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Abstract 

This project aims to build a prototype software system for BayesOWL, a 

probabilistic framework proposed for dealing with uncertainty in Semantic Web (SW) 

ontologies. It translates a terminological taxonomy of an OWL ontology into a 

Bayesian Network (BN), integrates probabilistic information about the concept 

classes and interclass relations into the translated BN, and supports important 

ontological reasoning tasks as probabilistic reasoning in BN. 

The implementation of the BayesOWL framework extends the original framework 

in two ways. One is encoding probabilistic information in OWL format. The new 

convention can encode any discrete probabilities in a general form with one or more 

prior variables and zero or more conditional variables. The other extension is with the 

input ontologies. In the original BayesOWL framework, only simple ontologies which 

themselves are terminological taxonomies can be handled. But in this implementation, 

general OWL ontologies (OWL DL) are supported by taking advantage of existing 

OWL reasoning tools. These two developments together represent a significant 

advancement over the original framework. 

The prototype system BayesOWL 1.0 extracts the taxonomy of the named classes 

from the given OWL ontology and maps this terminological taxonomy into a BN 

following a set of structural translation rules; it extracts probabilistic uncertainty 

information from the probability file and incorporates it into the translated BNs using 

a set of algorithms based on the iterative proportional fitting procedure (IPFP). Finally 

a resulting BN will be generated as the output. 

This prototype system for BayesOWL can be used as a practical tool for ontology 

engineering tasks such as domain modeling, ontology reasoning and ontology concept 

mapping.
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1 INTRODUCTION 

Several approaches have been proposed to realize semantic interoperability among 

heterogeneous system using OWL ontologies. However, no existing software tools for 

these approaches can be used by researchers in ontology engineering. In this report, 

we aim to implement a prototype system of BayesOWL [4, 6], a Bayesian Network 

based framework proposed for handling uncertainty in the Semantic Web. 

1.1 OWL: Web Ontology Language 

The Semantic Web (SW) [17] is proposed as a vision for the future of the Web which 

gives information on the web explicit meanings that can be understood and properly 

processed by machines. For this purpose, Web Ontology Language (OWL) [18] was 

proposed and recommended by W3C for defining ontologies that can be used and 

shared by web contents in describing their semantics. OWL is an extension of RDF 

[19] based on description logics and goes beyond the basic semantics of RDF Schema. 

It relies on ontologies to define terms used to model the domain knowledge. 

1.2 Why Use Bayesian Network 

Since OWL uses crisp description logic to represent a domain, it cannot deal with 

incomplete, imprecise, or partial knowledge about the domain. But in the real world, 

uncertainty exists in almost all aspects of areas, including domain modeling, ontology 

reasoning, concept mapping, etc. So how to do representation and reason under 

uncertainty is gaining more and more attention. Many recently developed approaches 

to handle uncertainty SW are based on probability theory [21] because of its 

mathematical representation language and formal calculus for rational degrees of 

belief. 

Several works [7][8][9][15], including the BayesOWL [4][6], have used Bayesian 

Networks (BN) [11][12] to model uncertainty in SW. A BN consists of a directed 

acyclic graph (DAG) and a set of local conditional probability tables (CPTs), one per 

each random variable. The DAG represents qualitative dependency relationships 

between random variables while the CPTs quantify the strength of these dependences. 
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The DAG and CPTs together determine a joint probability distribution (JPD), which 

can be viewed as a probabilistic knowledge base of the domain. Theoretically, using 

such a JPD and existing BN inference algorithms, e.g. belief propagation, junction 

tree, etc., BN can answer any probabilistic queries about the domain [11]. 

1.3 BayesOWL 

BayesOWL [4][6] is a probabilistic framework that augments and supplements OWL 

for representing and reasoning with uncertainty in SW ontologies based on BN. It 

consists of a set of translation rules which are used to convert OWL ontology into a 

BN DAG, a convention of encoding probabilistic information, and a construction 

mechanism for BN CPTs to integrate available probabilistic information into the JPD 

of the translated BN. In the resulting BN, each concept class of the given ontology is 

translated into a concept node, each logical relation is represented as a logic node 

(L-node for short), and the uncertainty of the inter-class relations are captured by the 

CPTs. The final BN can be used for ontology engineering tasks, such as domain 

modeling, ontology reasoning and ontology concept mapping, etc. 

The purpose of this project is to implement a software system for BayesOWL, so 

it can be used as a practical tool by researchers dealing with uncertainty in ontology 

engineering areas. The prototype implementation of BayesOWL includes a source 

code package (a .jar file), a graphical user interface, and related documents. In 

addition, use cases are provided to help others use the software tool and verify the 

implementation performance. 

The rest of this report is organized as follows: Section 2 briefly discusses 

BayesOWL framework; Section 3 provides detailed description of the extension and 

implementation of BayesOWL 1.0; Section 4 shows some use cases; and conclusions 

are given in Section 5. 

2 BayesOWL FRAMEWORK 

According to the framework, BayesOWL 1.0 has two main functions. One is 

translating OWL ontologies into BNs while the other one is constructing Conditional 
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Probability Tables for translated BNs. As can be seen in Figure 2.1 below, translation 

from a probabilistic OWL ontology to a BN by the prototype system is done in two 

stages. The first stage is to construct the BN structure (DAG) from the input OWL 

ontology file and to initialize the conditional probability tables (CPTs) with default 

values. This is done by Taxonomy Parser and BN structure constructor. The second 

stage is to incorporate user provided probabilistic information of concepts and 

inter-concept relations into the BN CPTs. This is done by Probability Parser and CPT 

Constructor. 

 

Figure 2.1 BayesOWL 1.0 framework 

2.1 Convert Ontology Taxonomy into Bayesian Network 

Although SW builds on XML’s ability to define customized tagging scheme and 

RDF’s flexible approach to represent data, OWL ontology is not a message format but 

a knowledge representation: it typically includes descriptions of classes, properties 

and their instances. Original BayesOWL framework does not deal with properties and 

individuals. Instead, it focuses on simple, taxonomical ontologies, consisting of 

concept classes and logical relations between these classes. Six types of logical 

relations are allowed in OWL by its class axioms and logical constructors:  

 rdfs:subClassOf 

 owl:equivalentClass 
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 owl:disjointWith 

 owl:unionOf 

 owl:intersectionOf 

 owl:complementOf 

In this prototype implementation, we extended the original framework and went 

one step further toward modeling the general OWL DL ontologies. In a general 

ontology, concept classes not only related to each other by the explicitly defined 

relations, but also implicitly by properties, which are represented as anonymous 

classes in the RDF graph of the ontology. These anonymous classes are classes 

without identifiers (ID) or names and they cannot be referenced by other ontologies. 

Thus when we translate taxonomies into BNs, these anonymous classes will not be 

translated into variables in BN. On the other hand, we cannot simply drop them 

because logical relationships between other concept classes may depend on these 

dummy classes. For example, in “Wine” ontology provided by W3C as a use example 

and test benchmark [25], there is no explicit definition of relationship between 

concept classes “RedBurgundy” and “WhiteWine”. However, they are disjoint with 

each other because they are subclasses of two disjoint anonymous classes “hasColor = 

#Red” and “hasColor = #White”.  

One can find all relations, explicit and implicit, using a full OWL DL reasoner. 

However, not all of these relations need to be modeled in the BN since some may be 

derived from each other. To handle these anonymous classes and implicit relationships, 

we have extended the original structure translation rules as follows. 

Let SONT denote all explicit and implicit relationships between concept classes of 

the given ontology. We define SDAG  SONT as a set of logical relations such that:  

1) every L in SONT is entailed by SDAG; and  

2) no L in SDAG is entailed by SDAG \{L}.  

Then, we only need to explicitly model those L in SDAG by subclass arcs and L-nodes 

in the translated BN. The extended structural translation rules are as follows: 

1. Concept Classes. Each defined concept class is mapped into a binary variable 

node, called concept node, in the translated BN. 
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2. Logical Relations. Form SDAG from the given ontology. 

3. Subclasses. For every subclass relation Lsub in SDAG, an arc is set from the 

superclass to the subclass. A subclass hierarchy of all concept nodes is thus 

formed.  

4. Logical Nodes. For every non-subclass relation in SDAG, create an L-node and 

set its CPT according to the logic of the relation. 

It can be seen that the translated DAG preserves the semantics of the given ontology.  

In BayesOWL 1.0, Taxonomy Parser (T-Parser for short) extracts taxonomies 

defined in the given ontology, find relationships between concept classes using 

ontology reasoner tool, and remove redundant relations (relations can be derived from 

other relations). Details of T-Parser will be given in Subsection 3.2.1. 

When extraction work is finished, another component, BN Constructor, would be 

provided to construct BN structure. It takes advantage of the translation rules to 

convert concept classes and relationships mentioned above into a BN DAG. Such a 

BN will also be initialized by filling its CPTs and set the logic nodes [2][4] to be 

‘True’, so the relationships defined in OWL ontology hold. 

2.2 How to Represent Probability Information 

In many applications, probabilistic information of concept nodes and inter-concept 

relations such as prior probabilities for individual concepts and pair-wise conditional 

probabilities for subclass relations may be available for the given ontology. Before 

uncertainty information can be used by BayesOWL, it should be encoded into some 

specific format. Since ontologies are written in OWL, it is natural to make use of 

OWL syntax when encoding probabilistic information. 

Original BayesOWL framework has proposed an extension of OWL to represent 

probabilistic information [3]. However, it deals with only two types of probabilities: 

the marginals for individual concepts (P(c)) and pair-wise conditionals of subclass 

relations (P(c|a)), where A is a most specific superclass of C. A more general 

convention is proposed and adopted in this implementation. The extended convention 

can represent general form of probability with more than one prior and conditional 
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variable (see Subsection 3.2.2 for details). 

2.3 Construct Conditional Probability Tables (CPTs) 

CPTs for Logic Nodes, which are corresponding relationships defined in OWL 

ontology, can be completely determined by the logical relation it represents. That is, 

when its state is set to “True”, the intended logical relation among its parents must 

hold. For example, if C is the intersection of C1 and C2, then the L-Node is “True” if 

and only if     1 2 1 2 1 2 1 2cc c c c c c c c c c c   . 

Table 2.1 CPT for an intersection L-Node 

C C1 C2 
Intersection

True False

True True True 1.0 0.0 

True True False 0.0 1.0 

True False True 0.0 1.0 

True False False 0.0 1.0 

False True True 0.0 1.0 

False True False 1.0 0.0 

False False True 1.0 0.0 

False False False 1.0 0.0 

 

To initialize the CPTs for concept nodes, let c  be the set of all parent nodes of the 

concept node C. From the structure translation rules, all nodes in c  are 

super-classes of C. Therefore, each entry in ( | )cP c  , the CPT of C, must have value 0 

if any of its parents is “False” for that entry. The only other entry in the table is 

)|( 
ccP  , in which all parents are “True”. It is the probability of this entry that needs 

to be determined. If no probabilistic information is available, we choose the following 

as default: 

( | ) ( | ) 0.5C CP c true P c false      . 

When probabilistic information is available, this information needs to be 

incorporated into the CPTs of the concept nodes. For this purpose several algorithms 

are developed [4][13], all based on a mathematical procedure known as iterative 
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proportional fitting procedure (IPFP) [1][14]. These algorithms take the probabilistic 

information as constraints and iteratively modify the joint distributions of all variables, 

using one constraint at a time, until a convergence is reached, in which all the 

constraints are satisfied by the resulting joint distribution.  

The original BayesOWL framework only allows constraints in the forms of 

marginals for individual concepts (P(c)) and pair-wise conditionals of subclass 

relations (P(c|a)). Note that each of these constraints only involves variables within 

one CPT, and these constraints can be efficiently incorporated by one of the 

algorithms called SD-IPFP, where D stands for decomposed. In BayesOWL 1.0, we 

aim to incorporate probability constraints in more general forms. Several issues need 

to be addressed: 

A1) Variables in a constraint may belong to several CPTs; 

A2) IPFP does not respect the structure of BN; 

A3) CPTs should be set in the general space in which all variables are free while 

constraints are given in the subspace LT, in which all L-nodes are set to 

“True”. 

To address these concerns, we adopt another algorithm, E-IPFP, from [13], which is 

given below: 

Let 0( | )i iQ x   be the initial default CPTs and { ( )}iR R y be the set of 

constraints. 

1. )|()( 010 ii
n
i xQxQ   ;  

2. for k = 1 until convergence { 

3. 1 1( ) ( );k kQ x Q x %
 

4. for each 1
1

( )
( )  do ( ) ( ) ;

( | )
i

i k k i
k

R y
R y R Q x Q x

Q y LT




  % %
%

 

5. for each concept node jx
 extract its CPT ( | ) k j jQ x  from ( );kQ x%  

  6. 1( ) ( | );n
k i k i iQ x Q x    
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  7. k = k + 1;} 

Note that ( )kQ x  are the joint distribution of all variables (including both concept 

nodes and L-nodes), which are modified by iteratively using the constraints at Step 3. 

This takes into account of A1. A2 is taken into account by Steps 5 and 6 which have 

the effect of imposing the BN structure as an additional constraint; this constraint is 

satisfied when the joint distribution ( )kQ x%  after Step 5 equals ( )kQ x  after Step 6. A3 

is taken into account of by the denominator in the formula in Step 4 which is the 

probability of y in the subspace of LT. Here 

( 1) ( 1)

1

( | ) ( | ) / ( | , )i
k i xi i i k i i

xi

Q x R x L Q x L LT


 




 

is the normalization factor. 

Also note that, since E-IPFP does not modify any zero value entry in the joint 

distribution, it only changes those entries )|( 
ccP   in the CPTs of concept nodes. If 

all constraints are consistent with each other and with the BN structure, then the 

procedure will converge; the CPTs obtained at Step 5 define a distribution which 

satisfies all constraints in R with the condition of LT. 

So, after probability is decoded by P-Parser, a component called CPT 

Constructor is used to incorporate probabilistic information into previously generated 

BN. CPT Constructor uses algorithms discussed above to incorporate the probabilistic 

information into the BN.  

As we discussed above, BayesOWL 1.0 contains four components, T-Parser, 

P-Parser, BN Constructor, and CPT Constructor. T-Parser extracts taxonomies and 

relationships defined in OWL ontology file. BN Constructor constructs BN structure 

(the DAG) using the extracted taxonomy. P-Parser decodes probabilistic information 

into constraints which can be used by CPT Constructor which is implemented to 

incorporate the uncertainty information into resulting BNs. In the following section, 

we will discuss the implementation of these components in detail. 
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3 PROTOTYPE IMPLEMENTATION 

This section discusses implementation details of BayesOWL 1.0. It is organized as 

follows: Subsection 3.1 gives the architecture of BayesOWL 1.0; Subsection 3.2 

discusses the parsers of BayesOWL 1.0; Subsections 3.3 and 3.4 discuss BN 

Constructor and CPT Constructor separately; Subsection 3.5 lists APIs of BayesOWL 

1.0; and Subsection 3.6 gives the GUI of BayesOWL 1.0. 

3.1 System Architecture 

Figure 3.1 shows the BayesOWL 1.0 system architecture. 

 

Figure 3.1 BayesOWL 1.0 architecture 

As can be seen easily from Figure 3.1, BayesOWL 1.0 works like this: 

The T-Parser first extracts the terminological taxonomy defined in the given 

ontology. Output of the T-Parser is represented in a specific format which contains 

items defined in ontology such as ‘class’, ‘subClassOf’, ‘disjointOf’, etc. BN 

Constructor then uses these results and follows the structural translation rules to 

convert the extracted taxonomy into a BN DAG. If uncertainty knowledge is given, 

BayesOWL 
BNConstructor

Uncertainty 

Knowledge 

BayesOWL 
CPTConstructor 

T- Parser P- Parser 

BN Structure 

Taxonomies 

input OWL ontology 

system output

input uncertainty 

information 
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the CPT Constructor then uses IPFP-based algorithms (D-IPFP for decomposable 

cases and E-IPFP for general constraints) given in [13] to construct CPTs for concept 

nodes. 

3.2 BayesOWL 1.0 Parsers 

There are two parsers in BayesOWL. One is T-Parser, which is used to parse 

ontology file. The other is P-Parser, which is used to parse the file of probabilistic 

information encoded in OWL format. 

3.2.1 T-Parser 

As discussed in Subsection 2.1, to extract the taxonomy from the given ontology, we 

need to deal with the difficult issue of anonymous classes created when parsing OWL 

DL ontologies. This involves finding all logical relations between concept classes, 

especially those implicitly defined via these anonymous classes and removing 

redundant one among them.  

There are several OWL reasoners [20], such as Jena [24], FaCT, Pellet [22] etc., 

developed to parse OWL ontologies. Jena is an open source SW framework using 

Java. It extracts RDF graphs from ontology files and provides supports for OWL. 

However, Jena does not include a complete reasoner in its standard distribution for 

OWL DL entailment. Compared with Jena, FaCT does not have these limitations 

when reasoning, but it does not provide rule support. In contrast, Pellet is a complete 

OWL-DL reasoner. It is based on the tableaux algorithms developed for Description 

Logics and supports the full expressivity of OWL DL including reasoning about 

nominals. For these reasons we choose Pellet as the middleware to help implement 

our T-Parser. Since Pellet is open source and provides APIs, we can use it directly to 

parse the given OWL ontology and extract all concept classes. 

Pellet also offers ontology reasoning and can be used to find both explicit and 

implicit relationships in SONT (discussed in Subsection 2.1) of each concept class with 

all other concept classes. Next, we need to remove those redundant relations before 

doing BN translation. Otherwise, the BN structure will be a large scale and contains 

lots of redundant dependant relations. Before giving the redundancy elimination 
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procedure, note that most of the redundant relations in SONT are stemmed from the 

“equivalency”, “transitivity”, and “commutativity” of logical relations. For example, 

 if equivalent(A, B) is in SONT, then for any concept C related to A in SONT, C is 

also related to B of the same relation in SONT; 

 if  and A B B C  are in SONT then A C is also in SONT; 

 if  and A B B C   are in SONT then A C   is also in SONT; 

 if A B C  is in SONT then A C B  is also in SONT; 

To remove redundant relations, we have implemented the following procedure: 

1. Equivalence: 

1.1 partition the set of all concept classes into equivalence groups, and 

designate one concept in each group as its representative; 

1.2 replace all equivalence relations in SONT by these equivalence groups; 

1.3 for all remaining relations in SONT, replace each concept by the 

representative of the equivalence group it belongs to; 

1.4 combine relations that are the same or become the same under commutation 

into one relation; 

2. Disjoint: remove A B   from SONT if C D  ,  and A C B D   are also in 

SONT; 

3. Subclass: for each concept class A 

3.1 identify all most specific subsumers of A; 

3.2 remove all A C from SONT if C is not a most specific subsumer of A; 
 

In Section 4, we use the “Wine” ontology [25] to verify our redundancy reduction 

procedure. 

3.2.2 P-Parser 

Before we implement P-Parser, probabilistic information should be first encoded in 

specific file as we mentioned in section 2.2. The encoding described in this subsection 

is a generalization of what we have proposed in [3]. In this encoding convention we 
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treat a probability as a kind of resource, and define several OWL classes to encode 

probabilities: 

 Class Variable: its instances denote variables (nodes) in the translated BN. A 

variable has a property called “hasClass”, pointing to the concept class in the 

original ontology where this variable is mapped from. 

 Class Proposition: its instances denote variable instantiations. A proposition 

has two properties: “hasVariable” and “hasState”, indicating the variable and 

the state the proposition is instantiated. 

 Class Probability: its instances denote individual probabilities. A probability 

has three properties: “hasProposition” (cardinality >= 1), “hasCondition” 

(cardinality >= 0) and “hasValue” (cardinality = 1).  

Using these classes we can easily define marginal and conditional probabilities 

without ambiguity. We illustrate this convention by an example that encodes the 

probability of ‘Male’ and ‘Human’ are true given ‘Animal’ is true, e.g. P(Male, 

Human | Animal) = 0.511. 

Implementation of P-Parser is based on the encoding rules, e.g. when markup 

‘Proposition’ is found, an entry of a constraint will be filled by its value. Also the 

P-Parser will check the consistency of probability files. This includes variable 

consistency (each variable must correspond to a concept class); value consistency 

(each value should be between 0 and 1, and the sum of values belonging to one 

constraint should be 1), etc. 
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3.3 BN Constructor 

Component BN Constructor implements the set of structural translation rules given in 

Subsection 2.1 to build a BN DAG for the taxonomy extracted from the given OWL 

ontology. It first generates one concept node in the BN for each concept class defined 

in the ontology using Rule 1. Then, the subclass relationship defined in the OWL 

ontology will be retrieved and direct subclass will be connected by links from its 

parents using Rule 2. Finally the BN Constructor retrieves all other logical 

relationships among concept classes, and creates an L-Node for each relationship. The 

subnets with respect to the L-Nodes and their respective CPTs are also generated in 

the BN structure according to Rule 3. 

<owl:Variable rdf:ID="male"> 
 <hasClass>Male</hasClass> 
</owl:Variable> 
 
<owl:Variable rdf:ID="human"> 
 <hasClass>Human</hasClass> 
</owl:Variable> 
 
<owl:Variable rdf:ID="animal"> 
 <hasClass>Animal</hasClass> 
</owl:Variable> 
 
<owl:Proposition rdf:ID="m1"> 
 <hasVariable>male</hasVariable> 
 <hasState>True</hasState> 
</owl:Proposition> 
 
<owl:Proposition rdf:ID="h1"> 
 <hasVariable>human</hasVariable> 
 <hasState>True</hasState> 
</owl:Proposition> 
 
<owl:Proposition rdf:ID="a1"> 
 <hasVariable>animal</hasVariable> 
 <hasState>True</hasState> 
</owl:Proposition> 
 
<owl:Probability rdf:ID="P(m1,h1|a1)"> 
 <hasPoposition>m1</hasPoposition>  

<hasPoposition>h1</hasPoposition> 
 <hasCondition>a1</hasCondition> 
 <hasValue>0.511</hasValue> 
</owl:Probability> 
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After the BN structure is created, the CPTs for concept nodes are initialized as 

discussed in Subsection 2.3. 

3.4 CPT Constructor for Concept Nodes 

The remaining work is how to revise BN’s initial CPTs of each concept node to 

integrate given probabilistic information. This is done by the CPT Constructor. 

Using the IPFP-based algorithms discussed in Section 2.3, CPT Constructor first 

takes the probability constraints generated from the P-Parser as inputs and then 

iteratively modifies the CPTs by E-IPFP (or D-IPFP if each constraint is within one 

CPT) using those constraints. Finally, when E-IPFP converges, the resulting BN 

integrating probabilistic information will be provided as the system output.  

A tool of BN, Netica, is used when implementing CPT Constructor. Netica is a 

Bayesian network development software system from Norsys Software Corporation 

[23]. It provides a set of APIs for BN reasoning and is used in algorithm E-IPFP. 

3.5 BayesOWL 1.0 APIs 

Figure 3.2 shows the list of BayesOWL 1.0 APIs, which are contained in several Java 

packages. The package “commonDefine” contains classes defining data structure such 

as joint probability distribution, etc. The package “commonMethod” contains a list of 

operations for the defined data structures. IPFP based algorithms are packed in the 

package “coreAlgorithms”. Both T-Parser and P-Parser are defined in the package 

“parser”. The package “constructor” consists of BN structure constructor and CPT 

constructor. Finally, the package “GUI” implements the system’s Graphical User 

Interface. All of these packages work together to complete the Ontology to BN 

translation. Each of these packages can also be used separately. 

 

Figure 3.2 BayesOWL API 
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3.6 BayesOWL GUI 

The system GUI is given in Figure 3.3. The layout is divided into several areas:  

 File input: used to input OWL ontology files and probability files; 

 Options: designed for optional operations such as requesting Netica license 

for large BN, the location that the resulting BN is to be saved, and whether the 

user want to open and view the resulting BN when it is generated; 

 Log area: used to show the running status; 

 Resulting BN: shows the list of concept nodes and the list of L-Nodes of the 

translated BN; and 

 Node detail: gives detailed information of a node selected in the Resulting BN 

Area, including its prior beliefs and its parents. 

The BayesOWL GUI is executable. After the input ontology and probability files are 

specified, the “start” button starts the translation, the resulting BN will be generated 

and saved, and the network structure is shown in the translation result area. 

 

Figure 3.3 GUI of BayesOWL 1.0 

4 USE CASE AND DISCUSSIONS 

We demonstrate the use of BayesOWL 1.0 by a simple example ontology called 

“nature”, taken from [4]. This ontology defines the following six concept classes and 

several logical relations among these concepts: 

 “Animal” is a primitive concept class; 
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 “Male”, “Female” and “Human” are subclasses of “Animal”; 

 “Man” and “Woman” are two subclasses of “Human”; 

 “Male” and “Female” are disjoint with each other; 

 “Man” is an intersection of “Human” and “Male”; 

 “Woman” is an intersection of “Human” and “Female”; 

 “Human” is the union of “Man” and “Woman”. 

Figure 4.1 gives the BN structure translated from this ontology. It contains six 

concept nodes, one per each concept class, together with the directed links for the 

defined subclass relations. The BN also contains four L-Nodes for the four defined 

logical relations, together with the proper links as dictated by the structure translation 

rules for these logical relations. All nodes’ CPTs are initialized using rules discussed 

in Section 2.3. 

 

Figure 4.1 Translated BN structure from the “nature” ontology 

We have provided a set of probabilistic constraints as follows: 

 P(Animal) = 0.56 

 P(Male,Human|Animal)= 0.51 

 P(Female,Human|Animal)= 0.26 

 P(Man|Animal,Human)= 0.66 

 P(Woman|Animal,Human)= 0.34 

As can be seen from these constraints, probabilities are more general than we have 

used in original framework as each involves multiple variables in different CPTs. 

After running BayesOWL 1.0, the translated BN and its final CPTs are given in 
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Figures 4.2 and 4.3 below. It can be seen that, after all logic nodes are set to “True”, 

the network is consistent with all the probability constraints. 

 

Figure 4.2 Translated BN of the “nature” ontology 

 

Figure 4.3 Final CPTs of BN for “nature” ontology 
 

We have also applied BayesOwl 1.0 on the “Wine” ontology [25], a domain 

ontology built by W3C for semantic web. The result is as follows: 

Table 4.1 Number of relations in wine ontology 

 Explicitly 
Defined 

Derived by 
Pellet 

After 
Redundant 
Reduction 

No. of Relations 99 6641 388 
 

As given in Table 4.1, the number of logical relations explicitly defined between 

concept classes in the ontology file is 99. This number is much smaller than the total 
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number of relations derived by Pellet reasoner which is 6641. After applying our 

redundant relation reduction procedure, the number is reduced to 388, which is less 

than 6% of all derivable logical relations. Each of these relations is represented by an 

L-node in the translated BN. The total number of the concept classes in wine ontology, 

including those in the “Food” ontology Wine imports, is 126, and the total number of 

the nodes (the concept nodes plus the L-nodes) in resulting BN is 342.  

5 CONCLUSIONS 

In this project, a prototype system BayesOWL 1.0 is developed to implement a 

probabilistic framework for uncertainty reasoning in semantic web ontologies based 

on Bayesian networks. The implementation extended the original framework from 

simple terminological taxonomy ontologies to general OWL DL ontologies by using 

existing OWL reasoner tool to deal with logical relations implicitly defined via 

anonymous classes. A more general convention is proposed and adopted to encode 

probabilistic information as general marginals and conditionals. These two extensions 

are significant advancement of the original framework. 

BayesOWL 1.0 provides a set of APIs, including algorithms for structural 

translation from OWL ontologies to BN DAG and for incorporating probabilistic 

constraints into the BN CPTs. A graphical user interface is also implemented to 

facilitate the use of the system. Experiments show that the system runs well on OWL 

taxonomies of different size. 

As a software tool, the BayesOWL system can be used by researchers and 

practitioners on ontology engineering such as domain modeling, ontology reasoning 

and ontology concept mapping. 

Further improvement of this system includes extending the framework from 

consistent probabilistic constraints to inconsistent constraints. Several proposals have 

been made to modify a joint distribution with inconsistent constraints [14][16]. How 

to learn uncertainty constraints from existing resources automatically also needs to be 

investigated. Finally, the framework and the implementation will be generalized to 

include the properties and individuals defined in the OWL ontologies as well. 
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