

A Prototype Implementation of BayesOWL

Yi Sun

A paper submitted to the Computer Science and Electrical Engineering

Department

in partial fulfillment of the requirements for the M.S. degree at

University of Maryland Baltimore County

June 2009

CMSC 698 Advisory Committee:

Dr. Yun Peng (Advisor), Professor in Computer Science

Dr. Charles Nicholas (Reader), Professor in Computer Science

Certified by: ___________________________________

Dr. Yun Peng, Advisor

CMSC698 A Prototype Implementation of BayesOWL Yi Sun

 1

Abstract

This project aims to build a prototype software system for BayesOWL, a

probabilistic framework proposed for dealing with uncertainty in Semantic Web (SW)

ontologies. It translates a terminological taxonomy of an OWL ontology into a

Bayesian Network (BN), integrates probabilistic information about the concept

classes and interclass relations into the translated BN, and supports important

ontological reasoning tasks as probabilistic reasoning in BN.

The implementation of the BayesOWL framework extends the original framework

in two ways. One is encoding probabilistic information in OWL format. The new

convention can encode any discrete probabilities in a general form with one or more

prior variables and zero or more conditional variables. The other extension is with the

input ontologies. In the original BayesOWL framework, only simple ontologies which

themselves are terminological taxonomies can be handled. But in this implementation,

general OWL ontologies (OWL DL) are supported by taking advantage of existing

OWL reasoning tools. These two developments together represent a significant

advancement over the original framework.

The prototype system BayesOWL 1.0 extracts the taxonomy of the named classes

from the given OWL ontology and maps this terminological taxonomy into a BN

following a set of structural translation rules; it extracts probabilistic uncertainty

information from the probability file and incorporates it into the translated BNs using

a set of algorithms based on the iterative proportional fitting procedure (IPFP). Finally

a resulting BN will be generated as the output.

This prototype system for BayesOWL can be used as a practical tool for ontology

engineering tasks such as domain modeling, ontology reasoning and ontology concept

mapping.

CMSC698 A Prototype Implementation of BayesOWL Yi Sun

 2

1 INTRODUCTION

Several approaches have been proposed to realize semantic interoperability among

heterogeneous system using OWL ontologies. However, no existing software tools for

these approaches can be used by researchers in ontology engineering. In this report,

we aim to implement a prototype system of BayesOWL [4, 6], a Bayesian Network

based framework proposed for handling uncertainty in the Semantic Web.

1.1 OWL: Web Ontology Language

The Semantic Web (SW) [17] is proposed as a vision for the future of the Web which

gives information on the web explicit meanings that can be understood and properly

processed by machines. For this purpose, Web Ontology Language (OWL) [18] was

proposed and recommended by W3C for defining ontologies that can be used and

shared by web contents in describing their semantics. OWL is an extension of RDF

[19] based on description logics and goes beyond the basic semantics of RDF Schema.

It relies on ontologies to define terms used to model the domain knowledge.

1.2 Why Use Bayesian Network

Since OWL uses crisp description logic to represent a domain, it cannot deal with

incomplete, imprecise, or partial knowledge about the domain. But in the real world,

uncertainty exists in almost all aspects of areas, including domain modeling, ontology

reasoning, concept mapping, etc. So how to do representation and reason under

uncertainty is gaining more and more attention. Many recently developed approaches

to handle uncertainty SW are based on probability theory [21] because of its

mathematical representation language and formal calculus for rational degrees of

belief.

Several works [7][8][9][15], including the BayesOWL [4][6], have used Bayesian

Networks (BN) [11][12] to model uncertainty in SW. A BN consists of a directed

acyclic graph (DAG) and a set of local conditional probability tables (CPTs), one per

each random variable. The DAG represents qualitative dependency relationships

between random variables while the CPTs quantify the strength of these dependences.

CMSC698 A Prototype Implementation of BayesOWL Yi Sun

 3

The DAG and CPTs together determine a joint probability distribution (JPD), which

can be viewed as a probabilistic knowledge base of the domain. Theoretically, using

such a JPD and existing BN inference algorithms, e.g. belief propagation, junction

tree, etc., BN can answer any probabilistic queries about the domain [11].

1.3 BayesOWL

BayesOWL [4][6] is a probabilistic framework that augments and supplements OWL

for representing and reasoning with uncertainty in SW ontologies based on BN. It

consists of a set of translation rules which are used to convert OWL ontology into a

BN DAG, a convention of encoding probabilistic information, and a construction

mechanism for BN CPTs to integrate available probabilistic information into the JPD

of the translated BN. In the resulting BN, each concept class of the given ontology is

translated into a concept node, each logical relation is represented as a logic node

(L-node for short), and the uncertainty of the inter-class relations are captured by the

CPTs. The final BN can be used for ontology engineering tasks, such as domain

modeling, ontology reasoning and ontology concept mapping, etc.

The purpose of this project is to implement a software system for BayesOWL, so

it can be used as a practical tool by researchers dealing with uncertainty in ontology

engineering areas. The prototype implementation of BayesOWL includes a source

code package (a .jar file), a graphical user interface, and related documents. In

addition, use cases are provided to help others use the software tool and verify the

implementation performance.

The rest of this report is organized as follows: Section 2 briefly discusses

BayesOWL framework; Section 3 provides detailed description of the extension and

implementation of BayesOWL 1.0; Section 4 shows some use cases; and conclusions

are given in Section 5.

2 BayesOWL FRAMEWORK

According to the framework, BayesOWL 1.0 has two main functions. One is

translating OWL ontologies into BNs while the other one is constructing Conditional

CMSC698 A Prototype Implementation of BayesOWL Yi Sun

 4

Probability Tables for translated BNs. As can be seen in Figure 2.1 below, translation

from a probabilistic OWL ontology to a BN by the prototype system is done in two

stages. The first stage is to construct the BN structure (DAG) from the input OWL

ontology file and to initialize the conditional probability tables (CPTs) with default

values. This is done by Taxonomy Parser and BN structure constructor. The second

stage is to incorporate user provided probabilistic information of concepts and

inter-concept relations into the BN CPTs. This is done by Probability Parser and CPT

Constructor.

Figure 2.1 BayesOWL 1.0 framework

2.1 Convert Ontology Taxonomy into Bayesian Network

Although SW builds on XML’s ability to define customized tagging scheme and

RDF’s flexible approach to represent data, OWL ontology is not a message format but

a knowledge representation: it typically includes descriptions of classes, properties

and their instances. Original BayesOWL framework does not deal with properties and

individuals. Instead, it focuses on simple, taxonomical ontologies, consisting of

concept classes and logical relations between these classes. Six types of logical

relations are allowed in OWL by its class axioms and logical constructors:

 rdfs:subClassOf

 owl:equivalentClass

CMSC698 A Prototype Implementation of BayesOWL Yi Sun

 5

 owl:disjointWith

 owl:unionOf

 owl:intersectionOf

 owl:complementOf

In this prototype implementation, we extended the original framework and went

one step further toward modeling the general OWL DL ontologies. In a general

ontology, concept classes not only related to each other by the explicitly defined

relations, but also implicitly by properties, which are represented as anonymous

classes in the RDF graph of the ontology. These anonymous classes are classes

without identifiers (ID) or names and they cannot be referenced by other ontologies.

Thus when we translate taxonomies into BNs, these anonymous classes will not be

translated into variables in BN. On the other hand, we cannot simply drop them

because logical relationships between other concept classes may depend on these

dummy classes. For example, in “Wine” ontology provided by W3C as a use example

and test benchmark [25], there is no explicit definition of relationship between

concept classes “RedBurgundy” and “WhiteWine”. However, they are disjoint with

each other because they are subclasses of two disjoint anonymous classes “hasColor =

#Red” and “hasColor = #White”.

One can find all relations, explicit and implicit, using a full OWL DL reasoner.

However, not all of these relations need to be modeled in the BN since some may be

derived from each other. To handle these anonymous classes and implicit relationships,

we have extended the original structure translation rules as follows.

Let SONT denote all explicit and implicit relationships between concept classes of

the given ontology. We define SDAG  SONT as a set of logical relations such that:

1) every L in SONT is entailed by SDAG; and

2) no L in SDAG is entailed by SDAG \{L}.

Then, we only need to explicitly model those L in SDAG by subclass arcs and L-nodes

in the translated BN. The extended structural translation rules are as follows:

1. Concept Classes. Each defined concept class is mapped into a binary variable

node, called concept node, in the translated BN.

CMSC698 A Prototype Implementation of BayesOWL Yi Sun

 6

2. Logical Relations. Form SDAG from the given ontology.

3. Subclasses. For every subclass relation Lsub in SDAG, an arc is set from the

superclass to the subclass. A subclass hierarchy of all concept nodes is thus

formed.

4. Logical Nodes. For every non-subclass relation in SDAG, create an L-node and

set its CPT according to the logic of the relation.

It can be seen that the translated DAG preserves the semantics of the given ontology.

In BayesOWL 1.0, Taxonomy Parser (T-Parser for short) extracts taxonomies

defined in the given ontology, find relationships between concept classes using

ontology reasoner tool, and remove redundant relations (relations can be derived from

other relations). Details of T-Parser will be given in Subsection 3.2.1.

When extraction work is finished, another component, BN Constructor, would be

provided to construct BN structure. It takes advantage of the translation rules to

convert concept classes and relationships mentioned above into a BN DAG. Such a

BN will also be initialized by filling its CPTs and set the logic nodes [2][4] to be

‘True’, so the relationships defined in OWL ontology hold.

2.2 How to Represent Probability Information

In many applications, probabilistic information of concept nodes and inter-concept

relations such as prior probabilities for individual concepts and pair-wise conditional

probabilities for subclass relations may be available for the given ontology. Before

uncertainty information can be used by BayesOWL, it should be encoded into some

specific format. Since ontologies are written in OWL, it is natural to make use of

OWL syntax when encoding probabilistic information.

Original BayesOWL framework has proposed an extension of OWL to represent

probabilistic information [3]. However, it deals with only two types of probabilities:

the marginals for individual concepts (P(c)) and pair-wise conditionals of subclass

relations (P(c|a)), where A is a most specific superclass of C. A more general

convention is proposed and adopted in this implementation. The extended convention

can represent general form of probability with more than one prior and conditional

CMSC698 A Prototype Implementation of BayesOWL Yi Sun

 7

variable (see Subsection 3.2.2 for details).

2.3 Construct Conditional Probability Tables (CPTs)

CPTs for Logic Nodes, which are corresponding relationships defined in OWL

ontology, can be completely determined by the logical relation it represents. That is,

when its state is set to “True”, the intended logical relation among its parents must

hold. For example, if C is the intersection of C1 and C2, then the L-Node is “True” if

and only if 1 2 1 2 1 2 1 2cc c c c c c c c c c c   .

Table 2.1 CPT for an intersection L-Node

C C1 C2
Intersection

True False

True True True 1.0 0.0

True True False 0.0 1.0

True False True 0.0 1.0

True False False 0.0 1.0

False True True 0.0 1.0

False True False 1.0 0.0

False False True 1.0 0.0

False False False 1.0 0.0

To initialize the CPTs for concept nodes, let c be the set of all parent nodes of the

concept node C. From the structure translation rules, all nodes in c are

super-classes of C. Therefore, each entry in (|)cP c  , the CPT of C, must have value 0

if any of its parents is “False” for that entry. The only other entry in the table is

)|(
ccP  , in which all parents are “True”. It is the probability of this entry that needs

to be determined. If no probabilistic information is available, we choose the following

as default:

(|) (|) 0.5C CP c true P c false      .

When probabilistic information is available, this information needs to be

incorporated into the CPTs of the concept nodes. For this purpose several algorithms

are developed [4][13], all based on a mathematical procedure known as iterative

CMSC698 A Prototype Implementation of BayesOWL Yi Sun

 8

proportional fitting procedure (IPFP) [1][14]. These algorithms take the probabilistic

information as constraints and iteratively modify the joint distributions of all variables,

using one constraint at a time, until a convergence is reached, in which all the

constraints are satisfied by the resulting joint distribution.

The original BayesOWL framework only allows constraints in the forms of

marginals for individual concepts (P(c)) and pair-wise conditionals of subclass

relations (P(c|a)). Note that each of these constraints only involves variables within

one CPT, and these constraints can be efficiently incorporated by one of the

algorithms called SD-IPFP, where D stands for decomposed. In BayesOWL 1.0, we

aim to incorporate probability constraints in more general forms. Several issues need

to be addressed:

A1) Variables in a constraint may belong to several CPTs;

A2) IPFP does not respect the structure of BN;

A3) CPTs should be set in the general space in which all variables are free while

constraints are given in the subspace LT, in which all L-nodes are set to

“True”.

To address these concerns, we adopt another algorithm, E-IPFP, from [13], which is

given below:

Let 0(|)i iQ x  be the initial default CPTs and { ()}iR R y be the set of

constraints.

1.)|()(010 ii
n
i xQxQ   ;

2. for k = 1 until convergence {

3. 1 1() ();k kQ x Q x %

4. for each 1
1

()
() do () () ;

(|)
i

i k k i
k

R y
R y R Q x Q x

Q y LT




  % %
%

5. for each concept node jx
 extract its CPT (|) k j jQ x  from ();kQ x%

 6. 1() (|);n
k i k i iQ x Q x  

CMSC698 A Prototype Implementation of BayesOWL Yi Sun

 9

 7. k = k + 1;}

Note that ()kQ x are the joint distribution of all variables (including both concept

nodes and L-nodes), which are modified by iteratively using the constraints at Step 3.

This takes into account of A1. A2 is taken into account by Steps 5 and 6 which have

the effect of imposing the BN structure as an additional constraint; this constraint is

satisfied when the joint distribution ()kQ x% after Step 5 equals ()kQ x after Step 6. A3

is taken into account of by the denominator in the formula in Step 4 which is the

probability of y in the subspace of LT. Here

(1) (1)

1

(|) (|) / (| ,)i
k i xi i i k i i

xi

Q x R x L Q x L LT


 




is the normalization factor.

Also note that, since E-IPFP does not modify any zero value entry in the joint

distribution, it only changes those entries)|(
ccP  in the CPTs of concept nodes. If

all constraints are consistent with each other and with the BN structure, then the

procedure will converge; the CPTs obtained at Step 5 define a distribution which

satisfies all constraints in R with the condition of LT.

So, after probability is decoded by P-Parser, a component called CPT

Constructor is used to incorporate probabilistic information into previously generated

BN. CPT Constructor uses algorithms discussed above to incorporate the probabilistic

information into the BN.

As we discussed above, BayesOWL 1.0 contains four components, T-Parser,

P-Parser, BN Constructor, and CPT Constructor. T-Parser extracts taxonomies and

relationships defined in OWL ontology file. BN Constructor constructs BN structure

(the DAG) using the extracted taxonomy. P-Parser decodes probabilistic information

into constraints which can be used by CPT Constructor which is implemented to

incorporate the uncertainty information into resulting BNs. In the following section,

we will discuss the implementation of these components in detail.

CMSC698 A Prototype Implementation of BayesOWL Yi Sun

 10

3 PROTOTYPE IMPLEMENTATION

This section discusses implementation details of BayesOWL 1.0. It is organized as

follows: Subsection 3.1 gives the architecture of BayesOWL 1.0; Subsection 3.2

discusses the parsers of BayesOWL 1.0; Subsections 3.3 and 3.4 discuss BN

Constructor and CPT Constructor separately; Subsection 3.5 lists APIs of BayesOWL

1.0; and Subsection 3.6 gives the GUI of BayesOWL 1.0.

3.1 System Architecture

Figure 3.1 shows the BayesOWL 1.0 system architecture.

Figure 3.1 BayesOWL 1.0 architecture

As can be seen easily from Figure 3.1, BayesOWL 1.0 works like this:

The T-Parser first extracts the terminological taxonomy defined in the given

ontology. Output of the T-Parser is represented in a specific format which contains

items defined in ontology such as ‘class’, ‘subClassOf’, ‘disjointOf’, etc. BN

Constructor then uses these results and follows the structural translation rules to

convert the extracted taxonomy into a BN DAG. If uncertainty knowledge is given,

BayesOWL
BNConstructor

Uncertainty

Knowledge

BayesOWL
CPTConstructor

T- Parser P- Parser

BN Structure

Taxonomies

input OWL ontology

system output

input uncertainty

information

CMSC698 A Prototype Implementation of BayesOWL Yi Sun

 11

the CPT Constructor then uses IPFP-based algorithms (D-IPFP for decomposable

cases and E-IPFP for general constraints) given in [13] to construct CPTs for concept

nodes.

3.2 BayesOWL 1.0 Parsers

There are two parsers in BayesOWL. One is T-Parser, which is used to parse

ontology file. The other is P-Parser, which is used to parse the file of probabilistic

information encoded in OWL format.

3.2.1 T-Parser

As discussed in Subsection 2.1, to extract the taxonomy from the given ontology, we

need to deal with the difficult issue of anonymous classes created when parsing OWL

DL ontologies. This involves finding all logical relations between concept classes,

especially those implicitly defined via these anonymous classes and removing

redundant one among them.

There are several OWL reasoners [20], such as Jena [24], FaCT, Pellet [22] etc.,

developed to parse OWL ontologies. Jena is an open source SW framework using

Java. It extracts RDF graphs from ontology files and provides supports for OWL.

However, Jena does not include a complete reasoner in its standard distribution for

OWL DL entailment. Compared with Jena, FaCT does not have these limitations

when reasoning, but it does not provide rule support. In contrast, Pellet is a complete

OWL-DL reasoner. It is based on the tableaux algorithms developed for Description

Logics and supports the full expressivity of OWL DL including reasoning about

nominals. For these reasons we choose Pellet as the middleware to help implement

our T-Parser. Since Pellet is open source and provides APIs, we can use it directly to

parse the given OWL ontology and extract all concept classes.

Pellet also offers ontology reasoning and can be used to find both explicit and

implicit relationships in SONT (discussed in Subsection 2.1) of each concept class with

all other concept classes. Next, we need to remove those redundant relations before

doing BN translation. Otherwise, the BN structure will be a large scale and contains

lots of redundant dependant relations. Before giving the redundancy elimination

CMSC698 A Prototype Implementation of BayesOWL Yi Sun

 12

procedure, note that most of the redundant relations in SONT are stemmed from the

“equivalency”, “transitivity”, and “commutativity” of logical relations. For example,

 if equivalent(A, B) is in SONT, then for any concept C related to A in SONT, C is

also related to B of the same relation in SONT;

 if and A B B C  are in SONT then A C is also in SONT;

 if and A B B C   are in SONT then A C  is also in SONT;

 if A B C  is in SONT then A C B  is also in SONT;

To remove redundant relations, we have implemented the following procedure:

1. Equivalence:

1.1 partition the set of all concept classes into equivalence groups, and

designate one concept in each group as its representative;

1.2 replace all equivalence relations in SONT by these equivalence groups;

1.3 for all remaining relations in SONT, replace each concept by the

representative of the equivalence group it belongs to;

1.4 combine relations that are the same or become the same under commutation

into one relation;

2. Disjoint: remove A B  from SONT if C D  , and A C B D  are also in

SONT;

3. Subclass: for each concept class A

3.1 identify all most specific subsumers of A;

3.2 remove all A C from SONT if C is not a most specific subsumer of A;

In Section 4, we use the “Wine” ontology [25] to verify our redundancy reduction

procedure.

3.2.2 P-Parser

Before we implement P-Parser, probabilistic information should be first encoded in

specific file as we mentioned in section 2.2. The encoding described in this subsection

is a generalization of what we have proposed in [3]. In this encoding convention we

CMSC698 A Prototype Implementation of BayesOWL Yi Sun

 13

treat a probability as a kind of resource, and define several OWL classes to encode

probabilities:

 Class Variable: its instances denote variables (nodes) in the translated BN. A

variable has a property called “hasClass”, pointing to the concept class in the

original ontology where this variable is mapped from.

 Class Proposition: its instances denote variable instantiations. A proposition

has two properties: “hasVariable” and “hasState”, indicating the variable and

the state the proposition is instantiated.

 Class Probability: its instances denote individual probabilities. A probability

has three properties: “hasProposition” (cardinality >= 1), “hasCondition”

(cardinality >= 0) and “hasValue” (cardinality = 1).

Using these classes we can easily define marginal and conditional probabilities

without ambiguity. We illustrate this convention by an example that encodes the

probability of ‘Male’ and ‘Human’ are true given ‘Animal’ is true, e.g. P(Male,

Human | Animal) = 0.511.

Implementation of P-Parser is based on the encoding rules, e.g. when markup

‘Proposition’ is found, an entry of a constraint will be filled by its value. Also the

P-Parser will check the consistency of probability files. This includes variable

consistency (each variable must correspond to a concept class); value consistency

(each value should be between 0 and 1, and the sum of values belonging to one

constraint should be 1), etc.

CMSC698 A Prototype Implementation of BayesOWL Yi Sun

 14

3.3 BN Constructor

Component BN Constructor implements the set of structural translation rules given in

Subsection 2.1 to build a BN DAG for the taxonomy extracted from the given OWL

ontology. It first generates one concept node in the BN for each concept class defined

in the ontology using Rule 1. Then, the subclass relationship defined in the OWL

ontology will be retrieved and direct subclass will be connected by links from its

parents using Rule 2. Finally the BN Constructor retrieves all other logical

relationships among concept classes, and creates an L-Node for each relationship. The

subnets with respect to the L-Nodes and their respective CPTs are also generated in

the BN structure according to Rule 3.

<owl:Variable rdf:ID="male">
 <hasClass>Male</hasClass>
</owl:Variable>

<owl:Variable rdf:ID="human">
 <hasClass>Human</hasClass>
</owl:Variable>

<owl:Variable rdf:ID="animal">
 <hasClass>Animal</hasClass>
</owl:Variable>

<owl:Proposition rdf:ID="m1">
 <hasVariable>male</hasVariable>
 <hasState>True</hasState>
</owl:Proposition>

<owl:Proposition rdf:ID="h1">
 <hasVariable>human</hasVariable>
 <hasState>True</hasState>
</owl:Proposition>

<owl:Proposition rdf:ID="a1">
 <hasVariable>animal</hasVariable>
 <hasState>True</hasState>
</owl:Proposition>

<owl:Probability rdf:ID="P(m1,h1|a1)">
 <hasPoposition>m1</hasPoposition>

<hasPoposition>h1</hasPoposition>
 <hasCondition>a1</hasCondition>
 <hasValue>0.511</hasValue>
</owl:Probability>

CMSC698 A Prototype Implementation of BayesOWL Yi Sun

 15

After the BN structure is created, the CPTs for concept nodes are initialized as

discussed in Subsection 2.3.

3.4 CPT Constructor for Concept Nodes

The remaining work is how to revise BN’s initial CPTs of each concept node to

integrate given probabilistic information. This is done by the CPT Constructor.

Using the IPFP-based algorithms discussed in Section 2.3, CPT Constructor first

takes the probability constraints generated from the P-Parser as inputs and then

iteratively modifies the CPTs by E-IPFP (or D-IPFP if each constraint is within one

CPT) using those constraints. Finally, when E-IPFP converges, the resulting BN

integrating probabilistic information will be provided as the system output.

A tool of BN, Netica, is used when implementing CPT Constructor. Netica is a

Bayesian network development software system from Norsys Software Corporation

[23]. It provides a set of APIs for BN reasoning and is used in algorithm E-IPFP.

3.5 BayesOWL 1.0 APIs

Figure 3.2 shows the list of BayesOWL 1.0 APIs, which are contained in several Java

packages. The package “commonDefine” contains classes defining data structure such

as joint probability distribution, etc. The package “commonMethod” contains a list of

operations for the defined data structures. IPFP based algorithms are packed in the

package “coreAlgorithms”. Both T-Parser and P-Parser are defined in the package

“parser”. The package “constructor” consists of BN structure constructor and CPT

constructor. Finally, the package “GUI” implements the system’s Graphical User

Interface. All of these packages work together to complete the Ontology to BN

translation. Each of these packages can also be used separately.

Figure 3.2 BayesOWL API

CMSC698 A Prototype Implementation of BayesOWL Yi Sun

 16

3.6 BayesOWL GUI

The system GUI is given in Figure 3.3. The layout is divided into several areas:

 File input: used to input OWL ontology files and probability files;

 Options: designed for optional operations such as requesting Netica license

for large BN, the location that the resulting BN is to be saved, and whether the

user want to open and view the resulting BN when it is generated;

 Log area: used to show the running status;

 Resulting BN: shows the list of concept nodes and the list of L-Nodes of the

translated BN; and

 Node detail: gives detailed information of a node selected in the Resulting BN

Area, including its prior beliefs and its parents.

The BayesOWL GUI is executable. After the input ontology and probability files are

specified, the “start” button starts the translation, the resulting BN will be generated

and saved, and the network structure is shown in the translation result area.

Figure 3.3 GUI of BayesOWL 1.0

4 USE CASE AND DISCUSSIONS

We demonstrate the use of BayesOWL 1.0 by a simple example ontology called

“nature”, taken from [4]. This ontology defines the following six concept classes and

several logical relations among these concepts:

 “Animal” is a primitive concept class;

CMSC698 A Prototype Implementation of BayesOWL Yi Sun

 17

 “Male”, “Female” and “Human” are subclasses of “Animal”;

 “Man” and “Woman” are two subclasses of “Human”;

 “Male” and “Female” are disjoint with each other;

 “Man” is an intersection of “Human” and “Male”;

 “Woman” is an intersection of “Human” and “Female”;

 “Human” is the union of “Man” and “Woman”.

Figure 4.1 gives the BN structure translated from this ontology. It contains six

concept nodes, one per each concept class, together with the directed links for the

defined subclass relations. The BN also contains four L-Nodes for the four defined

logical relations, together with the proper links as dictated by the structure translation

rules for these logical relations. All nodes’ CPTs are initialized using rules discussed

in Section 2.3.

Figure 4.1 Translated BN structure from the “nature” ontology

We have provided a set of probabilistic constraints as follows:

 P(Animal) = 0.56

 P(Male,Human|Animal)= 0.51

 P(Female,Human|Animal)= 0.26

 P(Man|Animal,Human)= 0.66

 P(Woman|Animal,Human)= 0.34

As can be seen from these constraints, probabilities are more general than we have

used in original framework as each involves multiple variables in different CPTs.

After running BayesOWL 1.0, the translated BN and its final CPTs are given in

CMSC698 A Prototype Implementation of BayesOWL Yi Sun

 18

Figures 4.2 and 4.3 below. It can be seen that, after all logic nodes are set to “True”,

the network is consistent with all the probability constraints.

Figure 4.2 Translated BN of the “nature” ontology

Figure 4.3 Final CPTs of BN for “nature” ontology

We have also applied BayesOwl 1.0 on the “Wine” ontology [25], a domain

ontology built by W3C for semantic web. The result is as follows:

Table 4.1 Number of relations in wine ontology

 Explicitly
Defined

Derived by
Pellet

After
Redundant
Reduction

No. of Relations 99 6641 388

As given in Table 4.1, the number of logical relations explicitly defined between

concept classes in the ontology file is 99. This number is much smaller than the total

CMSC698 A Prototype Implementation of BayesOWL Yi Sun

 19

number of relations derived by Pellet reasoner which is 6641. After applying our

redundant relation reduction procedure, the number is reduced to 388, which is less

than 6% of all derivable logical relations. Each of these relations is represented by an

L-node in the translated BN. The total number of the concept classes in wine ontology,

including those in the “Food” ontology Wine imports, is 126, and the total number of

the nodes (the concept nodes plus the L-nodes) in resulting BN is 342.

5 CONCLUSIONS

In this project, a prototype system BayesOWL 1.0 is developed to implement a

probabilistic framework for uncertainty reasoning in semantic web ontologies based

on Bayesian networks. The implementation extended the original framework from

simple terminological taxonomy ontologies to general OWL DL ontologies by using

existing OWL reasoner tool to deal with logical relations implicitly defined via

anonymous classes. A more general convention is proposed and adopted to encode

probabilistic information as general marginals and conditionals. These two extensions

are significant advancement of the original framework.

BayesOWL 1.0 provides a set of APIs, including algorithms for structural

translation from OWL ontologies to BN DAG and for incorporating probabilistic

constraints into the BN CPTs. A graphical user interface is also implemented to

facilitate the use of the system. Experiments show that the system runs well on OWL

taxonomies of different size.

As a software tool, the BayesOWL system can be used by researchers and

practitioners on ontology engineering such as domain modeling, ontology reasoning

and ontology concept mapping.

Further improvement of this system includes extending the framework from

consistent probabilistic constraints to inconsistent constraints. Several proposals have

been made to modify a joint distribution with inconsistent constraints [14][16]. How

to learn uncertainty constraints from existing resources automatically also needs to be

investigated. Finally, the framework and the implementation will be generalized to

include the properties and individuals defined in the OWL ontologies as well.

CMSC698 A Prototype Implementation of BayesOWL Yi Sun

 20

REFERENCES
[1] Deming WE, Stephan FF (1940) On a Least Square Adjustment of a Sampled

Frequency Table when the Expected Marginal Totals are Known. Ann. Math.
Statist. 11:427-444

[2] Ding, Z., Peng, Y. et al.: “A Bayesian Approach to Uncertainty Modeling in OWL
Ontology”, Proceedings of the International Conference on Advances in
Intelligent Systems Theory and Applications, November 2004, Luxembourg.

[3] Ding, Z. and Peng, Y: “A probabilistic extension to the web ontology language
OWL”, Thirty-Seventh Hawaii International Conference on System Sciences
(HICSS-37), Big Island, Hawaii, Jan. 5 – 8, 2004.

[4] Ding, Z., “BayesOWL: Uncertainty Modeling in Semantic Web Ontologies”, PhD
thesis, 2005.

[5] Ding, Z., Peng, Y., Pan, R., and Yu, Y: “A Bayesian Methodology Towards
Automatic Ontology Mapping”, AAAI-05 Workshop on Contexts and Ontologies:
Theory, Practice and Applications (C&O-2005), Pittsburgh, PA, July 9, 2005.

[6] Ding, Z., Peng, Y. and Pan, R: “BayesOWL: Uncertainty Modeling in Semantic
Web Ontologies”, in Soft Computing in Ontologies and Semantic Web,
Springer-Verlag, March 2006.

[7] Fukushige Y: “Representing Probabilistic Knowledge in the Semantic Web”,
position paper in The W3C Workshop on Semantic Web for Life Sciences,
Cambridge, MA, USA, 2004.

[8] Holi M, HyvÄonen E.: “Probabilistic Information Retrieval based on Conceptual
Overlap in Semantic Web Ontologies”, in Proceedings of the 11th Finnish AI
Conference, Web Intelligence, Vol. 2. Finnish AI Society, Finland, 2004.

[9] Koller D, Levy A, Pfeffer A.: “P-CLASSIC: A Tractable Probabilistic Description
Logic”, in Proceedings of AAAI-97, 390-397, 1997.

[10] Pan, R., Ding, Z., Yu, Y. and Peng, Y.: “A Bayesian Network Approach to
Ontology Mapping”, in Proceedings of the Fourth International Semantic Web
Conference (ISWC 2005), Galway, Ireland, Nov. 6-10, 2005.

[11] Pearl J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan Kaufman, San Mateo, CA, 1988.

[12] Pearl J, Fusion, Propagation and Structuring in Belief Networks. Artificial
Intelligence 29:241-248, 1986.

[13] Peng, Y. and Ding, Z.: “Modifying Bayesian Networks by Probability
Constraints”, in Proceedings of 21st Conference on Uncertainty in Artificial
Intelligence (UAI-2005), Edinburgh, Scotland, July 26-29, 2005.

[14] Vomlel J.: Methods of Probabilistic Knowledge Integration. PhD Thesis,
Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical
University, 1999.

[15] Yelland PM.: Market Analysis Using Combination of Bayesian Networks and
Description Logics, Sun Microsystems Technical Report TR-99-78, 1999.

CMSC698 A Prototype Implementation of BayesOWL Yi Sun

 21

[16] Zhang, S. and Peng, Y: “An Efficient Method for Probabilistic Knowledge
Integration”, in Proceedings of The 20th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI-2008), Dayton, Ohio, Nov. 3-5, 2008.

[17] http://en.wikipedia.org/wiki/Semantic_Web
[18] http://www.w3.org/TR/owl-features/
[19] http://www.w3.org/RDF/
[20] http://en.wikipedia.org/wiki/Semantic_reasoner
[21] http://www.w3.org/2005/Incubator/urw3/XGR-urw3-20080331/
[22] http://clarkparsia.com/pellet
[23] http://www.norsys.com/
[24] http://jena.sourceforge.net/
[25] http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine

