� When it is necessary to change a client's travel plan, it is important to do

so as early in the game as possible: the earlier the plan changes, the more

likely it is that the obsolete bids will either not win, or will win at a low price.

UmbcTAC risks wasting one good in each round in order to ensure that at least

one client changes to a better plan. It does so by setting the penalty for the

�rst wasted good to 0.

Once the desired goods have been determined, UmbcTAC sets its bid prices

as follows:

Flights: The agent bids a price signi�cantly higher than the current price to

ensure that the client gets the ticket.

Hotels: The agent computes the price increment, de�ned to be the di�erence

between the current price quote and the previous price quote. It sets the bid

price to be the current price plus the price increment. During the witching

hour, UmbcTAC bids for hotels at a price such that if it wins a hotel at that

price, the client's utility would be 0.

Entertainment: The agent buys entertainment tickets for a client if the client

is available (i.e., in town and without an entertainment ticket for that night

or of that type). It buys the ticket that the client most prefers at the market

value. Any extra tickets are sold at auction at an ask price equal to the average

of the preference values of all UmbcTAC's clients.

UmbcTAC continually bids for hotels to guard against the possibility of hotel

auctions closing early. It only bids for airline tickets and raises hotel bids to their

limit in the last few seconds of the game.

7.2. Allocation

At the end of the game, UmbcTAC allocates the purchased ights and hotel

rooms greedily to the clients according to the most recent travel plans used during

the game. If a client cannot be satis�ed, its goods are taken back and marked as

free. Other clients can then try to make use of free goods to change travel plans

if a greater utility would result.

Greenwald and Stone / Autonomous Bidding Agents 19

Entertainment tickets are also allocated greedily. This strategy is simple

and nearly optimal. UmbcTAC begins by allocating an entertainment ticket to the

available client with the largest preference value for that ticket.

7.3. Bandwidth Management

In TAC, prices change every second and hotel auctions may close at any

time. Therefore, keeping bidding data up to date is very important. UmbcTAC

bases its bidding strategy on the computed network delay between the agent and

the TAC server. When the network delays are longer than usual, UmbcTAC is more

aggressive, o�ering higher prices and bidding for ights earlier. The agent never

bids for any entertainment tickets during the last three minutes of the game in

order to save network bandwidth. The agent also does not change travel plans

during its last two or three bidding opportunities in order to save time. On aver-

age, UmbcTAC updates its bidding data every 4{6 seconds, providing a signi�cant

advantage over the reported 8{20 second delays experienced by competing agents.

8. ALTA

ALTA is an Arti�cial Life Trading Agent, named after the company of its

designers, namely Arti�cial Life, Inc. ALTA is unique in that its search/allocation

strategy is based on genetic algorithms.

8.1. Bidding strategy

ALTA limits its concern to travel packages, participating only in the ascend-

ing auctions for hotel rooms, but ignoring the continuous double auctions (i.e.,

buying and selling of entertainment tickets) altogether. In this way, the search

space is limited to only 20 feasible travel packages, although ALTA did attempt to

allocate its endowed entertainment tickets. ALTA uses combinatorial search (plus

heuristics) to maximize the expected utility of entertainment ticket allocations.

Like most other agents, ALTA divides the entire duration of the game two

parts. During the �rst period, current ask prices are dynamically monitored and

decisions regarding what to bid for are made (using optimization techniques).

ALTA also estimates the �nal prices of auctions during this phase, and increases

its bids based on these predictions, the ask current quote, and cycle time. The

point in time at which ALTA converts to its second phase is de�ned dynamically

based on the performance of the AuctionBot, but is intended to guarantee at

least three additional iterations.

After the �rst phase is complete, ALTA ceases any further optimization, freez-

ing the current allocation: days of arrival/departure and hotel type. At this

point (i.e., during the second phase), ALTA focuses on ensuring the purchase of

the desired goods. In doing so, ALTA bids aggressively, sending o� high bids and

20 Greenwald and Stone / Autonomous Bidding Agents

increasing those bids whenever the desired holdings are not realized. Also during

the second phase, ALTA bids the maximum possible amount for ights; this guar-

antees that ight purchases will be successful regardless of possible last minute

price uctuations. Lastly, it should be noted that in addition to concerns raised

earlier about the feasibility of search, ALTA also decides to ignore continuous dou-

ble auctions simply because it does not commit to an allocation until the second

phase.

8.2. Allocation Strategy

As mentioned previously, ALTA's allocation strategy is based on the principles

of genetic algorithms. As soon as the game ends, ALTA compiles the list of acquired

resources, and begins searching for the optimal allocation of its goods among

its clients given their preferences. According to the TAC setup, there are 392

feasible packages, plus the null allocation. Each chromosome, therefore, consists

of 8 genes (one corresponding to each client), with every gene numbered between

0 to 392. ALTA simulates a population of 500 such chromosomes, with each one

representing one possible allocation. Using genetic algorithms, ALTA searches

for the optimal allocation by selection, mutation, crossover, and replacement

within the population of chromosomes, seeking that which maximizes overall

utility. This optimization process converges within the appropriate time frame.

Although ALTA rarely reports an optimal allocation, it did �nd allocations within

97% of the optimal on competition day (see Table 6).

8.3. Special Approaches/Motivations

In attempt to optimize the performance of ALTA's communication/transport

level, ALTA was built in Java, based on the pure auction server API, rather than

the C++ bidding agent classes. Another unique feature in the design of ALTA

was its ability to control its expenditures. Although hotel prices often escalated

at the end of the competition games, as other agents engaged in price wars, ALTA

raised its �nal bids to an extent, but tried to ensure that its total expenses were

below its total expected utility.

The designers of ALTA participated in TAC not just for the fun of it, rather

because their company, Arti�cial Life, Inc., implements market and auction-based

approaches for tasks such as scheduling and resource allocation for distributed

search engines and network management. The designers are also interested study-

ing the market-driven behavior of multiagent systems, in order to gain an under-

standing of the problems and scenarios of future automated e-commerce systems.

Greenwald and Stone / Autonomous Bidding Agents 21

9. DAIHard

DAIHard was created by the Distributed Arti�cial Intelligence Group at the

University of Tulsa.

9.1. Bidding Strategy

DAIHard bid for three items for each client, as follows:

Airline tickets: DAIHard bids for airline ticket only after a pre-speci�ed time

period (a parameter of the agent). This time window is large enough to account

for the possibility of having to submit multiple bids because of changing auction

prices. Delaying the bidding for airline tickets enables the agent to be more

exible in setting the length of each client's stay.

Hotel rooms: Initially, DAIHard bids for both bad and good hotel rooms for the

duration of each client's stay. However, if an ask price exceeds a certain value,

determined by the following constraint, the agent stops bidding for one of the

hotel rooms:

if (price[Grand Hotel] - price[Le Fleabag Inn] > Good Hotel Bonus)

bid for Le Fleabag Inn;

else bid for Grand Hotel Room;

There is also a reserve price which the agent does not exceed when it bids for

hotel rooms. The reserve price in an English ascending auction is the agent's

valuation of the good, which in the case of TAC hotel rooms is a function of

airline ticket prices, entertainment ticket prices, and the prices of alternative

hotel rooms. For a given hotel room, DAIHard computes this value as follows:

for all pairs of arrival and departure days,

1. The pre-hotel utility of the package is computed using the following for-

mula:

1000 + Fun Bonus + Hotel Bonus - (Current Flight Cost +

Entertainment Ticket Cost + Travel Penalty)

2. The hotel cost is computed by calculating the sum of the current ask prices

over the duration of stay.

3. The di�erence between 1 and 2 is calculated and stored as the package

utility.

Now for each pair of arrival and departure days, there is an associated utility.

The pair for which this utility is maximum is chosen, and the estimate of the

corresponding hotel reserve prices are set at the value obtained in step 1. If

all utilities are negative, DAIHard stops bidding for the client altogether.

Entertainment tickets: DAIHard begins bidding on entertainment tickets at

the start of each game instance. The agent never bids above the entertainment

22 Greenwald and Stone / Autonomous Bidding Agents

reserve value for each client. In a competitive environment, where the objective

is to win, rather than to maximize utility and minimize costs, agents may

sacri�ce a competitive advantage by selling unneeded tickets. Hence, in selling

any entertainment tickets, DAIHard's minimum ask price is �xed at $100.

9.2. Allocation Strategy

The problem of �nding optimal allocations, in general, is computationally

intensive. Nonetheless, DAIHard does successfully compute a near-optimal allo-

cation, which it accomplishes as follows:

1. It �rst allocates its airline tickets depending on each client's set arrival and

departure days.

2. It then allocates hotel rooms to each client depending on a stored ag in

the client data, indicating good or bad hotel. If the agent is unable to fully

accommodate a client for the entire duration of its stay, it puts that client

on a waiting list. Similarly, unassigned hotel rooms are stored in a common

hotel-room pool { DAIHard's hotel bidding strategy may result in the purchase

of extra hotel rooms. After iterating over all its clients, the agent tries to

allocate the hotel rooms in the common pool to the clients on the waiting

list. Priority is given to clients with shortest stays.

3. DAIHard optimally, rather than greedily, allocates entertainment tickets.

9.3. Special Approaches/Motivations

TAC is closely related to the other projects of interest to the DAI-HARD re-

search group. In general, the group is interested in developing pro-active, market-

aware agents that can educate the on-line consumer about his/her domain of

interest (e.g., travel, shopping). This objective involves (i) analyzing market

conditions, knowing user preferences, so as to facilitate users taking advantage of

eeting opportunities, and (ii) organizing and presenting the information struc-

ture of a domain in such a way as to enable users to formulate e�ective queries.

In addition, the DAI-HARD group is interested in empirically studying, from the

buyer's perspective, the utility of participating in one or more auctions of vary-

ing types in which similar goods of interest to the user are sold. Participation in

TAC enabled the group to begin to understand the dynamics of on-line auctions

among multiple intelligent agents.

10. RiskPro

10.1. Bidding Strategy

RiskPro periodically updates bids for all types of auctions, until the end of

the game instance. The expected utility of each client is monitored and compared

Greenwald and Stone / Autonomous Bidding Agents 23

with the total client debits, assuming that all auctions will clear at the current

asking price. RiskPro bids in all auctions as long as the expected utility exceeds

the expected client debits. Otherwise, the agent withdraws all the bids for the

client in question in all auctions that have not already cleared. RiskPro sleeps for

a prede�ned number of seconds after completing each bidding round, depending

on the amount of time left in the game. In the �rst half of the game, the sleep

time is ten seconds, in the second half �ve seconds, until three minutes remain

when sleep is disabled.

RiskPro tries to minimize the risk of buying ight tickets early in the game

that will not be of use at the end of the game, due to a lack of hotel rooms.

Another reason for postponing the purchase of ights is the possibility of hotel

prices inating at the end of the game. RiskPro therefore waits until the last

three minutes of the game before submitting ight bids. Since the ask price is

updated independently of the submitted bids, RiskPro bids well above the ask

price in order to ensure winning the goods even if the ask price increases before

the next auction clears. As the supply of tickets is unlimited, RiskPro needs only

submit ight bids once in order to win the ights at the next clear.

By contrast, the strictly limited supply of hotel rooms leads RiskPro to bid

for both types of hotel simultaneously. RiskPro initially submits bids of $1 in

auctions for both hotel types, modulo client preferences. The chance of winning

goods early and at a low price is hence increased, if it so happens that the demand

for one of these days is low, resulting in the auction closing prematurely. At the

very last minute of the game, RiskPro uses a bid increment of half the asking

price, in order to avoid the risk of losing goods to other agents.

The creators of RiskPro observed that the outcome of eÆciently allocating

the entertainment ticket endowment to clients can be more successful than at-

tempting to trade tickets with other agents via the continuous double auctions.

At the outset, RiskPro allocates tickets to all clients whose preferences exceeds

$75, checking for each available ticket that it is allocated to the client with the

highest utility for that ticket, and that this client does not already hold such a

ticket. The remaining tickets in the endowment are saved for trading, which is

initiated halfway into the game. The reason for the delay is to avoid aiding other

agents at the beginning of the game, and to hopefully create some disorder by

initiating a sudden change in prices in the middle of the game.

10.2. Allocation Strategy

RiskPro uses a simple allocation strategy which identi�es clients with the

highest preferences for the goods acquired. This strategy does not involve �nd-

ing optimal allocations by evaluating the utilities of all possible combinations of

goods, but instead generates an allocation of all available goods according to a

satis�cing scheme in which the goods are regarded as a single bundle. Using this

scheme, the �nal allocation of goods is independent of RiskPro's information as

24 Greenwald and Stone / Autonomous Bidding Agents

to which goods were intended for which client.

10.3. Special Approaches/Motivations

Two relevant past experiences inuenced the design of RiskPro. The �rst is

prior work within the research lab (www.dsv.su.se/DECIDE) related to decision

analysis and risk modeling, and the second was participation in several RoboCup

competitions (www.dsv.su.se/~robocup/).

Boman, one of RiskPro's designers, is a researcher interested in developing

theories, methods, and tools for human decision analysis, some of which have

recently been applied to arti�cial decision makers [1]. His main agenda has been

to extend rational choice theory with realistic models and tools for risk manage-

ment. In brief, his approach introduces general risk constraints [6], which allows

for the setting of security levels and threshold values, leading in turn to rec-

ommendations of future actions consistent with the risk attitude of the decision

maker. The main concern has been low-probability outcomes with catastrophic

utility (close to, or equal to -1).

In the case of TAC, this perspective led to the following observation: a night

without a hotel room might be considered a small disaster. In order to mitigate

the e�ects of such disasters, RiskPro is a risk-averse agent. Realizing that this

approach might adversely a�ect their standings, RiskPro's developers accepted

small performance degradations in order to connect their agent to their research

agenda, and perhaps more importantly, to make it suitable to more realistic sce-

narios. Indeed, a possible future version of TAC might spice up the negative

e�ects of infeasible allocations with catastrophic outcomes, as a game manifesta-

tion of, for example, a client suing the trading agent company. RiskPro's code

for optimizing with respect to server speed and network load, based on experi-

ences from testing and participating in qualifying rounds, compensated for the

non-optimality (at least in part) caused by a devotion to risk mitigation.

11. T1

The design of T1 was a joint project between the Swedish Institute of Com-

puter Science (SICS: http://www.sics.se/) and Industrilogik (http://www.

L4i.se/). T1 �nished eighth in the competition, as the last-place �nalist.

11.1. Bidding Strategy

T1 is essentially a set of parameterized heuristics optimized for the TAC

setup. T1 has three stages of execution: initial bidding, an intermediate loop

that updates bids every �fteen seconds and estimates �nal prices, and a �nal

stage when it determines a tentative allocation and buys ights.

Greenwald and Stone / Autonomous Bidding Agents 25

In the initial stage, T1 bids $5 for 8 rooms in all the hotel auctions, ensuring

that it will have already obtained any necessary rooms in the event that an auction

closes prematurely. Similarly, it bids $3 in all entertainment ticket auctions.

(Tickets that it buys but turn out not to be useful are later auctioned o� for

$110 or more. The $110 limit was set based on the intuition that low prices could

provide the buyer | a competing agent | with more utility than the transaction

yields for T1, resulting in a relative net loss.)

In intermediate looping stage, T1 updates its bids every �fteen seconds, by

placing a bit at $10 above the current ask price if the hypothetical quantity won is

lower than the desired quantity. Also during this stage, T1 uses current ask prices

to estimate �nal prices using a thresholding heuristic. The price trajectories for

the hotel auctions were roughly characterized by T1's designers as falling within

one of the following of three categories: steady low prices, linearly increasing

prices, or \unlimited" growth. This behavior was captured in a heuristic that

estimates �nal prices using a pair of breakpoints for every hotel auction. If the

current ask price is below the �rst breakpoint, T1 predicts that the price will

close at that breakpoint. If the price is above the �rst breakpoint but below the

second, T1 predicts that the price will end at the second breakpoint, unless the

calculated linear trend is lower than this point, in which case T1 predicts the

price will close at the calculated trend price. If the current price is higher than

both breakpoints, T1 predicts according to the calculated trend price. The break

points are parameters supplied to the agent at startup; the actual values were

tuned based on the price data observed during the qualifying rounds.

With 2 minutes left in the game, T1 changes its focus to trying to avoid hotel

room auctions whose prices it predicts will skyrocket. Speci�cally, T1 does not

consider any hotel room in subsequent allocations whose price increase between

the two last quotes exceeds a pre-speci�ed amount. At the same time, T1 also

estimates the cost of not winning each hotel room, i.e., its marginal utility. This

utility is approximated as the average of the inight prices on the two days

before the night in question plus the average of the outight prices on the two

days after that night plus a tuning parameter. The agent adds this calculated

utility to the current ask price and places the resulting amount as the �nal bid

in the hotel auctions. With 45 seconds left of the game, T1 buys the necessary

ights, assuming it will obtain all the hotel rooms for which it has bid.

11.2. Allocation Strategy

Once �nal prices are estimated, T1 performs a greedy search to decide

whether it should buy more of any resources. The agent computes tentative

allocations of resources to its clients so to maximize utility, considering each in

turn. The allocation process is repeated for all 8! = 40; 320 permutations of

client orderings, and the optimal allocation among those considered is then used

to decide whether to buy more resources. This search is suboptimal, but the

26 Greenwald and Stone / Autonomous Bidding Agents

post-competition analysis shows that it performs reasonably well (within 98%

of the optimal allocation), with a few catastrophic failures (around 75% of the

optimal). During the last 2 minutes of a game instance, the tentative allocation

is only performed on a randomly selected subset of permutations of the client

orderings.

11.3. Motivations and Observations

T1's designers were primarily interested in TAC as a route to understanding

the nature of the diÆculties that a real world combinatorial trading agent faces,

such as the e�ect of response time, server failures, price wars, and malicious

bidding. Initially, the team registered several agents, on the one hand because

they were considering several di�erent approaches, but in addition, because they

wanted to determine whether the rules of the game favored collusion among

agents. They discovered, for example, that one could exploit the fact that agents

were given unlimited credit; in particular, one agent could earn billions by selling

expensive event tickets to a colluding agent that was deliberately losing millions.

Eventually, this type of collusion was disallowed by the organizers.

The design of T1 involved a number of simple heuristics together with a large

number of tunable parameters. This approach appears not to have been suÆcient

for the TAC setup, since it requires the ability to observe several representative

games in order to manually tune the parameters. Since the characteristics of

the game changed quite drastically between the time of the qualifying rounds

and the �nal competition, T1's parameters were unfortunately not tuned for the

appropriate situation.

12. Nidsia

The Nidsia team focused their e�orts on solving an open research problem,

of which TAC provides a particular instantiation. The nature of the TAC setup

is such that clients' utility functions dictate the value of complete packages, but

the value of any particular good within a package, taken independently, is not

always well-de�ned. Given an auction mechanism and an independent resource

valuation, auction theory provides an optimal bidding strategy. Such valuations

do not exist in TAC, however, nor do they exist in other combinatorial auctions

for complementary and substitutable goods. Thus, the relevant bidding problem

in such settings is how to best construct bids for individual goods, which are sold

in separate auctions, but are of no value when considered in isolation, and only

take on value in conjunction with other relevant goods. Nidsia's approach to this

problem, inspired by the paper of Boutilier et al. on sequential auctions [2], is

to construct an agent bidding policy conditioned on the possible outcomes of its

bids.

Greenwald and Stone / Autonomous Bidding Agents 27

12.1. Bidding Strategy

Nidsia's bidding strategy considers clients in turn; this discussion therefore

applies to an arbitrary client. State st is a bit vector that describes Nidsia's

current holdings for said client at time t. A bidding policy is a function from

states to actions, where an action a is a vector of bids, one per auction, and in

general, each bid is a price-quantity pair. Under certain simplifying assumptions,

Nidsia computes an optimal bidding policy.

The number of possible bids (and therefore actions) is in�nite, if one con-

siders all possible values of price and quantity. To reduce the space of actions to

a manageable size, Nidsia only considers bids in which the quantity is 1 and the

price for auction i is the ask quote qt;i at time t plus a �xed increment Æ. With

this simpli�cation, an action a is a bit vector, where ai = 1 if a bid is submitted

at price qt;i + Æ and ai = 0 if no bid is submitted.

To further reduce the search space, Nidsia focuses only on auctions for travel

goods (i.e., ights and hotels), and therefore, by the nature of the TAC auction

mechanisms, is primarily concerned with hotel auctions. For each client, Nidsia

computes the expected utility of each of 256 possible actions | each correspond-

ing to whether or not each of the 8 possible hotel rooms is included | given

current holdings. Nidsia then bids according to the action that maximizes ex-

pected utility.

The expected utility E [U(st ; a)] of taking action a in state st is the sum over

all possible states st+1 of the probability P (st+1jst; a) of reaching state st+1 times

the utility V (st+1) of state st+1. The quantity P (st+1jst; a) is computed as the

product of the probability of the outcomes of the bids described by the action a,

taken in state st, that lead to state st+1. This formulation (incorrectly) assumes

that the probability distributions among the various auctions are independent.

The probability of obtaining item i is assumed to be near 0 at the beginning

of the game and near 1 at the end of the game. Speci�cally, for the purposes

of TAC, these probabilities were given by the following equation for the straight

line F (t; i) which passes through the points (1; 0:1) and (15; 1). The probability

of failing to obtain item i at time t is simply 1� F (t; i).

The utility V (st) at state st is taken to be the reward r(st) for being in

state st less the cost c(st) of obtaining the items held in this state: i.e., V (st) =

r(st) � c(st). The cost c(st) =
P

i st;ict;i(h), where ct;i(h) = 0 if Nidsia owns

hotel i at time t, and ct;i(h) = qt;i otherwise. The reward r(st) is taken to be the

maximum possible value attainable among all feasible packages that include the

hotels indicated by bit vector st. Formally,

E [U (st; a)] =
X
st+1

P (st+1jst; a) V (st+1)

P (st+1ja; st) =
Y
i

P (st+1;i)

28 Greenwald and Stone / Autonomous Bidding Agents

P (st+1;i) = st+1;iF (t+ 1; i) + (1� st+1;i) (1� F (t+ 1; i))

12.2. Allocation Strategy

Due to time constraints during development, Nidsia allocates its goods to

clients according to a �xed heuristic, rather than computing optimal allocations

(using e.g., integer programming). One minute before the end of the game,

Nidsia bids on ights that coincide with the hotel room auctions that it expects

to win for each client. Also at this time, the initial endowment of entertainment

tickets is greedily allocated to clients. Unused tickets are auctioned o�, and

useful tickets currently on sale are purchased. At the end of the game, Nidsia

con�rms that its clients have all the necessary goods to complete their travel, and

it heuristically tries to allocate any unused goods so as to satisfy as many clients

as possible.

12.3. Special Approaches/Motivations

In summary, the approach taken by Nidsia's developers to the TAC com-

petition incorporated aspects of their more general research agenda, including

the development of techniques for computing optimal bidding policies. The Nid-

sia algorithm is not tailored to the particular auction mechanisms of TAC, but

rather is more general in its applicability to combinatorial auctions of substi-

tutable and complementary goods. As a result, the implementation of Nidsia's

algorithms required some strong simplifying assumptions. Nonetheless, Nidsia's

overall performance illustrates the promise of this general method; had Nidsia's

general algorithms been tailored to the speci�c TAC setup, Nidsia's performance

would have improved.

13. EZAgent

EZAgent was one of the 12 TAC semi-�nalists. The objective of its designer

was to obtain positive utility with minimum coding.

13.1. Bidding Strategy

EZAgent enforces that all clients travel on the days that they prefer. No

analysis was performed to see if changing the travel days could increase the utility.

(This decision turned out to be a costly mistake, as often it is more bene�cial to

travel on di�erent days to maximize utility.)

Given each client's travel days, EZAgent calculates how much utility it could

obtain by purchasing the Grand Hotel for a client and compares this value with

the current cost of rooms at the Grand Hotel. If it is obtains positive utility

from the Grand Hotel, the agent bids on the Grand Hotel. If the utility is less

Greenwald and Stone / Autonomous Bidding Agents 29

than the current cost, the agent bids on Le FleaBag Inn. If Le FleaBag Inn costs

more than $300, the agent opts not to acquire travel arrangements for this client.

During the last minute of the game, EZAgent does not change its hotel preference

since doing so could lead to acquiring multiple accommodations.

EZAgent updates bids continuously until a game is complete. If it wants a

hotel and does not have a winning bid, EZAgent bids $10 above the current ask

price. An analysis of the executions during the �nal round showed that it bid

approximately every 10 seconds. Since an unknown period of inactivity could

result in an early closing of a hotel auction, no delay was inserted in between

bidding cycles.

During the last �ve minutes of the game, the agent acquires airline tickets

for any travelers for whom it has obtained or is still trying to obtain hotel ar-

rangements. Also during this time, entertainment tickets are auctioned o�. The

ask price is set at a small increment over the value of the ticket to the client to

whom it is currently allocated. A ticket is bought if it is o�ered at less than the

utility that would be gained by assigning it to a client.

13.2. Allocation Strategy

After the last auction closes, EZAgent �rst distributes its hotel rooms among

its clients. Clients with higher good hotel values are given preference for the

Grand Hotel. If any rooms at Le FleaBag Inn were obtained, they are allocated

to clients as yet without rooms according to their potential entertainment bonus.

After allocating hotel rooms, the entertainment preferences of those clients with

accommodations are ordered. Tickets are distributed in a descending manner

until all possible tickets are allocated. This does not obtain an optimal allocation,

but generally performs well. In a review of the games played, EZAgent averaged

98% optimal resource allocation (see Table 6). Since the allocation mechanism

only considers one possible allocation of resources, it is able to quickly distribute

its resources.

13.3. Special Approaches

EZAgent attempted to obtain positive utility with minimum coding.

EZAgent did not use an optimal strategy, but rather it used a strategy that

its designer hoped would result in a positive score. EZAgent originally attempted

to gain more hotel rooms than necessary so that other agents would not be able

to secure complete travel packages. Most other agents were not willing to pay

high prices for hotel rooms, and dropped out of the market when the price ex-

ceeded some threshold. EZAgent's policy of greedy acquisition resulted its paying

high prices, hoarding rooms, and achieving low utility. This feature (bug) was

disabled during the semi-�nals.

30 Greenwald and Stone / Autonomous Bidding Agents

14. UATrader

The travel agent UATrader developed at the University of Arizona partici-

pated in the TAC qualifying rounds.

14.1. Bidding Strategy

The general bidding strategy employed by UATrader can be characterized as

a \myopic" trading strategy with iterative adjustments based on neighborhood

search. After analyzing several game instances and observing the behavior of

other trading agents, the Arizona team realized that the decisions as to what

days each client should stay in Boston play a decisive role in agent performance.

Thus, UATrader actively participates in the ight and hotel auctions and seeks

to coordinate its bidding activities in these auctions, while its involvement in the

entertainment ticket auctions is secondary and largely opportunistic.

UATrader bases most of its bidding decisions on the anchor solution|a

hypothetical assignment of travel dates for each client. The anchor solution is

initialized to reect each client's preferred arrival and departure dates. Whenever

a price change is observed, UATrader evaluates small variations (neighbors) of the

current anchor solution on a client-by-client basis. This evaluation is based on the

sum of the potential changes across all three types of auctions given the current

price quotes. If the overall impact of switching from the current anchor solution

to some variation is positive, this variation is made the new anchor solution for

the corresponding client.

UATrader bids in two phases. The duration of the �rst phase is 13 minutes;

then with 2 minutes remaining, it switches to the second phase.

Flight Auctions. In the �rst bidding phase, UATrader submits �xed low bids

(e.g., $165) for all available ights to take advantage of possible low airfares. In

the second phase, UATrader assures the booking of the ights that match the

anchor solution for each client by submitting high bids.

Hotel Auctions. UATrader's behavior in hotel room auctions is coordinated with

its bidding strategy for ights. In the �rst phase, UATrader submits dummy bids

at �xed time intervals to keep the auctions from closing. In the second phase,

UATrader relies on anchor solutions to examine whether the Boston Grand Hotel

(BGH) or Le Fleabag Inn (LFI) rooms should be targeted. At �rst, UATrader

prefers that all clients stay in BGH. Then, as the auctions proceed, for each

client, UATrader estimates the utility change of switching from BGH to LFI (or

switching from LFI to BGH, if the current target is LFI) based on the current

prices. If, for certain nights, prices of both hotels exceed pre-speci�ed thresholds,

UATrader automatically modi�es the corresponding anchor solutions and adjusts

its bids in the ight auctions to avoid those nights.

Greenwald and Stone / Autonomous Bidding Agents 31

Entertainment Ticket Auctions. In the �rst bidding phase, UATrader is not

active in any of the entertainment ticket auctions. In the second phase, after

the anchor solution is booked, UATrader makes a one-time decision based on the

current price quotes pertaining to selling and buying tickets with the objective

of maximizing total client utility.

14.2. Allocation Strategy

UATrader relies on the default allocator strategy provided by the TAC server.

14.3. Motivations

The University of Arizona team consists of researchers from Management In-

formation Systems, Computer Science, and Experimental Economics. The team

is currently conducting research on comparing di�erent electronic exchanges in-

cluding auctions and negotiations; developing intelligent trading strategies in

software agents for various online trading institutions; and investigating human-

agent interaction for strategic decision-making tasks. TAC was a valuable re-

search experience, closely related to their research goals.

15. EPFLAgent

EPFLAgent is the middle tier of a multiagent system composed of the TAC

AuctionBot and a slave agent responsible for solving constraint satisfaction prob-

lems (CSPs) submitted by the EPFLAgent (see Figure 2).

Customers
EPFLAgent

Solver Agent

Preferences
Market

AuctionsInfo

Transactions

addBid

updateBid

deleteBid

InitClientPref

InitAuctionValues

UpdateAuctionValues

Distribution
(CSP solution)

Figure 2. General overview of EPFLAgent communications with the other agents

The Solver uses constraint satisfaction algorithms provided by the JCL (Java

Constraint Library) for solving the CSPs it receives. The CSPs are described in

CCL (Constraint Choice Language) using an XML content description.

32 Greenwald and Stone / Autonomous Bidding Agents

15.1. Bidding Strategy

EPFLAgent initializes the Solver using a CSP representation of the prob-

lem's variables (e.g., the client preferences, market state, etc.). Then, the agent

classi�es its clients into di�erent classes, from the most constrained client to

the least constrained, according to their preferences. Speci�cally, the clients are

classi�ed into three categories | very favorable (VF), favorable (FV), and unfa-

vorable (UF) | based on their utilities (di�erence between the client's valuation

of a package and its cost) and experimental thresholds. As the market evolves,

EPFLAgent continually reclassi�es the clients.

EPFLAgent starts by focusing on the clients who are FV, trying to satisfy

them �rst since it is likely to be easy to satisfy VF clients when the end of the

game is near. The agent continues spending the client's money (bidding slightly

above the market price) until the client becomes UF or it is satis�ed with an

agent's utility. The bidding is done in parallel for all the FV clients.

15.2. Allocation Strategy

At the end of a game instance, the solver agent is given a limited amount

of time to �nd a better solution than the current allocation. Since the solver is

time-constrained, it uses simple heuristics to limit the search space. It may fail

to �nd an optimal solution.

15.3. CSP-based Multiagent Approach to TAC

EPFLAgent represents a distributed solution to the TAC game. It focuses

on the execution of a high-level strategy, delegating all speci�c tasks to other

agents to achieve its goals. Speci�cally, it uses the CSP formalism and caching

to anticipate its decision-making needs which it outsources to its Solver. The

motivation for such an approach is to investigate the potential of multiagent

solutions with the hope of discovering ways to tackle complex problems eÆciently.

16. Conclusion

The �rst international trading agent competition was a very successful event,

drawing twenty-two entrants from around the world. This article has compared

and contrasted the strategies of the twelve agents, including all of the �nalists

and most of the semi-�nalists. In spite of the enthusiasm of the participants, a

few suggestions have been proposed for the structure of future tournaments:

� There is no incentive to buy airline tickets until the end of the game. Were

the price of ights to tend to increase, or were availability limited, agents

would have to balance the advantage of keeping their options open against the

savings of committing to itineraries earlier.

Greenwald and Stone / Autonomous Bidding Agents 33

� The hotel auctions were e�ectively reduced to sealed-bid auctions. There was

usually no incentive for agents to reveal their clients' preferences before the

very end of the game. As a result, it was impossible for agents to model market

supply and demand, and thereby estimate prices.

The phenomenon of English auctions with set closing times reducing to sealed-

bid auctions has been observed in other on-line auction houses such as eBay.

Roth and Ockenfels [7] argue that in such auctions, it is in fact an equilibrium

strategy to place multiple bids (with increasing valuations) and to bid at the

last possible moment; this contradicts the usual intuition pertaining to second-

price sealed-bid auctions, namely that a single bid at one's true valuation is

a dominant strategy. In contrast, Amazon runs on-line auctions in which the

length of the auction is extended beyond its original closing time, say T , by 10

minutes each time a new (winning) bid is received. In this case, equilibrium

behavior dictates that all bidders bid their true valuations before time T .

Were the TAC hotel auctions to be implemented in the style of Amazon, rather

than eBay, agents would likely bid earlier. In this way, it would be possible

for TAC agents to obtain information pertaining to the speci�c market supply

and demand induced by the random client preferences realized in each game

instance, and to use this information to estimate hotel prices. Unfortunately,

Amazon-style auctions have the downside that they might never end! Never-

theless, parallel auctions Amazon-style for substitutable and complementary

goods would almost surely induce fascinating market dynamics. end.

� Activity in the entertainment auctions was limited during the �rst trading

agent competition. This outcome, however, is not obviously correlated with

the design of the entertainment auction mechanism. On the contrary, if more

structure were added to the ight auctions, and if the hotel auctions were

modi�ed, perhaps in the way suggested above, interest in entertainment ticket

auctions might be augmented.

� The information structure of the TAC setup was such that it was impossible to

observe the bidding patterns of individual agents. Nonetheless, the strategic

behavior of individual agents often profoundly a�ected market dynamics |

particularly in the hotel auctions. It seems that either (i) the dimensions of the

TAC game should be extended such that the impact of any individual agent's

bidding patterns is truly negligible, or to avoid issues of scalability (ii) it should

be possible to directly model the e�ect of the behavior of each individual agent.

Were there to be information available regarding the bidding behavior of the

agents (such that other agents could induce clients preferences, and therefore

market supply, demand, and prices), TAC agents would potentially be able to

learn to predict market behavior as a game proceeds.

With or without these changes, the second trading agent competition will be a

worthwhile and exciting event. The participants look forward to continuing to be

a part of this emerging domain of designing autonomous agents for e-commerce.

34 Greenwald and Stone / Autonomous Bidding Agents

Appendix

A. Appendix

Following is the contact information for the creators of the TAC agents men-

tioned in this article.

ATTac: Peter Stone, Michael Littman, Satinder Singh, Michael Kearns

AT&T Labs { Research

180 Park Ave.

Florham Park, NJ 07932

fpstone,mlittman,baveja,mkearnsg@research.att.com

RoxyBot: Justin Boyan Amy Greenwald

NASA Ames Research Center and

MIT Arti�cial Intelligence Lab Department of Computer Science

545 Technology Square NE43-753 Brown University, Box 1910

Cambridge, MA 02139 Providence, RI 02912

jboyan@mail.arc.nasa.gov amygreen@cs.brown.edu

Aster: Andrew Goldberg, Umesh Maheshwari

Strategic Technologies and Architectural Research (STAR) Laboratory

InterTrust Technologies Corp.

4750 Patrick Henry Drive

Santa Clara, CA 95054-1851

fumesh,goldbergg@intertrust.com

UmbcTAC: Youyong Zou

ECS 201

Department of Computer Science and Electrical Engineering

University of Maryland at Baltimore County

1000 Hilltop circle

Baltimore, MD,21250

yzou1@cs.umbc.edu

ALTA: Andrey Tarkhov, Dmitry Uspensky, Eugene Vostroknoutov

Arti�cial Life, Inc.

Four Copley Place

Skylobby, Suite 102

Boston, MA 02116

fDmitry.Uspensky,Andrey.Tarkhov,Eugene.Vostroknoutovg@artificial-life.com

Greenwald and Stone / Autonomous Bidding Agents 35

DAIHard: Rajatish Mukherjee, Partha Dutta, Sandip Sen

600 South College Avenue

Mathematical And Computer Sciences Department

University Of Tulsa

Oklahoma 74104

frajatish,parthag@euler.mcs.utulsa.edu, sandip-sen@utulsa.edu

RiskPro: Magnus Boman, Sven-Erik Ceedigh

Department of Computer & Systems Sciences

Stockholm University & The Royal Institute of Technology

Electrum 230

SE-164 40 Kista, Sweden

fmab,s-e-ceedg@dsv.su.se

T1: Erik Aurell, Martin Aronsson, Glenn Lawyer Lars Rasmusson, Lars Olsson

Industrilogik L4i AB Swedish Institute of Computer Science (SICS)

Gvlegatan 22, P.O. Box 21024 P.O. Box 1263

SE-100 31 Stockholm, Sweden S-164 29 Kista, Sweden

feaurell,mar,glenng@L4i.se fLars.Rasmusson,larreg@sics.se

Nidsia: Nicoletta Fornara, Luca Maria Gambardella Marco Colombetti

IDSIA|Istituto Dalle Molle di Studi

sull'Intelligenza Arti�ciale Universit�a della Svizzera Italiana

Switzerland Lugano, Switzerland

fnicoletta,lucag@idsia.ch marco.colombetti@lu.unisi.ch

EZAgent: Betsy Strother

North Carolina State University

Raleigh, NC 27695

epriggin@eos.ncsu.edu

UATrader: Daniel Zeng, Jiang Zhu, Bart Wilson

Department of Management Information Systems

Department of Computer Science

Economic Science Laboratory

University of Arizona

Tucson, AZ 85721

zeng@bpa.arizona.edu, jiangzhu@cs.arizona.edu, bwilson@econlab.arizona.edu

36 Greenwald and Stone / Autonomous Bidding Agents

EPFLAgent: Omar Belakhdar, Patrice Jaton, Boi Faltings

Arti�cial Intelligence Laboratory

Swiss Federal Institute of Technology

Lausanne, Switzerland

belakdar@lia.di.epfl.ch

References

[1] M. Boman. Norms in arti�cial decision making. Arti�cial Intelligence and Law, 7:17{35,
1999.

[2] C. Boutilier, M. Goldszmidt, and B. Sabata. Sequential auctions for the allocation of

resources with complementarities. In Proceedings of 16th International Joint Conference
on Arti�cial Intelligence, volume 1, pages 478{485, August 1999.

[3] J. Boyan and A. Greenwald. RoxyBot: A dynamic bidding agent for simultaneous auctions.

Manuscript available at www.cs.brown.edu/people/amygreen, December 2000.

[4] J. Boyan, A. Greenwald, R. M. Kirby, and J. Reiter. Bidding algorithms for simultaneous

auctions. Manuscript available at www.cs.brown.edu/people/amygreen, December 2000.

[5] D. Cli� and J. Bruten. Zero is not enough: On the lower limit of agent intelligence for

continuous double auction markets. HP Technical Report HPL-97-141, 1997.

[6] L. Ekenberg, M. Boman, and J. Linnerooth-Bayer. General risk constraints. Journal of
Risk Research, Forthcoming.

[7] A. Roth and A. Ockenfels. Late minute bidding and the rules for ending second-price

auctions: Theory and evidence from a natural experiment on the internet. Working Paper,

Harvard University, 2000.

[8] M. H. Rothkopf, A. Peke�c, and R. M. Harstad. Computationally manageable combinatorial

auctions. Management Science, 44(8):1131{1147, 1998.
[9] P. Stone. Layered Learning in Multiagent Systems: A Winning Approach to Robotic Soccer.

MIT Press, 2000.

[10] P. Stone, M. L. Littman, S. Singh, and M. Kearns. Attac-2000: An adaptive autonomous

bidding agent. In Submission to the Fifth International Conference on Autonomous Agents,
2001.

