

APPROVAL SHEET

Title of Dissertation: A Semantic Analysis of XML Schema Matching for B2B

Systems Integration

Name of Candidate: Jaewook Kim

 Doctor of Philosophy, 2011

Dissertation and Abstract Approved: ______________________________

 Yun Peng

 Professor

 Department of Computer Science and

 Electrical Engineering

Date Approved: ________________

Curriculum Vitae

Name: Jaewook Kim.

Degree and date to be conferred: Doctor of Philosophy,

Computer Science, May 2011.

Secondary education: Anyang High School, Anyang, Kyunggi, Korea, 1996.

Collegiate institutions attended:

Pohang University of Science and Technology, Master in Computer and

Communication Engineering, 2006.

Pohang University of Science and Technology, Bachelor in Industrial Engi-

neering, 2004.

Major: Computer Science.

Professional publications:

[1] J. Kim and B. Kulvatunyou, “An iterative procedure for efficient testing of

B2B - a case in messaging service tests,” in Proceeding of the 2007 Interna-

tional Conference on Interoperability for Enterprise Software & Application –

I-ESA 2007, Madeira, Portugal, Mar 28 – 30, 2007, also published in: R. Gon-

calves, J. Muller, K. Mertins, and M. Zelm (eds.) Enterprise Interoperability

II: New Challenges and Approaches, Springer, ISBN 978-1-84628-857-9,

2007, pp. 647 – 658.

[2] J. Kim, Y. Peng, B. Kulvatunyou, N. Ivezic, and A. Jones, “A layered ap-

proach to semantic similarity analysis of XML schemas,” in Proceeding of the

2008 IEEE International Conference on Information Reuse and Integration –

IRI 2008, Las Vegas, NV, July 13-15, 2008, pp. 274 – 279.

[3] J. Shin, J. Kim, and N. Ivezic, “Application information mapping test: an

efficient content-level semantic equivalence test procedure for B2B integra-

tion,” International Journal of Computer Integrated Manufacturing, 22 (10),

October 2009, pp 976 – 986.

[4] J. Shin, J. Kim, and N. Ivezic, “Message-independent test harness for con-

tent-level test of B2B standards: an application information mapping test case

study,” in Proceeding of the 2009 IEEE International Conference on Informa-

tion Reuse and Integration – IRI 2009, Las Vegas, NV, August 10-12, 2009,

pp. 74 – 78.

[5] J. Kim, S. Lee, M. Halem, and Y. Peng, “Semantic similarity analysis of

XML schema using grid computing,” in Proceeding of the 2009 IEEE Inter-

national Conference on Information Reuse and Integration – IRI 2009, Las

Vegas, NV, August 10-12, 2009, pp. 57 -– 62.

[6] J. Kim and Y. Peng, “A semantic similarity analysis for data mappings be-

tween heterogeneous XML schemas,” in: E. Kajan (ed.) Electronic Business

Interoperability: Concepts, Opportunities and Challenges, IGI Global, Her-

shey , PA, 2010, pp. 37 – 55.

[7] J. Kim, Y. Peng, N. Ivezic, and J. Shin, “Semantic-based optimal XML

schema matching: a mathematical programming approach,” in Proceeding of

the 2010 IEEE International Conference on E-Business, Management and

Economics – ICEME 2010, Hong Kong, China, Dec. 28 – 30, 2010.

[8] J. Shin, N. Ivizic, J. Kim, F. Ameri, C. McArthur, S. DeFlitch, and T.

Scacchitti, “An experimental evaluation platform for state-of-the-art manufac-

turing supplier discovery methods,” submitted in Electronic Commerce Re-

search and Applications, Dec 2010.

[9] J. Kim, Y. Peng, N. Ivezic, and J. Shin, “An optimization approach for

semantic-based XML schema matching,” International Journal of Trade,

Economics, and Finance, 2 (1), February 2011, pp. 78 – 86.

[10] Y. Kang, J. Kim, and Y. Peng, “eXtensible Dynamic Form approach for

supplier discovery,” submitted to Proceeding of the 2011 IEEE International

Conference on Information Reuse and Integration – IRI 2011.

Professional positions held:

Guest Researcher at NIST (National Institute of Standards and Technology),

Gaithersburg, MD, USA, 2006 – Present.

Developer at KorBIT (Korea B2B/A2A Interoperability Testbed Consortium),

Pohang, Korea, 2004 – 2005.

Assistant Manager at Penta Security Systems Co., Seoul, Korea, 2002 – 2003.

Assistant Manager at Ints Co., Seoul, Korea, 2000 – 2002.

ABSTRACT

Title of Dissertation: A Semantic Analysis of XML Schema Matching for B2B

Systems Integration

 Jaewook Kim, Ph.D. Computer Science, 2011

Directed By: Yun Peng, Professor

Department of Computer Science and

Electrical Engineering

One of the most critical steps to integrating heterogeneous e-Business applica-

tions using different XML schemas is schema matching, which is known to be costly

and error-prone. Many automatic schema matching approaches have been proposed,

but the challenge is still daunting because of the complexity of schemas and immatur-

ity of technologies in semantic representation, measuring, and reasoning.

The dissertation focuses on three challenging problems in schema matching.

First, the existing approaches have often failed to sufficiently investigate and utilize

semantic information imbedded in the hierarchical structure of the XML schemas.

Secondly, due to synonyms and polysemies found in natural languages, the meaning

of a data node in the schema cannot be determined solely by the words in its label.

Thirdly, it is difficult to correctly identify the best set of matching pairs for all data

nodes between two schemas.

To overcome these problems, we propose new innovative approaches for XML

schema matching, particularly applicable to XML schema integration and data trans-

formation between heterogeneous e-Business systems. Our research supports two dif-

ferent tasks: integration task between two different component schemas; and trans-

formation task between two business documents which confirm to different document

schemas.

For the integration task, we propose an approximate approach that produces the

best matching candidates between global type components of two schemas, using

their layer specific semantic similarities. For the transformation task, we propose

another approximate approach that produces the best sets of matching pairs for all

atomic nodes between two schemas, based on their linguistic and structural semantic

similarities. We evaluate our approaches with the state of the art evaluation metrics

and sample schema sets obtained from several e-Business standard organizations and

e-Business system vendors. A variety of computer experiments have been conducted

with encouraging results that show the proposed approaches are valuable for address-

ing difficulties in XML schema matching.

Keywords:

E-business, XML schema matching, layered approach, semantic similarity, informa-

tion contents, mathematical programming, maximum-weighted bipartite graph

A SEMANTIC ANALYSIS OF XML SCHEMA MATCHING FOR

B2B SYSTEMS INTEGRATION

By

Jaewook Kim

Dissertation submitted to the Faculty of the Graduate School

of the University of Maryland in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

2011

© Copyright by

Jaewook Kim

2011

 ii

ACKNOWLEDGEMENTS

This dissertation is the outcome of four years experiences at University of Mar-

yland, Baltimore County (UMBC) and National Institute of Standards and Technolo-

gy (NIST). There are many people who helped me in this work, either directly by

working on projects with me or indirectly by giving me vision and support.

First and foremost, I would like to express my deep gratitude to my honorific

advisor Prof. Yun Peng. He offered me so much advice, continuous encouragements,

patiently supervising me, and always guiding me in the right direction. I have learned

a lot from him, without his help I could not have finished my dissertation successfully.

Special thanks are also given to Dr. Nenad Ivezic, Dr. Boonserm (Serm) Kulva-

tunyou, Dr. Albert Jones and Prof. Hyunbo Cho. They offered me the great opportu-

nity on working with them at NIST. I appreciate all their contributions on time, ideas,

and funding to make my PhD experience productive and stimulating.

I would like to thank Prof. Charles Nicholas, Prof. Zary Segall, Prof. Milton Ha-

lem, Prof. Hyunbo Cho and Dr. Nenad Ivezic for kindly serving on the committee and

reviewing my dissertation.

I would like to thank all members of UMBC and NIST who worked together,

including Edward J. Barkmeyer, Sookyoung Lee, Salifou Sidi Mahaman Malick, Igor

Miletic, Marko Vujasinovic, Jungyub Woo, and Yang Yu. I especially thank Junho

 iii

Shin and Yan Kang who hardly worked with me and contributed efficiently to the de-

velopment of proposed solutions.

I would like to thank all my friends, especially Jaemin Kim who has always

support me through his kind and active friendship.

I would like to thank Mr. Youngchae Kim and Mr. Hyoungik Kim who give the

heartfelt prayers for me to successfully finish my Ph.D. degree.

I am forever indebted to my parents for their understanding, supports, endless

patience and encouragement when it was most required.

Last but not least, I would like to express my deep gratitude to my wife, Jumi

Yoon, and my daughter, Yubin Kim. They form the backbone and origin of my hap-

piness. Their love and support without any complaint or regret has enabled me to

complete this Ph.D. project. I owe my every achievement to both of them.

Without the help of the above people, this work would never have been com-

pleted, nor even begun.

 iv

TABLE OF CONTENTS

Acknowledgements ... ii

Table of Contents ... iv

List of Tables .. viii

List of Figures .. ix

Chapter I INTRODUCTION ... 1

I.1. The Motivations .. 1

I.1.1. Use cases and challenges for XML schema matching problems ... 3

I.2. Thesis Statement ... 9

I.3. Dissertation Outline .. 10

Chapter II BACKGROUND AND RELATED WORK 12

II.1. Classification of Schema Matching .. 12

II.1.1. String-based metric .. 14

II.1.2. Language-based metric .. 15

II.1.3. Corpus-based metric .. 16

II.1.4. Information contents-based metric .. 17

II.1.5. Constraint-based metric ... 18

II.1.6. Graph-based metric .. 19

II.1.7. Hybrid metric ... 20

II.2. The State of the Art Schema Matching Approaches 20

II.3. Quality of Matching Measures ... 24

II.4. Parallel and Distributed Computing Technologies for Schema Matching . 27

 v

Chapter III XML SCHEMA MATCHING PROBLEM 31

III.1. Schema Matching, Mapping, Merging and Reuse 31

III.2. Semantic-based XML Schema Matching ... 33

III.3. General Schema Matching Architecture ... 34

III.4. Schema Tree and Matching Model ... 36

III.5. Assumptions .. 41

Chapter IV A LAYERED APPROACH FOR XML

COMPONENT SCHEMA MATCHING 43

IV.1. Layered Semantic Structure of XML Schema .. 43

IV.2. Semantic Similarity Algorithms for the Layered Approach 46

IV.2.1. Atomic-layer similarity measures .. 47

IV.2.2. Label similarity measures .. 48

IV.2.3. Inner-layer similarity measures ... 50

IV.2.4. Combined similarity score ... 50

IV.3. Experiments and Results ... 51

IV.3.1. Experimental data .. 51

IV.3.2. Performance measures for evaluation .. 52

IV.3.3. Results analysis .. 54

IV.4. Large-Scale Schema Matching by Parallel and Distributed Computing 57

IV.4.1. General architecture ... 57

IV.4.2. Use cases and scenarios ... 60

IV.4.3. MPJ implementation .. 62

IV.4.4. Experiments and results ... 63

IV.5. Chapter Summary ... 66

Chapter V AN OPTIMIZATION APPROACH FOR XML

DOCUMENT SCHEMA MATCHING 68

V.1. Matching Algorithm Overview ... 69

 vi

V.2. Maximum-Weighted Bipartite Matching Algorithm 72

V.3. Ordered Maximum-Weighted Bipartite Matching Algorithm 74

V.4. Overall Schema Matching Algorithm ... 82

V.5. Experiments and Results ... 84

V.5.1. Experimental data .. 84

V.5.2. Results analysis .. 85

V.6. Chapter Summary ... 88

Chapter VI XML MATCHING APPLICATION – SUPPLIER

DISCOVERY ... 89

VI.1. Supplier Discovery Overview ... 89

VI.2. eXtensible Dynamic Form (XDF) Architecture ... 91

VI.3. Search Algorithms for Supplier Discovery ... 94

VI.3.1. XML-based search ... 94

VI.3.2. Keyword-based search ... 95

VI.3.3. Ontology-based search ... 96

VI.4. Experiments and Results ... 97

VI.4.1. Performance measures for evaluation .. 97

VI.4.2. Experimental data .. 99

VI.4.3. Results analysis .. 100

Chapter VII CONCLUSION .. 104

VII.1. Summary of Contributions .. 104

VII.2. Future Work .. 106

REFERENCES ... 109

Appendices .. 118

VII.3. Appendix A – Recommended Naming Rule of XML Schema 118

 vii

VII.4. Appendix B –Abbreviations and Acronyms Accepted by XML Schema

Matching ... 120

VII.4.1. Acronyms ... 120

VII.4.2. Abbreviations ... 120

VII.4.3. Non-Oxford .. 121

VII.5. Appendix C – Stop Words Removed by XML Schema Matching 122

 viii

LIST OF TABLES

Table II.1. Comparison of Hadoop, Globus toolkit and MPJ 29

Table IV.1. Characteristics of AIAG and T&HE schemas 51

Table IV.2. Experiment #1 Results .. 55

Table IV.3. Experiment #2 Results .. 56

Table IV.4. Experiment #3 Results .. 56

Table V.1. An Example of Weight Matrix ... 79

Table V.2. An Example of Matching Similarity Score Table 79

Table V.3. Characteristics of PO XML Schemas ... 84

Table VI.1. Performances of Search Methods for Query #1 101

Table VI.2. Performances of Search Methods for Query #2 101

 ix

LIST OF FIGURES

Figure I.1. An example of tree representations for component schema and

document schema. ... 5

Figure I.2. An example of tree representations for matching between two XML

instances. ... 6

Figure II.1. Classification of schema matching approaches. 13

Figure II.2. Comparing true results and derived results. .. 25

Figure III.1. General schema matching architecture. .. 35

Figure IV.1. Three layers of two XML schemas. .. 45

Figure IV.2. Matching results by different size of top-k. .. 53

Figure IV.3. Overview of the GX-SOA. ... 58

Figure IV.4. Use case diagram for GX-SOA. .. 61

Figure IV.5. Pseudo-code of the MPJ implementation. .. 62

Figure IV.6. The number of machines vs. execution time. 64

Figure IV.7. Comparison of execution time by actual vs. ideals............................. 65

Figure V.1. Matching algorithm overview. .. 70

Figure V.2. Weighted bipartite graph modeling for different levels of matching. 71

Figure V.3. Greedy algorithm for maximum-weighted bipartite matching. 74

Figure V.4. Bottom-up dynamic programming algorithm for ordered maximum-

weighted bipartite matching. ... 78

Figure V.5. Dynamic programming algorithm for ordered maximum-weighted

bipartite matching. .. 79

Figure V.6. Algorithm enhanced by information contents..................................... 81

Figure V.7. Overall schema matching algorithm. .. 83

Figure V.8. Performance analysis #1. .. 86

Figure V.9. Performance analysis #2. .. 87

Figure VI.1. Architecture of XDF. .. 92

Figure VI.2. The adjusted weight function for the DCG metric.............................. 98

1

CHAPTER I

INTRODUCTION

This dissertation studies the problems of the XML schema matching for integra-

tion and interoperability among heterogeneous electronic business (e-Business) sys-

tems. We propose new innovative approaches for matching two XML schemas based

on semantic similarity measures. The proposed approaches utilize the semantics em-

bedded in XML schemas and compute the semantic similarities between elements or

attributes of two schemas, using several semantic similarity measures, mathematical

programming techniques, and linguistic thesauri resources.

I.1. The Motivations

An important issue in e-Business integrations is to provide support for the seam-

less exchange of information either within or across enterprises. A common approach

to successful integration of enterprises‟ systems is to standardize the business data

exchange requirements [Langenberg 2005 and Murphy 2008]. These requirements are

most often specified using abstract data models, called schemas, which defines syntax

and some extent semantics of data in business documents.

Over the past decades, the eXtensible Markup Language (XML) has emerged as

one of the primary languages to help information systems in sharing structured data

2

[W3C 1998a]. Especially, XML schemas [W3C 2001a; W3C 2001b; and W3C

2001c] have been widely used in the e-Business industry for enterprises to exchange

the business documents with their partners (e.g., suppliers and customers) in the

supply chain. The XML technology has clearly emerged as the most promising stan-

dardization effort for business documents‟ representations and data transformations

on the Internet [Alan 2001]. As a platform of independent representation technology,

XML offers several benefits: 1) simultaneously human- and machine-readable format,

2) self-documenting format that describes structures and field names as well as spe-

cific values, and 3) the hierarchical structure format suitable for most (but not all)

types of documents.

Many enterprises and organizations have defined their own XML schemas to

describe structures and contents of the business documents to be used in their Busi-

ness-to-Business (B2B) transactions. Many organizations have also published stan-

dard XML schemas to be shared in the B2B transactions within specific industry do-

mains (e.g., e-manufacturing, e-government, and e-health industries) [Bussler 2001;

Medjahed 2003; and Shim 2000]. The popularity of the XML and XML schema leads

to an exponential growth of B2B transactions. This success, however, leads to several

problems: 1) individual enterprises often create their own XML schemas with infor-

mation most relevant to their own needs; 2) different enterprises or organizations of-

ten choose different XML representations for the same or similar concepts; and 3) the

enterprises often extend or re-define the existing standard XML schemas in their own

ways for their own needs.

3

Schema matching has thus become a critical step to achieve the seamless ex-

change of information among heterogeneous e-Business systems supported by differ-

ent XML schemas. Schema matching is a process that takes two heterogeneous sche-

mas as input plus possibly some auxiliary information, and returns a set of dependen-

cies between semantically related two elements or two attributes [Shvaiko 2005]. This

process has been largely performed by human engineers, manually, who are at best

supported by some graphical interface tools. This manual matching process is known

to be very labor-intensive, costly, and error-prone [Rahm 2001]. As the e-Business

systems grow to handle more complex databases and applications, their schemas be-

come larger and more complex. This further increases the search space to be ex-

amined as well as the number of correspondences to be identified. As a result, it is

critical to automate the schema matching task as much as possible so as to reduce the

costs of labor-intensive data integration work.

Many schema matching approaches have been proposed [Rahm 2001 and

Shvaiko 2005]. However, the challenge is still daunting because of the complexity of

schemas and immaturity of technologies in semantic representation, measuring, and

reasoning. For a better understanding of XML schema matching problems, we ana-

lyze the general use cases and challenges of the matching problems in the next section.

I.1.1. Use cases and challenges for XML schema matching problems

An XML schema defines a set of discrete elements and attributes for a class of

XML documents, aiming at defining the structure, content, and to some extent seman-

tics of XML documents [W3C 2001a]. XML documents that adhere to an XML

4

schema are said to be instances of that schema (i.e., XML instances). XML schemas

or instances are typically viewed as labeled trees where each node represents a data

element or an attribute named by a label consisting of English word, concatenation of

words, or their abbreviations [Rahm 2001]. Most schema matching approaches ana-

lyze the similarity between two labeled trees based on their structural and linguistic

information [Rahm 2001 and Shvaiko 2005]. For the structural similarities, they ana-

lyze the differences in the hierarchical tree structures. For linguistic similarities, they

typically analyze the meaning (semantics) of nodes in the labeled tree. The semantics

is often obtained by lexical analysis of English words in the labels of nodes.

According to the types of the e-Business standard schemas, XML schemas can

be classified into two types. The first type is the component schema. This type of

schema defines a set of global type components (often called global elements) that

can be either extended or reused by other components [Meadows 2004]. The term

“components” here refers to either elements or types [W3C 2001a]. The examples of

component schema include 1) Common Core Components (CCC) of Open Applica-

tions Group Integration Specification (OAGIS) developed by the Open Applications

Group (OAG) consortium [OAGIS 2002], 2) ebXML Core Component [ebXMLCC

2008], 3) UN/CEFACT TBG 17 [TBG 2008], and 4) Health Level Seven Internation-

al (HL7) Services-Aware Interoperability Framework (SAIF) Core Components [HL7

SAIF 2010]. Component schemas can be thought of as a collection of labeled trees,

each of which corresponds to a global element, as shown in Figure I.1 (a).

5

Figure I.1. An example of tree representations for component schema and

document schema.

The second type is the document schema. It defines the syntax and structure of a

single global element for a class of valid XML document (instance), often called

Business Object Document (BOD). The examples of the document schema include 1)

OAGIS BODs [OAGIS 2002] – e.g., “purchase order schema”, 2) BODs developed

by Standard for Technology in Automotive Retail (STAR) [STAR 2008] – e.g., “re-

placement part order schema”, and 3) BODs developed for Inventory Visibility and

Interoperability (IV&I) project [IV&I 2008] of Automotive Industry Action Group

(AIAG) [AIAG 2008] – e.g., “order view schema”. The document schema can reuse

or extend the components defined by the component schemas. It can be viewed as a

single labeled tree as shown in Figure I.1 (b).

Address Purchase Order

Customer DeliveryTo

Address Phone

– Prefix

– AreaNo

– LocalNo

- Exten-

sion

(a) Component Schema Example

(OAG CCC)

Contact

Delivery

Street

Country Code

Name

Name

Telephone

Quantity

DeliveryAddress

(b) Document Schema Example

(AIAG Purchase Order)

City

Street

Prefix

City

Postal

AreaNo

– Street

– City

– Postal

- Exten-

sion

– Street

– City

– Postal

- Exten-

sion

* The graphical representation represents a

portion of schemas

6

Figure I.2. An example of tree representations for matching between two XML instances.

PurchaseOrder

Customer DeliveryTo

Address Phone

– Prefix

– AreaNo

– LocalNo

- Exten-

sion

(a) Buyer (b) Seller

– Street

– City

– Postal

- Exten-

sion

– Street

– City

– Postal

- Exten-

sion 240

361-xxxx

bureau dr. +1

gaithersburg

20899

PO

Address BillTo

– Street

– City

– Zip

- Exten-

sion

bureau dr.

gaithersburg

20899

– Street

– City

– Zip

– Phone

- Exten-

sion

bureau dr.

gaithersburg

20899

240-361-xxxx

Instance value

Atomic nodes matching

Instance values transformation

7

These two types of schemas lead to different matching problems. The compo-

nent schema matching primarily seeks to identify the relations between two sets of

labeled trees (i.e., two sets of global type components) – we call it c-matching, whe-

reas the document schema matching identifies relations between nodes (elements or

attributes) of two labeled trees (i.e., two schemas) – we call it d-matching.

The d-matching problems can be further classified according to their purposes.

If two document schemas need to be fully matched to create an integrated schema, all

or most nodes in one schema should be matched to some nodes in the other schema

which – we call it f-matching. However, if the matching is to determine how to trans-

form one instance into another, only leaf nodes (also called atomic nodes because it

cannot be further decomposed) in the schema trees need to be matched – we call it a-

matching. Matching between atomic nodes of two XML document schemas helps to

determine how a certain value in one XML instance can be transformed to a certain

value of the other for successful exchange of information. Figure I.2 illustrates an ex-

ample of a-matching between two different “Purchase Order” XML schemas. The

figure also shows the possible data transformations between two XML instances

based on the results of a-matching.

Among these different matching problems, this dissertation focuses on c-

matching and a-matching. Many organizations have published different standard

XML schemas. C-matching is one of the most important steps to integrate different

XML standard schemas, specifically for global type components. As an example of c-

matching, we have undertaken a matching task between two XML schemas devel-

8

oped by two different workgroups of Automotive Industry Action Group (AIAG)

[AIAG 2008]. The two schemas, called Truck and Heavy Equipment (T&HE) and

AIAG Common Resources, have been developed individually. However, they include

many similar components since both are extensions of OAGIS Common Core Com-

ponents [OAGIS 2002]. Both schemas are large and complex with hundreds of com-

ponents. AIAG has tried to merge them into a single standard schema with a signifi-

cant amount of cost in terms of human-hours with only limited success.

A-matching is also very important for successful e-Business systems integration

and B2B data transactions. The XML technology in the B2B transactions has been

mostly used for document transformation. A-matching is one of the most important

steps to transform one business document into another. A good example of the a-

matching, are the matching tasks among different Purchase Order (PO) BOD schemas

individually defined by different organizations.

We propose new innovative techniques to address three challenging problems in

these types of schema matching. First, the existing approaches have often failed to

sufficiently examine and utilize semantic information imbedded in the hierarchical

structure of the XML schema, which the schema designer intended to. Our analysis

shows that the data elements in the XML schema can be divided into several layers

according to the level of hierarchy. Moreover, typically different layers carry differ-

ent aspects of semantics of the data elements, which require different layer-specific

approaches to measure the similarities.

9

Secondly, due to synonyms (different words meaning the same thing) and poly-

semies (one word having different meanings in different contexts) found in natural

languages, the meaning of a data node in the schema cannot be determined solely by

the words in its label. Although XML does not provide means to formally define the

semantics, the semantic ambiguity can be reduced by contextual information such as

the meaning of the words composing the labels of its neighboring nodes or external

document corpus resources.

Thirdly, it is difficult to correctly identify the best set of matching pairs for all

data nodes between two schemas. This is because a data node in one schema may

match more than one data node in the other schema (with different semantic similari-

ties). Furthermore, best-matching pairs identified in isolation do not necessarily form

the globally optimal matching between two sets of data nodes.

I.2. Thesis Statement

The objective of this dissertation is to develop effective approaches to XML

schema matching, particularly applicable to XML schema integration and data trans-

formation among heterogeneous e-Business systems. Our research supports two dif-

ferent tasks: integration task between two different component schemas; and trans-

formation task between two business documents which confirm to different document

schemas.

For the integration task, we propose an approximate c-matching approach that

produces the best matching candidates between global type components of two sche-

mas, using their layer specific semantic similarities. For the transformation task, we

10

propose an approximate a-matching approach that produces the best sets of matching

pairs for all atomic nodes between two schemas, based on their linguistic and struc-

tural semantic similarities. We validate and evaluate our approaches with the state of

the art evaluation metrics and sample schemas obtained from several e-Business stan-

dard organizations and e-Business system vendors.

I.3. Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter II explains

about a literature survey regarding schema matching and the related work including

similarity measures, parallel and distributed computing technologies, and evaluation

metrics. In particular, the similarity measure, which is the main subject of this re-

search, is intensively surveyed. Chapter III describes a formal definition of XML

schema matching problems in order to clearly specify the scope of problems ad-

dressed in this research. In this chapter, the assumptions that underlie our proposed

solution are also specified. The proposed schema matching approaches for semantic

similarity analysis are described in Chapter IV (for c-matching) and Chapter V (for a-

matching). Chapter IV addresses the use of layered approaches in c-matching. A

large-scale schema matching approach based on the parallel and distributed compu-

ting technologies is also addressed in the Chapter IV to reduce the computation time

of the matching algorithm. Chapter V presents an optimization approach using differ-

ent mathematical programming techniques for a-matching. Both chapters provide ex-

periment results for the comparative analyses. Chapter VI introduces an XML in-

stance matching application to address the issue of supplier discovery, based on the

11

proposed a-matching approach. Finally, in Chapter VII we close this dissertation with

a summary of contributions.

12

CHAPTER II

BACKGROUND AND RELATED WORK

This chapter surveys existing research related to schema matching. It is divided

into the subject areas of classification of schema matching, state of the art schema

matching approaches, parallel and distributed computing technologies for schema

matching, and performance measures.

II.1. Classification of Schema Matching

Many schema matching methods have been already proposed (summarized in

surveys by [Rahm 2001 and Shvaiko 2005]). These methods usually first attempt to

identify semantic relationships between the elements of two schemas. According to

Shvaiko & Euzenat (2005), the schema matching techniques can be distinguished as

two main alternatives by the granularity of the matching: element-level and structure-

level. The element-level approaches determine the matching elements in the target

schema for each element of the source schema; whereas structure-level approaches

refer to matching combinations of elements that appear together in a structure. In the

ideal case of a structure-level approach, all components of the structures in the two

schemas fully match. These techniques can be further classified by different types of

elementary matching techniques they use.

13

Figure II.1. Classification of schema matching approaches.

Schema Matching Approaches

Structure-level

String-based

- Name similarity

- Description si-

milarity

- Global names-

paces

Language-

based

- Tokenization

- Lemmatization

- Elimination

Corpus-based Constraint-

based

- Type similarity

- Key properties

Graph-based Model-based

Element-level
Granularity

Layer

Basic Techniques

Layer

- Graph matching

- Paths, Children,

Leaves

- Top-down, bot-

tom-up

- Taxonomy

based

- Propositional

SAT

- DL-based

- Lexicons

- Thesauri

- WordNet

- Information

Contents

- Topic Signature

14

Figure II.1 shows a simplified version of the classification of schema matching

techniques suggested by [Shvaiko 2005] based on frequently used techniques. Note

that all ontology related techniques are omitted. Also, corpus-based metric includes

all the techniques using corpus (including linguistic resources), and graph-based me-

tric includes all the techniques related to the graph analysis techniques (including tax-

onomy-based metric). The leaves in the figure represent classes of elementary match-

ing techniques and their concrete examples.

II.1.1. String-based metric

The simplest matching technique is the string-based metric which computes si-

milarity between two terms or their descriptions using its linguistic information.

There are a variety of string-based metrics, such as the widely used cosine similarity

and Jaccard coefficient measures.

The cosine similarity [van Rijsbergen 1979] is a measure of similarity between

two vectors of n dimensions by finding the cosine of the angle between them. For two

vectors of attributes, A and B, the cosine similarity is represented using a dot product

and magnitude as:

cos (,)
| || |

A B
Sim A B

A B


 .

(II.1)

The Jaccard coefficient [Sneath 1957] is an alternative measure of cosine simi-

larity, which appears to be more popular in the context of similarity search [Markov

2007]. It measures similarity between two sample sets, and is defined as the size of

15

the intersection divided by the size of the union of the sample sets. For the two sets of

A and B, the Jaccard coefficient is given as:

| |
(,)

| |
J

A B
Sim A B

A B





.

(II.2)

The similarity between two strings can be also measured by counting the num-

ber of the occurrences of different n-grams [Kondrak 2005], i.e., the substrings of

length n, in the two strings. The more similar the strings are, the more n-gram they

will have in common. The similarity can be defined as:

-

2 | - () - () |
(,)

| - () | | - () |
n grams

n grams A n grams B
Sim A B

n grams A n grams B

 



,

(II.3)

where n-grams(A) is a multi-set of letter n-grams in A.

The n-grams can be used with various length, but bi-grams (n=2) and tri-grams

(n=3) are particularly popular text similarity measure.

II.1.2. Language-based metric

The string-based metric can be enhanced using language-based techniques

which are a kind of preprocessor for the input string. It is based on Natural Language

Processing (NLP) techniques exploiting morphological properties of the input string

[Aikins 1981]. There are three types of basic techniques: tokenization, lemmatization,

and elimination [Madhavan 2001 and Shvaiko 2005]. The tokenization parses an in-

put text into sequences of tokens (e.g., Vehicle_Activities  {vehicle, activities}).

The lemmatization finds all possible basic forms of the input word (e.g., Activities 

16

Activity). The elimination removes all stop-words from the input text. These tech-

niques can improve the results of the string-based metric by reducing the noise in the

input text.

II.1.3. Corpus-based metric

Corpus-based metric can also improve the string-based metric by obtaining

more accurate and less ambiguous semantics (e.g., synonyms or hyponyms) for words

in the element labels. Not only the common knowledge corpora such as WordNet

[Miller 1995], but also the domain specific corpora can be used to enrich the meaning

of the words. One of the important resources in a corpus is the lexical taxonomy

among words (e.g., parents, children, ancestor, and descendant relationships). Some

researches have been proposed based on a lexical taxonomy of the corpus [Qin 2009

and Yang 2005].

Another important resource obtained from corpus is the contents linked to topi-

cally related words. Topically related words form the Topic Signatures [Lin 2000]

which provide word vectors related to particular topics. Topic Signatures are built by

retrieving a group of words that are related to a target word from corpus. The topic

signature can be defined as a family of related terms {t, <(w1,s1)…(wi,si)…>}, where

t is the topic (i.e. the target concept) and each wi is a word associated with the topic,

with strength si.

17

II.1.4. Information contents-based metric

Corpus also provides the statistical information related to the importance of

words. Different importance individual entities and relationships have played the dif-

ferential role in semantic similarity measurement. The information content (IC)-based

metric was proposed to utilize this statistical information [Lin 1998 and Resnik 1995].

This approach measures the similarity between two entities (e.g., two words, two ob-

jects, or two structures) A and B based on how much information is needed to de-

scribe common(A, B), the commonality between them (e.g., the features or hypernyms

that two words share). According to information theory [Cover 1991], entities which

appear widely in many objects have less information than those which appear rarely.

In other words, more specific entities carry more information than generic and com-

mon entities. Therefore, the more specific the common(A, B) is, the more similar A

and B will be. In information theory, the information content of a concept or word C

is defined as () log ()I C P C  . Then common(A, B) can be measured by the informa-

tion content of the most specific common hypernyms of A and B, and the similarity

between A and B is given as

(,) (,)
(,) max () max log ()IC

C S A B C S A B
Sim A B I C P C

 
   ,

(II.4)

where S(A, B) is the set of all concepts that subsume both A and B, I(C) is the infor-

mation content of C, and P(C) can be calculated as word frequencies in a corpus.

However, Eq. II.4 is not a good similarity measure because it does not produce

the maximum value when the two concepts are identical and it does not normalize to

18

be in [0, 1]. To improve this measure, Lin (1998) proposed another information con-

tent based measure. In a general form, this measure is defined as

((,))
(,)

((,))
I

I comman A B
Sim A B

I description A B
 ,

(II.5)

where description(A, B) is the sum of common(A, B) and difference(A, B). Eq. II.5 can

be seen as a normalized version of Eq. II.4.

The difficulty with Eq. II.5 is that the functions description(A, B) and com-

mon(A, B) are specified on application and need to be figured out before the similarity

can be measured. Thus, for tree-like IS-A taxonomies, Lin also suggested

2 log ()
(,)

log () log ()
I

P C
Sim A B

P A P B





,

(II.6)

where C is the most specific subsumer of A and B with the smallest prior probability

and the probabilities can be obtained according to the frequencies in a corpus.

Information contents of words or concepts can also be used as their weights

when computing composite similarity measure between two groups of words.

II.1.5. Constraint-based metric

Constraint-based technique is also useful to compare the internal constraints be-

tween two elements, such as types, cardinality of attributes, and keys. The datatype

comparison involves comparing the various attributes of a class with regard to the

datatypes of their values. For example, an element „delivery‟ of the datatype „date‟

19

can be considered closer to an element „transport‟ of the datatype „deliverydate‟ than

an element „shipping‟ of the datatype „integer‟.

II.1.6. Graph-based metric

A variety of graph-based techniques have been proposed for structure-level

matching. Typically, the graph-based metric quantifies the commonality between two

components by taking into account the linguistic similarities of multiple structurally-

related sub-components of these terms (e.g., children, parents, and leaf components).

Because most schemas can be viewed as hierarchical graphs containing terms and

their parent-child relationships, many matching algorithms have been developed

based on either top-down or bottom-up traversal techniques to analyze all elements

[Rahm 2001]. Among the existing approaches, TransScm [Milo 1998] and Tess

[Lerner 2000] are based on the top-down approach, while Cupid [Madhavan 2001]

and Similarity Flooding [Melnik 2002] take the bottom-up approach.

Another technique of graph-based metrics is a taxonomy-based technique that

can be applied to „IS-A‟ taxonomy such as ontology. The edge counting approach is a

well-known traditional approach based on conceptual distance in taxonomy [Rada

1989]. The principle of the edge counting is simple and intuitive. It computes the

shortest path between two nodes in the taxonomy, presents the most intuitive method

to evaluate the semantic similarity in a hierarchical taxonomy. Another taxonomy-

based approach, known as bounded path matching [Noy 2001], takes two paths, with

links among classes defined by the hierarchical relationships, compares terms and

their positions along these paths, and identifies similar terms.

20

The graph-based metric typically provides a more comprehensive measure than

the string-based and corpus-based similarity metrics do, because it looks beyond the

individual labels and considers terms‟ relationships to others. However, it often fails

to recognize the semantics in the language and corpus.

II.1.7. Hybrid metric

Each existing similarity measure has its strengths and weaknesses. More impor-

tantly, each measure typically makes use of only a part of the available semantic in-

formation. Therefore, a matching that uses just one approach is unlikely to achieve a

matching performance as good as the combined approaches that combine several

matching approaches [Rahm 2001].

The combined matchers are grouped into hybrid and composite matchers. Hybr-

id matchers utilize two or more different criteria in an integrated approach whereas

composite matchers combine the outcomes of two or more different matchers which

have been run independently.

II.2. The State of the Art Schema Matching Approaches

After considering the classifications of schema matching approaches, we now

look at the state of the art schema matching approaches. Most of them combine sev-

eral semantic metrics as either composite or hybrid approach.

LSD (Learning Source Descriptions) [Doan 2001] provides a composite match-

ing algorithm based on machine-learning techniques to automatically combine several

match results. The algorithm matches a pair of schemas based on 1-to-1 atomic-level

21

matching, similar to a-match which we defined earlier in this dissertation. The LSD is

based on the combination of several match results obtained by independent learners.

The predictions of individual learners are combined by a so-called meta-learner,

which weighs the predictions from a learner according to its accuracy shown during

the training phrase.

TranScm [Milo 1998] provides a schema matching method for data translation

and conversion based on the syntactic analysis of the structures. Input schemas are

transformed into labeled graphs, which is the internal schema representation. Edges in

the schema graphs represent component relationships. All other schema information

(name, optionality, #children, etc.) is represented as properties of the nodes. The

matching is performed node-by-node, considering 1-to-1 matching cardinality in a

top-down fashion. There are several matchers which are checked in a fixed order.

Each matcher is a “rule” implemented in Java. They require that the match is deter-

mined by exactly one matcher per node pair. If no match is found or if a matcher de-

termines multiple match candidates, user intervention is required to provide a new

rule (matcher) or to select a match candidate.

Tess [Lerner 2000] provides a matching algorithm that deals with schema evo-

lution. Tess takes definitions of the old and new types and identifies pairs of types as

matching candidates. It then recursively tries to match their substructure in a top-

down fashion. Like TransScm, it presumes a high degree of similarity between two

schemas. It identifies pairs of types as match candidates, and then recursively tries to

match their substructure in a top-down fashion. Two elements are match candidates if

22

they have the same name, have a pair of subelements that match (i.e., that are of the

same type), or use the same type constructor (in order of preference, where name

matching is most preferred). The recursion bottoms out with scalar subelements. As

the recursive calls percolate back up, matching decisions on coarser-grained elements

are made based on the results of their finer-grained subelements. In this sense, Tess

performs both structure-level and element-level matching.

Similarity Flooding (SF) [Melnik 2002] approach provides a hybrid matching

algorithm based on similarity propagation. This method represents schemas as di-

rected labeled graphs. The algorithm manipulates the directed labeled graphs in an

iterative fix-point computation to produce an alignment among the nodes of the input

graphs. The matching begins with a string-based comparison of the schema elements

and analyzes the structure-level relationships on the assumption that if two nodes

from two schemas are similar, then their neighbors may also be somehow similar.

From iteration to iteration the spreading depth and the similarity measure are increas-

ing till the fix-point is reached. The result of this step is a refined alignment which is

further filtered to finalize the matching process.

Cupid [Madhavan 2001], proposed by Microsoft Research1, is another hybrid

matching approach. It is comprised of element- and structure-level matching ap-

proaches, and it computes the similarity with domain-specific thesauri as the linguis-

tic information resources do. The algorithm consists of three phases: 1) linguistic

1
 http://research.microsoft.com/

23

matching, 2) structural matching, and 3) mapping elements generation. The linguistic

matching phase computes linguistic similarity between element labels of two schemas

based on string-based techniques and domain-specific thesauri. The structural match-

ing phase computes structural similarity weighted by leaves which measure the simi-

larity between two contexts in which elementary schema elements occur. The map-

ping elements generation phase computes weighted similarity and generates the over-

all alignment by choosing pairs of schema elements with weighted similarity which

are higher than a threshold. The Cupid algorithm provides an effective algorithm to

traverse the tree in a combined bottom-up and top-down manner.

S-Match [Giunchiglia 2004] follows a graph-based matching algorithm, which

decomposes the tree matching problem into a set of node matching problems. Each

node matching problem is translated into a propositional formula, which then can be

efficiently resolved using state of the art propositional satisfiability (SAT) deciders.

S-Match also utilizes simple structural information because the word-sense is applied

to the parent node‟s name and concept as well as those of the node to be evaluated. Its

output is one of the possible relations between two schema/ontology nodes – equiva-

lence, more or less general, mismatch, and overlapping. This type of outputs makes

users more comfortable to make their own decision than to use other tools giving a

coefficient of relationship degree.

COMA (COmbination of MAtching algorithms) [Do 2003] provides various

ways for combining different matchers. COMA provides an extensible library of

matching algorithms and composes various individual similarity coefficients. Though

24

the present COMA utilizes 6 elementary matchers (e.g., n-gram and edit distance), 5

hybrid matchers, and one reuse-oriented matcher; its matching library is extensible

for any other matchers. The reuse-oriented matcher uses previously obtained results

for entirely new schemas or for its fragments. The reuse of previous matching results

makes COMA efficient. However, this matcher should be carefully applied. This is

because the reuse can give undesirable low similarity coefficients between similar or

even identical two elements and cause multiple (i.e., M-to-N) correspondences.

Moreover, once a wrong relationship is established at a previous matching, the incor-

rect relationship will always appear whenever the reuse-matcher is called.

II.3. Quality of Matching Measures

To evaluate the quality of the matching measures, several performance

evaluation scoring functions have been proposed [Do 2003]. The typical method to

evaluate the matching measures is to compare the derived matchings to the real

matchings by experienced human integrators. The human integrators first have to

manually generate a set of real matchings which can be used as a “gold standard”

which compares it to the automatically derived matchings. The comparison of the real

matchings to derived matchings is shown in Figure II.2.

The set of derived matchings can be categorized as True Positives (B); False

Positives (C); False Negatives (A); and True Negatives (D). Note that among all de-

rived matching; only the True Positives are considered as correct matchings. Based

on these categories, two basic measures of matching quality, Precision and Recall

[van Rijsbergen 1979], can be computed.

25

Figure II.2. Comparing true results and derived results.

In their original definitions, Precision expresses the proportion of correct

matchings among all the derived matchings, which can be defined as:

number of correct matchings derived | |

total number of matchings derived | | | |

B
Precision

B C
 


. (II.7)

Recall expresses the proportion of the found correct matchings among all the

correct matchings, which can be defined as:

number of correct matchings derived | |

total number of correct matchings | | | |

B
Recall

A B
 


. (II.8)

Precision = 1 indicates that all the matchings derived by the matching measures

are correct, while Recall = 1 means that all correct matchings are found by the match-

ing measures. A trade-off between Recall and Precision is provided by the F-measure

[van Rijsbergen 1979]:

2
Precision Recall

F - measure
Precision Recall


 


.

(II.9)

A B C

D

Real matching Derived matching A: False Negatives

B: True Positives

C: False Positives

D: True Negatives

26

Although formal F-Measure supports different relative importance to be at-

tached to Precision and Recall, Eq. II.9 is a special case when Precision and Recall

are considered equally important. Another combined measure, called Overall, esti-

mates the post-match efforts needed for both removing wrong and adding missed

matches [Melnik 2002]. It is defined as follows:

1
2Overall Recall

Precision

 
   

 
.

(II.10)

These traditional performance metrics can only be calculated for binary relev-

ance (i.e., correct or incorrect). Matching algorithms often provide multiple matching

results ranked according to their relevance (similarity) scores. Discounted Cumulative

Gain (DCG) is a precision-like metric that supports graded relevance and discounting

by rank [Jarvelin 2002]. DCG estimates the usefulness (or gain) of a matching not

only by examining the results derived by the matching algorithm but also by consi-

dering the order in which the derived results are presented. The DCG provides a

means for performance analysis of the matching algorithm that derives a ranked list

of results. It accumulates the gains of a matching from the top of the result list to the

bottom with the gain of each result discounted at lower ranks.

DCG originates from more primitive metric called Cumulative Gain (CG)

which does not include the position of a result in the consideration of the usefulness

of a result set. The CG at a particular rank position p is defined as:

27

1

p

P i

i

CG rel


 ,

(II.11)

where reli is the graded relevance of the result at position i in the ranked list of results.

DCG then penalizes the highly relevant matching ranked in lower positions with

weights reduced by a reciprocal logarithm function. The DCG accumulated at a par-

ticular rank position p can be calculated as follows:

1

2 2log

p

i
P

i

rel
DCG rel

i

  . (II.12)

DCGp should be normalized to reflect the size of the result set that may vary

among different matching measures. The normalized DCG is defined as

P
P

P

DCG
nDCG

IDCG
 ,

(II.13)

where IDCGp is an ideal DCG that can be calculated from a flawless sequence of re-

sults (i.e., ranked list of correct matchings).

II.4. Parallel and Distributed Computing Technologies for Schema

Matching

As more complicated and larger schemas and highly complex matching algo-

rithms have been introduced, large-scale schema matching has become a challenging

problem in terms of the computational cost. Several research groups have actively

studied this issue and offered their solutions. [He 2004] proposed a „holistic schema

28

matching‟ approach that can match many schemas at the same time and find all

matchings at once. Another similar approach [Saleem 2008] creates a mediated sche-

ma tree from a large set of input XML schema trees and defines matchings from the

contributing schema to the mediated schema.

Alternatively, one can address the performance of computationally intensive

similarity analysis in large-scale schema matching by parallel and distributed compu-

ting technologies. The parallel computing is a computation technology in which mul-

tiple concurrent processes work simultaneously and cooperate with each other for a

single task, while the distributed computing deals with the development of applica-

tions that execute on different computers interconnected by networks. Thus, the paral-

lel and distributed computing can refer to a computation technology in which many

calculations are carried out simultaneously, operating on multiple computers inter-

connected by networks for a single task. The parallel and distributed computing in

local networks is also called cluster computing and called grid computing in wide-

area networks.

Many parallel and distributed computing technologies have been introduced

[Asanovic 2006]. There is a well-known cluster computing technology called Ha-

doop2 [Borthaku 2007 and Dean 2004] which is a Java software framework that sup-

ports data intensive distributed applications. Hadoop uses a new programming model

called Map/Reduce for processing and generating large data sets. This platform al-

2
 http://lucene.apache.org/hadoop

29

lows programmers without any experience with parallel and distributed systems to

utilize easily the resources of a large distributed system.

Table II.1. Comparison of Hadoop, Globus toolkit and MPJ

 Hadoop Globus toolkit MPJ

SW requirement Java, SSHD
3
 Java, Ant

4
 Java

System Setup System-specific System-independent System-independent

Security SSH
5
 WS-Security

6
 No support

Data manage DFS
7
 GridFTP

8
 No support

Type Clustering Grid Grid

For grid computing technology, Globus Alliance9 provides an open source tool-

kit called Globus Toolkit10 [Foster 1997]. The Globus Toolkit makes extensive use of

Web Services to define interfaces and structures of its components, which provide

flexible, extensible, and widely-adopted XML-based mechanisms for describing, dis-

covering, and invoking network services. The grid computing can also be imple-

3
 SSHD (SSH Daemon) is a software that supports Secure Shell or SSH connections

4
 Apache Ant is a Java library and command-line tool for automating software build

processes. Available at http://ant.apache.org/

5
 Secure Shell or SSH is a network protocol that allows data to be exchanged using a secure

channel between two network devices.

6
 WS-Security is a flexible and feature-rich extension to SOAP to apply security to web ser-

vices.

7
 DFS (Distributed File System) is a file system that allows access to files from multiple hosts

sharing via a computer network.

8
 GridFTP is an extension of the standard File Transfer Protocol (FTP) for use with Grid

computing.

9
 http://www.globus.org/

10
 http://www.globus.org/toolkit/

30

mented using the Message Passing Interface (MPI) [Asanovic 2006] standard which

is an Application Programming Interface (API) specification that allows many com-

puters to communicate with one another. MPI-like Message Passing for Java (MPJ)11

[Carpenter 2000] provides a Java software toolkit for the MPI standard. These tools

have different technical backgrounds and performance trade-offs. Table II.1 shows

different features of Hadoop, Globus Toolkit and MPJ.

The Hadoop and Globus Toolkit have advantages for easy handling of a large

distributed system. However, they require extra software installation and management

for clusters and Web Services, respectively. On the other hand, MPJ requires a simple

environment configuration and programming architecture, but does not provide any

security measures or data management functionalities.

11
 http://mpj-express.org/

31

CHAPTER III

XML SCHEMA MATCHING PROBLEM

This chapter provides a formal definition of XML schema matching problem.

We also specify the assumptions that underlie our proposed methods.

III.1. Schema Matching, Mapping, Merging and Reuse

Schema matching, mapping, merging, and reuse have been developed as means

for integrating heterogeneous e-Business operations between and within organizations.

These techniques involve the identification of data elements that are semantically re-

lated among different schemas.

The terms “matching” and “mapping” are often used interchangeably. In this

dissertation, we differentiate the two terms as follows. The term “match” or “match-

ing” refers to an activity of identifying that two objects are semantically related whe-

reas the term “map” or “mapping” refers to the transformations between the semanti-

cally related two objects [Bellahsene 2011]. For example, the output of matching may

include statements such as “possible matches for Field p in specification A are Field q,

r, and s in specification B” or “Field x in specification A could match with Field y in

specification B with a similarity Sim”, whereas the output of mapping may include

statements such as “Field p in specification A is mapped to Field q in specification B”

or “Field x in specification A is decomposed into fields y and z in specification B”. In

32

other contexts, the term “map” or “mapping” may have a broader scope to include

“matching” activity as well (i.e., matching then mapping).

The term “reuse” refers to the exercise that looks for standard message specifi-

cations to use in an integration project. This exercise typically involves a cycle of

search, match, map, extend, and restrict activities. In the search activity, integrators

look for message specifications (and/or their components) that are appropriate for the

integration requirements. These requirements are typically manifested in other speci-

fications. If some message specifications and/or their components are discovered,

match and map usually occur to identify gaps between the requirements and the dis-

covered artifacts. With the objective to close the gaps, the “extend” activity is usually

followed, which may involve identifying other existing components or defining new

components as an extension and/or composition of existing components and/or new

components. The “restrict” activity usually occurs after requirements have been satis-

fied. The objective of this activity is to document some extraneous components that

are inherited from reused specifications or components that are unnecessary in regard

to the integration requirements. Some documentation is involved in restricting addi-

tional structural information (e.g., cardinality).

The term “merging” is also related to the term “matching” and “mapping”, and

is similar to the idea of “reuse”. Merging is an exercise in which integrators attempt

to combine two or more specifications into a single specification. This exercise typi-

cally involves a cycle of search, match, map, copy, delete, rename, and reorganization

activities. Simply by the number of steps involved, we may predict that the merging

33

exercise is the most time consuming compared with the other activities described

above. Gaps identified in matching and mapping activities may be closed by simply

copying components from one specification to another and deleting and renaming any

duplicates. There are cases in which gaps are better closed by the reorganization of

several similar components. Reorganization involves creating new components that

are a composite or extension of other components and deleting some components. In

other words, merging involves additional design decisions beyond matching, mapping

and reuse.

It should be noted that it is easy to confuse the match and map activities, partic-

ularly in the context of automation. This is because the matching algorithm often tries

to perform some mappings. The matching is regarded in this research as an “approx-

imate mapping” activity which is to provide a set of mapping candidates in a target

schema based on the semantic similarity measures for each element in a source sche-

ma, without additional activities such as merging and reuse. All other schema integra-

tion activities (i.e., “merging”, “reuse”, “extend”, and “restrict”) are not considered in

this dissertation.

III.2. Semantic-based XML Schema Matching

We define a schema matching as an activity of identifying semantic relation-

ships between elements (or attributes) of two schemas. This is often called more pre-

cisely semantic-based schema matching as the activity results in identified correspon-

dences of semantically close elements in different schemas. In a general schema

matching problem, we assume that schema designers fully understand the meaning of

34

contents in their schemas. Hence, the semantic-based schema matching assumes the

intention to capture the actual meaning of concepts and semantic relationships as

planned by designers, and identifies how two or more semantic concepts are similar

in the respective schema representations based on some similarity measuring func-

tions.

As we mentioned before, XML schema does not provide means to formally de-

fine the semantics, but some implicit semantics can be obtained from contextual in-

formation within XML schemas. In this research, we employ two types of contextual

information – structural and linguistic contexts – based on the assumption that the

more similar the structural and linguistic contexts of two schemas, the more semanti-

cally similar the two schemas are.

To focus on those contexts in XML schemas, we propose to model XML sche-

mas as labeled trees, called schema trees, where nodes and edges relating nodes re-

flect the structural contexts, and English words in labels of nodes reflect the linguistic

contexts. It helps to make the contexts obvious as we describe the matching process.

III.3. General Schema Matching Architecture

To understand the schema matching task, we first identify the type of informa-

tion that the matching task takes as input and produces as output. According to

Shvaiko & Euzenat (2005), the input in schema matching is a pair of schemas that are

not homogenous. The output is given in the form of matchings which isolate elements

35

from these two schemas that have a semantic relationship. The general concept of

schema matching is illustrated in Figure III.1 below.

Figure III.1. General schema matching architecture.

In general, the input information of a matching problem may include any type

of knowledge about schemas to be matched, such as their instances and their domains.

In the proposed matching approaches, the primary input data consists of two schemas

(i.e., source and target XML schemas) defined above as S1 and S2. The input sche-

mas contain different information types such as names, descriptions, data types, and

constraints, but we only consider the information of labels in elements and attributes

and their relationships. They are modeled as schema trees for the matching process.

To analyze the linguistic contexts in the schema tree, we only consider English words

(including their abbreviations and acronyms) and also concatenated words (e.g., Ad-

dress, PurchaseOrder, ShipLocation) in the labels of nodes. We use a preprocessor to

handle abbreviations, acronyms, stop words, and any other non-English words (see

Appendices B and C). The preprocessor not only removes unnecessary data such as

stop words, separators, and non-characters, but also converts abbreviations and acro-

nyms into the original forms.

Matching

Auxiliary

Information

S1

S2

Matching

Output

36

To increase performance of semantic matching, several matching algorithms of-

ten require auxiliary information such as thesauri and dictionaries. The main auxiliary

information used in this research is WordNet, an electronic lexical database where

relations such as homonymy are available to relate English word meanings [Miller

1995]. Other domain-specific dictionaries can be used in the case where used words

do not belong to WordNet.

The outcome of the matching process typically provides similarity score ranging

in [0,1] interval, where 1 (or 0) means that two matching pairs are exactly the same

(or totally different). In the case of multiple matching results, we propose two ap-

proaches. The first is to produce a collection of k best matching candidates for each

matching pair, called top-k matching, ranked according to their semantic similarity

scores. The second is to produce all possible matching pairs based on the given

matching cardinality. An element from one schema can participate in zero, one, or

several matching correspondences with elements from the other schemas (hereafter

called 1-to-1, 1-to-n or n-to-1, or n-to-m, respectively). Note that a top-k matching is a

special type of 1-to-n matching, because an element from one schema can be matched

to k elements from other schemas at most. In this dissertation, the proposed c-

matching approach produces top-k matching as an output, whereas the proposed a-

matching approach produces 1-to-1 pair-wise matching.

III.4. Schema Tree and Matching Model

We formally present a labeled tree model, also called schema tree, used to

represent XML schemas as follows:

37

Definition III.1: (Labeled tree or schema tree) A labeled tree is a rooted tree, denoted

 ,G N E , that has labels associated with each node (vertex), where

1) 1 2{ , ,..., }nN n n n is a finite set of nodes (vertices), each of which has zero

or more child nodes and at most one parent node. Each node corresponds to

either an element or an attribute in the schema, with a label that is a string

encoding English words, concatenation of words or their abbreviations for

describing the meaning of elements or attributes.

2) {(,) | , }i j i jE n n n n N  is a finite set of edges, each of which denotes the

relationship between two nodes (i.e., two elements, two attributes, or ele-

ment and attribute) where ni is called the parent of nj and nj is called the

child of ni. Typically a child node is a subcomponent of its parent.

Nodes with the same label may appear in more than one place in the labeled tree

(e.g., the child nodes of „Address‟ and „DeliveryTo‟ nodes in Figure I.1 (b)). Each

node is uniquely identified by its path context from the root to the node. The path

context is defined as follows:

Definition III.2: (Path contexts or path) A path from the root node 1n to node kn is a

sequence of nodes 1 2, ,..., kn n n N , and for any two consecutive nodes, in and 1in 

(1 1i k  ), there exists an edge 1(,)i i ie n n E  . The length of a path is the total

number of edges on the path; that is, k – 1 for the path 1 2(, ,...,)kP n n n , denoted as

length | | -1P k .

38

The labeled tree has three types of nodes: root, leaf (or atomic), and inner nodes.

Given a schema tree  ,G N E , they are defined as follows:

Definition III.3: (Root node) If a node in N does not have a parent, then in is

called the root node of the schema tree G , denoted GR . The root note is unique in G.

Definition III.4: (Leaf node or atomic node) Any node in which has no children is

called a leaf node. The leaf nodes are also called atomic nodes because they are the

smallest unit and cannot be further divided. The set of all atomic nodes is denoted GA .

Definition III.5: (Inner node) Any node in which is neither root node nor atomic

node is called an inner node. The set of all inner nodes is denoted as GI .

In Chapter I, we defined two types of schemas: component schema and docu-

ment schema. Component schema can be represented as a set of labeled trees, each of

which represents the global type component in the schema, whereas document sche-

ma can be represented as a single labeled tree. They can be defined as follows:

Definition III.6: (Component schema) A component schema Sc = {Gc1, Gc2, …, Gcn}

is a finite set of labeled trees, each of which represents the labeled tree structure of a

global type component defined in the schema Sc . Here, n is the number of global type

components in the schema Sc and (,)ci ci ciG N E is a labeled tree whose root node is

ith global type component in the schema Sc, where 1 i n  . Nodes in the node set

ciN represent either elements or attributes in the ith global type component of the

schema Sc.

39

Definition III.7: (Document schema) A document schema Sd is a single labeled tree

 ,d d dG N E . Nodes in the node set dN represent either elements or attributes in

the schema Sd.

For a-matching between two document schemas, we focus on atomic nodes.

The path contexts of atomic nodes can be defined as follows:

Definition III.8: (Atomic node path context) A path from node 1n to node kn , is an

atomic node path, if and only if the starting node 1n is a root and kn is an atomic

node.

For c-matching, we consider two component schemas Sc1 = {Gc11, Gc12, …,

Gc1m} and Sc2 = {Gc21, Gc22, …, Gc2n}, where Sc1 is a source schema which defines m

number of global type components and Sc2 is a target schema which defines n number

of global type components. The matching is to find the semantic correspondences be-

tween two sets of labeled trees Sc1 and Sc2.

For a-matching, we consider two document schemas 1dS and 2dS . 1dS is a

source schema denoted  1 1 1,d d dG N E and 2dS is a target schema denoted

 2 2 2,d d dG N E . The matching task is to find the semantic correspondences between

two sets of atomic nodes 1dG
A and 2dG

A (see Definition III.4), considering the struc-

tural relationships (two sets of edges 1dE and 2dE) and the linguistic information in

labels associated with nodes in 1dN and 2dN .

40

The simplest matching unit, called matching pair, is a pair of two objects that

are matched with certain similarity measure. For example, a matching pair in c-

matching is a pair of two global type components, where one comes from the source

and another from the target component schemas. Whereas, a matching pair in a-

matching is a pair of two atomic nodes, where one comes from the source and another

from the target document schemas. The schema matching usually compares all possi-

ble matching pairs, called pair-wise comparison, and identifies a set of matching pairs,

called pair-wise matching.

In real world applications, one data element in the source schema may match

more than one element in the target schema, which is referred to as 1-to-many pair-

wise matching. One can also find many-to-1 pair-wise matching or even many-to-

many pair-wise matching. The simplest case of these matchings is 1-to-1 pair-wise

matching which is defined as follows:

Definition III.9: (1-to-1 pair-wise matching or 1-to-1 matching) Let m U V  be a

matching of two sets U and V. Matching m is said to be 1-to-1 pair-wise matching if

for every {(,), (,)}a b c d m , a c if and only if b d .

Based on 1-to-1 pair-wise matching result of two sets of data U and V, we can

calculate the overall similarity between U and V by using the average similarity score

of all matching pairs. The overall matching similarity can be calculated as follows:

1

2
(,) (,)

| | | |

k

overall i i

i

Sim U V sim u v
U V 




 .

(III.1)

41

The top-k matching is a special type of 1-to-many pair-wise matching, ranked

by the similarity scores. The top-k matching can be defined as follows:

Definition III.10: (top-k matching) Given two object sets U and V, and a similarity

score function Sim(u, v) for any pair (u, v) (u U and v V), top-k matching for an

object u U is the k number of matching pairs (,)iu v , where 1...i k and iv V ,

whose similarity scores are the first k largest.

III.5. Assumptions

The following assumptions are made to develop the proposed approaches.

Assumption 1: The more similar the structural and linguistic contexts of two schemas,

the more semantically similar the two schemas are.

Assumption 2: The data models are in forms of the XML schema which conforms to

the standard XML Schema specification [W3C 2001a; W3C 2001b; and W3C 2001c]

recommended by W3C12. All other forms of schema models, e.g., UML13, EDI-

FACT14, and database schemes are not considered in this dissertation.

Assumption 3: For a-matching, only 1-to-1 pair-wise matching is considered, even

though 1-to-many, many-to-1, and many-to-many matchings may exist.

12
 World Wide Web Consortium (W3C). http://www.w3.org/

13
 Unified Modeling Language (UML)

14
 Electronic Data Interchange For Administration, Commerce, and Transport (EDIFACT)

42

Assumption 4: XML schemas should follow the recommended naming rule provided

in Appendix A. One of the most important rules is that labels of elements and

attributes should be composed of words in the English language, using the primary

English spellings provided in WordNet 3.015 [Miller 1995].

Assumption 5: The schema matching results manually generated by human engineers

used for the validation of the proposed approaches are considered free of matching

errors.

15
 Available at http://wordnet.princeton.edu/

43

CHAPTER IV

A LAYERED APPROACH FOR XML COMPONENT

SCHEMA MATCHING

This chapter describes the proposed c-matching algorithm for analyzing schema

matching between two XML component schemas using semantic similarity measures.

Several key innovations are introduced to increase utilization of available semantic

information. These innovations include: 1) a layered structure analysis of XML

schemas, 2) layer-specific semantic similarity measures, and 3) an efficient semantic

similarity analysis using parallel and distributed computing technologies.

IV.1. Layered Semantic Structure of XML Schema

An XML component schema defines a set of global elements, each of which can

be represented as a labeled tree with a set of linked nodes (see Definition III.6). Each

node in the tree has zero or more child nodes. As defined in Definition III.3 – III.5,

there are three types of nodes: 1) the root, 2) the leaf (atomic), and 3) the inner nodes

(those with both a parent and children).

Each tree can be divided into three layers: 1) the top layer (containing the root

of the tree), 2) the atomic layer (containing atomic nodes), and 3) the inner layer

(containing inner nodes). Note that some trees may have empty inner layer, whereas

44

others may have only one node that is considered to be in both the top and atomic

layers.

Each layer typically captures the semantics of a global element from a distinct

perspective. Through its label and namespace, a top layer node specifies the data ob-

ject that the global element is intended to describe. The atomic layer includes the

atomic nodes (e.g., attributes, simpleType, and simpleContent) that the designers felt

were necessary to describe the global element (the root). The inner layer provides the

structural information of the global element by specifying how the atomic elements

are grouped into inner nodes and, eventually, into the global element. The linguistic

information in the labels of both atomic and inner nodes may also help to qualify the

semantics of the global element.

Figure IV.1 shows the labeled graph examples of two different XML schemas

describing „vehicle‟ (e.g., maker, model, model year, dealer information, mileage at

failure, mileage at repair, etc). The two schemas were defined by two different

workgroups at the Automotive Industry Action Group (AIAG): (a) Truck and Heavy

Equipment (T&HE) and (b) AIAG Resource schemas [AIAG 2008]. Both intended to

describe the same object „vehicle‟. However they have different labels (names) and

different structures.

45

Figure IV.1. Three layers of two XML schemas.

Top layer
VehicleInformation

Manufacturer Activity Category

Code

Desc

.

Vehicle

Manufacturer

Vehicle

Activity

Vehicle History

PartyIDs

Name

Vehicle

Category Location

UserArea

Contact

Code

Desc

.

Code

Desc

.

Code

Desc

Code

Desc ID TaxID …

Name Address …

(a) T&HE‟s VehicleInformation (b) AIAG‟s Vehicle

 …

…

…

ID

…

…

Inner layer

Atomic layer

…

46

The labels in the top layer nodes of the two schemas indicate that both are in-

tended to represent the “vehicle” object with similar conceptualizations. However, the

designers‟ thoughts differ in regard to what atomic elements are needed. In Figure

IV.1 (a), the root element „VehicleInformation‟ only includes the generic atomic ele-

ments such as the „Code‟ and the „Desc‟, whereas in Figure IV.1 (b), the root element

„Vehicle‟ includes more specific atomic elements such as „TaxID‟, „Address‟, „Name‟,

and so on. They also differ on how these atomic elements should be organized (see

their different inner layers). Moreover, the same set of ingredients (atomic nodes) can

produce elements of different semantics depending on how they are structured or

packaged (i.e., the identity of the top layer node). For example, several party elements

(CustomerParty, DealerParty, and SellingParty) defined in AIAG schema all contain

the same atomic and inner nodes but are intended for semantically different data ob-

jects.

IV.2. Semantic Similarity Algorithms for the Layered Approach

The complex relationship among nodes at different layers requires layer-

specific semantic analysis tools and a mechanism to combine these layer-based simi-

larities. For this reason, we have developed three similarity measures. The first one,

called atomic-layer similarity, measures the similarity between atomic layers of two

global elements. The second one, called label similarity, measures the similarity be-

tween two labels (names). The top-layer only uses the label similarity. The last one,

called inner-layer similarity, measures the similarity between inner layers of two

global elements. These three measures and the process for their combination are de-

scribed in the following subsections.

47

IV.2.1. Atomic-layer similarity measures

Not every atomic node is equal in determining semantic similarity. The sharing

of an atomic node that is widely used by two elements is not as strong as in an indica-

tion of similarity compared with the sharing of a rarely used atomic node [Lin 1998

and Resnik 1995]. To account for the degree of importance of individual atomic

nodes, an IC-based measure for atomic layer similarity has been developed.

Specifically, let A(x) and A(y) denote the sets of atomic nodes of global ele-

ments x and y, respectively. Then, the atomic level similarity between x and y is de-

fined as follows:

() ()

() ()

()

((), ()) 2
() ()

k

i j

k

c A x A y

A

i j

c A x c A y

I c

Sim A x A y
I c I c



 

 




 
.

(IV.1)

Eq. IV.1 can be seen as a combination of the IC-based measure and the Jaccard

coefficient (see Eqs. II.2 and II.5). The probability of each atomic node is taken at its

frequency using any corpus related to the source and target schemas. For instance, we

can use a corpus formed by all node labels in both the source and target schemas or

by all words extracted from some domain specific documents.

Eq. IV.1 is based on the assumption that the source and target schemas share a

significant number of atomic nodes. Two atomic nodes can be treated as either com-

pletely similar (with a similarity score of 1) if they have the same label or completely

dissimilar (with a similarity score of 0) if they do not. Eq. IV.1 can be generalized for

use in situations where similarity scores among many atomic node pairs are between

48

0 and 1 [Peng 2006]. For that, we partition)(xA into two sets:)(1 xA contains those

components of x that have similar counterparts in)(yA (i.e., with non-zero pair-wise

similarity), and)()()(12 xAxAxA  . Similarly, we partition)(yA to)(1 yA and

)(2 yA . For every)(xAci  , we define its map to)(yA as follows:

()() max (,) 0
ji c A y i jm c Sim c c  .

(IV.2)

Then the similarity of x to y is given as

1

1 2 2

()

() () ()

(, ()) ()
(,)

()

i

i

c A x i i i

A

c A x A x A y i

Sim c m c I c
Sim x y

I c



  

 



.

(IV.3)

The numerator of Eq. IV.3 is the sum of information content of the similar

components of x and y, weighted by the similarities of individual pairs. It measures

the commonality under the non-exact matches of components. The denominator, as a

normalization factor, is the sum of information content of all components of x and y.

IV.2.2. Label similarity measures

The label or name x of a node is a word or concatenation of words (or their ab-

breviations). There is one approach for label similarity measure known as the string-

based metric. It computes similarity between two labels. As we discussed in Chapter

II.1.1, the string-based metric can be enhanced using language-based metric and lin-

guistic resources. Therefore, before two labels are compared, a pre-process called

“label normalization” (denoted as L(x)) is conducted to obtain full words from the

concatenations and abbreviations. For example, L (VehicleInformation) = {vehicle,

49

information}. To better ascertain the semantics of these words and to deal with the

problem of synonyms, each word is expanded using its description found in WordNet.

The descriptions can be also obtained from a variety types of sources such as schema

annotation, web search, business related documentation, and so on.

The descriptions of all the words in L(x) are then put together under two con-

straints to form a vector of words, W(x). First, for a fair comparison, W(x) should be

independent of the lengths of descriptions, which vary greatly from word to word.

One possible way to achieve this is to normalize W(x) by making the length of de-

scriptions for all W(x) the same. Secondly, words in L(x) are not equally important in

defining x‟s semantics (e.g., “vehicle” is certainly more important than “information”

in the label “VehicleInformation”). There are several ways to address this issue such

as noun phrase analysis from natural language processing. An easiest way is to dupli-

cate more important words and to truncate less important words in the L(x). The im-

portance of the words can be obtained from its information contents. Finally, the si-

milarity of labels x and y can be measured by a variety of string-level similarity

measures (see Chapter II.1.1) on the normalized W(x) and W(y). We use the cosine

similarity measure for our experiments.

Another approach of label similarity is to obtain the semantics for each label us-

ing topic signature [Hovy 1999]. The topic signature is defined as a family of related

terms:

1 1{ , (,)...(,)... }i iTS t w s w s   ,

(IV.4)

50

where t is the topic (i.e. the target concept) and each wi is a word associated with the

topic, with strength si.

To obtain the topic signature for a specific word, we retrieved the most frequent

words from several document sources such as Google, dictionary and domain specific

documents, after removing stop-words (see Appendix C). Then, we could collect all

related terms to the labels and compute the similarity of labels x and y using string-

level similarity measures (e.g., cosine similarity measure). This approach is alterna-

tively applied to compute the label similarities for top layer nodes (i.e., SimT).

IV.2.3. Inner-layer similarity measures

Any type of structure-level similarity measure can be used to compute inner-

layer similarity. However, two schemas (i.e., AIAG and T&HE) used for experiments

have very different labels and structures in their inner-layers (see Figure IV.1). There-

fore, currently we only extend the label similarity measure for the inner-layer‟s simi-

larity measures (i.e., SimI). In this case, x (and y) is the union of labels of all inner

nodes. Other structure-level similarity measures will be investigated as further re-

search.

IV.2.4. Combined similarity score

A variety of algorithms for combining individual similarity measures for the

three layers (SimA, SimT, SimI) can be used, such as average(a, b, c), max(a, b, c), ad-

ditive (a + b + c - ab - bc - ac + abc = 1 – (1 – a)(1 – b)(1 – c)), and weighted sum.

The weighted sum can be defined as follows:

51

(,) A A T T I ISim x y w Sim w Sim w Sim   , (IV.5)

where 1A T Iw w w   .

The weighted sum has the advantage of allowing the adjustment of weights to

best reflect the importance of measures at individual layers. However, finding the best

weights is a challenge. Currently, the weights are obtained from the domain experts

or learned from human semantic matching data. This is another area for future re-

search.

IV.3. Experiments and Results

IV.3.1. Experimental data

To test and evaluate the proposed approach, we obtained schemas and manual

matching data from two different workgroups at the Automotive Industry Action

Group (AIAG), the AIAG Resource schema and the Truck and Heavy Equipment

(T&HE) schema as the target and source, respectively. Table IV.1 summarizes the

characteristics of the AIAG Resource and T&HE XML schemas.

Table IV.1. Characteristics of AIAG and T&HE schemas

 AIAG Resource Schema T&HE Schema

Total # of atoms 67688 53812

of distinct atoms

793 825

non-OAG OAG non-OAG OAG

90 703 119 706

Both schemas are based on the OAG common core component schema [OAG

2002] and have many overlapping concepts. More than 70% of atomic nodes in the

52

two schemas are defined in the OAG schema. However, they define certain elements

of similar concepts quite differently as shown in Figure IV.1. At the component level

there are the set of 139 global (top) elements defined in the T&HE schema, that need

to be mapped into the set of 145 global (top) elements of the AIAG Resource schema.

The semantic distances of 139 x 145 (~ 20,000) pairs of elements thus need to be ex-

amined. Roughly 140 human hours were spent to map 49 of the 139 top elements in

T&HE to those in AIAG Resource schema. Substantial amount of time is further re-

quired to merge at the document (message) level. This is an indication that manual

matching is very time consuming.

The 49 manual matchings produced by human integrators were used as the basis

to evaluate the performance of the proposed approach. For each of the 49 T&HE

global elements, the matching algorithm recommends the top-k matching (the most

similar AIAG elements) based on a similarity measure. The performance of the pro-

posed approach has been evaluated using a set rather than a single recommendation,

because the objective is not to fully automate the process, but rather to assist a human

expert. A recommendation is considered successful (called hit) if it contains the ma-

nual matching from the human integrators.

IV.3.2. Performance measures for evaluation

The matching algorithm generates the top-k matching for each recommendation

(the k number of best matchings in the recommendation) ranked according to their

semantic similarity scores. To identify the optimal size of k in this experiment, we

analyzed the matching results by different size of top-k with certain parameters (i.e.,

53

the same parameters used by the combined measure of the experiment #1 in the next

section). Figure IV.2 shows the matching results from top-1 to top-10 matchings.

Figure IV.2. Matching results by different size of top-k.

Most of hits were identified by the top-five recommendations. Therefore, only

top-5 matching (i.e., the five most similar) results were used to analyze the perfor-

mance of our experiments.

The performance of our approach is measured by the Recall, which is the ratio

of the number of hits and the number of the correct matchings (see Eq. II.8.). Because

our matching results contain k number of the best matchings for each hit with differ-

ent similarities, the Recall may provide an inaccurate measure without considering

the ranking of the target object within a recommendation. We employed a new Recall

performance measure, called Weighted-Sum Recall (WSR), which gives each hit a

54

weight according to the ranking of the correct matching in the recommendation. The

WSR can be defined as follows.

Definition IV.1: (Weighted-Sum Recall) Let k be the size of the best matchings in the

recommendations of top-k matching, and wi be a weight assigned to a hit in which the

correct matching is ranked as ith best in the recommendation.

th

1

(number of hits with correct matching ranked as best)

WSR =
total number of correct matching

k

i

i

w i



 (IV.6)

In this experiment, k = 5 and to give more weights to the best ranked hits, the

following weights were used: 1.0 (w1), 0.8 (w2), 0.6 (w3), 0.4 (w4), and 0.2 (w5).

IV.3.3. Results analysis

A prototype system is implemented. The system not only computes SimA, SimT,

SimI as given in Eqs. IV.1 and IV.3 but also supports several combination rules, in-

cluding Eq. IV.5. A variety of experiments has been conducted with different parame-

ters. To combine individual similarity measures for the three layers (SimA, SimT, SimI),

we used the weighted sum algorithm by Eq. IV.5 with the balanced weights for all

layers (i.e., A T Iw w w ). As described in Chapter IV.2.2, two types of semantic

sources were used for top-layer measure (i.e., WordNet and topic signature). For the

first experiment, WordNet semantic source was used. Results from various similarity

measures (individual and combined) were obtained and reported in the table below.

55

Table IV.2. Experiment #1 Results

Similarity measure # of hits

TSim
 35

ISim
 8

ASim
 23

Weighted sum 28

Evidently, atomic-layer and inner-layer measures alone produce poor results

(with 22 and 8 hits, respectively). This is because, as discussed earlier, the same set of

atomic and inner nodes can be used to produce several semantically different ele-

ments (just like the same ingredients can be cooked into several kinds of dishes). The

top-layer measure produces the best matching result (with 35 hits), even better than

the combined measure by the weighted sum (with 28 hits). It suggests that more

weight needs to be given to top layer label similarities. The combination weights can

be adjusted according to the ratio of the number of hits in each individual measure

(approximately with 0.53, 0.12, and 0.35, respectively). The adjusted combination

weights increased the number of hits to 31 matchings, but it is still worse than top-

layer measure (with 35 hits). Detailed matching results of this second experiment are

shown in Table IV.3.

In terms of the total number of hits by top-5 matching, the top-layer measure is

still best (with 35 hits). However, in terms of the numbers of hits by matchings

ranked as 1st and 2nd best in the recommendations, and WSR, the combined measure

produces better results than top-layer measure (with 27 and 20 hits, and 0.56 and 0.54

WSR, respectively).

56

Table IV.3. Experiment #2 Results

 TSim ISim ASim weighted

sum

of hits 1
st

best 19 2 8 18

2
nd

 best 1 1 8 9

3
rd

 best 7 3 3 3

4
th

 best 4 1 1 0

5
th

 best 4 1 2 1

top-5 total 35 8 22 31

 Recall 0.71 0.16 0.45 0.63

Weighted-Sum Recall 0.54 0.11 0.35 0.56

This conclusion is also supported by the third experiment where the topic signa-

ture is used for top-layer measure. Table IV.4 shows the results of individual and

combined measures for the third experiment.

Table IV.4. Experiment #3 Results

 TSim ISim ASim weighted

sum

of hits 1
st

best 21 2 8 21

2
nd

 best 4 1 8 4

3
rd

 best 4 3 3 6

4
th

 best 0 1 1 3

5
th

 best 2 1 2 1

top-5 total 31 8 22 35

 Recall 0.63 0.16 0.45 0.71

Weighted-Sum Recall 0.55 0.11 0.35 0.60

In this experiment, the combined measure has clearly better result than others in

terms of top-5 matching and WSR. The weighted sum leads to roughly 71% correct

matchings representing 35 of the 49 manual matchings. The results of these experi-

57

ments are encouraging, considering the difficulty of the problem for even experienced

integrators.

IV.4. Large-Scale Schema Matching by Parallel and Distributed

Computing

This section presents a schema matching architecture using a grid computing

technology called MPJ, to enhance the computational efficiency of the proposed

XML schema matching algorithm.

IV.4.1. General architecture

The layered approach can be expanded to improve the computational efficiency

by using grid computing technologies. We have developed a Grid computing archi-

tecture for XML schema matching based on Service-Oriented Architecture (GX-

SOA) 16. This system can assist not only the proposed layered approach of schema

matching, but also the e-Business vendors to employ easily the functionality of se-

mantic similarity analysis. Figure IV.3 shows an overview of the GX-SOA.

16
 Service-oriented Architecture (SoA) is a flexible set of design principles used during the

phases of systems development and integration in computing.

58

Source

XML

Schemas

Target

XML

Schemas

SOAP

Client

SOAP/

HTTP

S2S* - Schema to Schema

E2E* - Element to Element
GCM* - Grid Computing Manager

UDDI Directory Server

UDDI/

HTTP

UDDI/

HTTP

SOAP/

HTTP

Schema Repository Service

Source

XML

Schemas

Target

XML

Schemas

SOAP/

HTTP

S2S

Similarity

Matrix

target elements

so
u
rc

e
 e

le
m

e
n
ts

machines:
List of elements in Grid
(Hostname or
IP address)

E2E grid

MPJ daemon
MPJ

MPJ daemon

Master
ID = 0

GCM

Grid Computing based on MPJ

idx idx

Figure IV.3. Overview of the GX-SOA.

59

The architecture consists of three main SOA components: a schema matching

SOAP17 client, Grid enhanced XML schema matching Web Services (GX-WS), and a

Universal Description Discovery and Integration (UDDI) 18 directory service. The

schema matching SOAP client can be any kind of software that uses the GX-WS as

long as it supports messaging using SOAP 1.119 or 1.220 specifications.

First, the GX-WS publishes its own Web Services Description Language

(WSDL)21 service description at a public UDDI directory server. Any SOAP client

can find the WSDL service description of the GX-WS through the public UDDI di-

rectory server. Note that there are several supporting tools, such as AXIS222 and

Tomcat23, for generating a SOAP message generator/parser according to the given

17
 Simple Object Access Protocol (SOAP) is a protocol specification for exchanging struc-

tured information in the implementation of Web Services in computer networks.

18
 Universal Description, Discovery and Integration (UDDI) is a platform-independent, Ex-

tensible Markup Language (XML)-based registry for businesses worldwide to list themselves

on the Internet and a mechanism to register and locate web service applications.

19
 Available at http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

20
 Available at http://www.w3.org/TR/soap12-part0/ and http://www.w3.org/TR/soap12-

part1/

21
 Web Services Description Language (WSDL) is an XML-based language that provides a

model for describing Web services.

22
 Apache AXIS2 is a core engine for Web Services. It not only provides the capability to add

Web services interfaces to Web applications, but can also function as a standalone server ap-

plication.

23
 Apache Tomcat is an open source servlet container developed by the Apache Software

Foundation (ASF). Available at http://tomcat.apache.org/

60

WSDL. Finally, the schema matching SOAP client can invoke the GX-WS to request

a schema matching analysis for a given source and target XML schemas.

The GX-WS consists of four components: a Schema-to-Schema (S2S) matching

service, a Grid Computing Manager (GCM), an Element-to-Element (E2E) matching

service, and a schema repository service. First, the S2S matching service is the main

component providing an interface for SOAP clients to access the matching service.

The S2S matching service produces a similarity matrix that contains the semantic si-

milarities between all comparable source and target element pairs. Secondly, the

GCM is a sub-component of the S2S matching service that initiates the grid compu-

ting network and assigns jobs to the grid cells, which are the E2E matching services.

Thirdly, E2E matching services execute semantic similarity measures between two

elements by using the given similarity matching algorithm. Last but not least, the

schema repository service is a web service that manages XML schemas via a perma-

nent repository.

IV.4.2. Use cases and scenarios

Figure IV.4 illustrates a use case model of GX-WS. Five actors are defined,

such as a SOAP client, a UDDI directory service, a S2S matching service with GCM,

an E2E matching service, and a schema repository service.

61

Grid Computing

Figure IV.4. Use case diagram for GX-SOA.

The use case scenario is as follows: 1) S2S matching service publishes its

WSDL service description on UDDI directory service; 2) a SOAP client invokes the

schema matching analysis web services according to the WSDL service description of

S2S matching service registered in UDDI; 3) S2S matching service creates a similari-

ty matrix and distributes the similarity analysis jobs for every cell in the matrix to the

E2E matching service with indices of the source and target elements to be analyzed;

5) E2E matching service computes the semantic similarity by using the given simi-

larity algorithm with the source and target schemas obtained from the schema reposi-

tory service; and 6) S2S matching service collects all similarity results and, finally,

returns the matching target candidate elements for each element in the source schema

based on their semantic similarities.

62

IV.4.3. MPJ implementation

 The proposed GX-SOA uses a MPI-like Message Passing for Java (MPJ)

software toolkit. Figure IV.5 shows the pseudo-code of MPJ implementation.

Algorithm GCM(source,target,args)

1. initialize MPJ engine with args;

2. machine_type:= MPJ.Type(); // Master or Slave

3. num_or_machines:= MPJ.Size();

4. if machine_type is Master then

5. for (i = 0; i < source; i++)

6. for (j = 0; j < target; j++)

7. job_index:= { i, j }; k++;

8. if k is smaller than num_or_machines then

9. send initial job assign request to k
th
 machine

 with job_index;

10. else
11. wait until any machine completes the assigned job;

 if a machine completed the assigned job then

12. simMatrix[job_index]:= retrieve the result
 from the machine;

13. send new job assign request to the machine;
14. end if;
15. end if;
16. end for;
17. end for;
18. finalize MPJ engine;
19. return {simMatrix};
20. else if machine_type is Slave then
21. wait until Master sends the job assign request;
22. --- job processing ---
23. finalize MPJ engine;
24. return the result to Master machine;
25. end if;

Figure IV.5. Pseudo-code of the MPJ implementation.

The MPJ approach is well-suited to handle computations where a task is divided

up into subtasks, with most of the processes used to compute the subtasks, and only a

63

few processes (often just one process) used to manage the tasks. The manager is

called the "master," and the others the "slaves."

The first step to implement grid computing is to initialize the MPJ (lines 1 – 3).

After that, the processors are divided into two communicators, with one processor as

the master (lines 4 – 19) and the others as the slaves (lines 20 – 24). The master as-

signs initial subtasks to the active slaves and then waits until each slave finishes its

task. Once a slave returns the result of its given task, the next subtask is assigned.

Thus, faster processors will process more subtasks.

IV.4.4. Experiments and results

A prototype system with an example SOAP client was implemented using Ec-

lipse24, JDK 625, and the Google Web Toolkit26 based on Tomcat27 and AXIS2. Its

performance was evaluated with the same sets of XML schemas (i.e., AIAG and

T&HE).

24
 Eclipse is a multi-language software development environment comprising an integrated

development environment (IDE) and an extensible plug-in system. Available at

http://www.eclipse.org/

25
 Java Development Kit (JDK) version 6. Available at

http://www.oracle.com/technetwork/java/javase/downloads/index.html

26
 Google Web Toolkit (GWT) is an open source set of tools that allows web developers to

create and maintain complex JavaScript front-end applications in Java. Available at

http://code.google.com/webtoolkit/

27
 Apache Tomcat is an open source servlet container developed by the Apache Software

Foundation (ASF). Available at http://tomcat.apache.org/

64

The execution time for semantic similarity analysis was calculated while the

system runs the combined measure of the layered approach. Without the help of grid

computing, the execution time was 420 sec. Increasing the number of processors in

the grid computing network reduced the execution time. Figure IV.6 shows that the

execution time decreases as the number of processes increases.

200000

250000

300000

350000

400000

450000

1 2 3 4 5

of machines

e
xe

cu
ti

o
n

 t
im

e
 (

m
se

c) 420sec (7mins)

230sec (4mins)

46% improved

Figure IV.6. The number of machines vs. execution time.

In the ideal case of distributing the computation, the execution time should be

decreased by inverse proportion to the number of machines as execution_time(n) ∝

execution_time(1) / n, where n is the number of machines. However, the actual execu-

tion takes longer than the ideal due to the trade-off between networking overhead and

performance. Figure IV.7 shows the comparisons of the execution time among actual,

ideal, and other cases.

65

Figure IV.7. Comparison of execution time by actual vs. ideals.

If five machines are used, the actual execution takes twice as much time as the

ideal (by the graph of the function “1/n” in Figure IV.7). As shown in Figure IV.7, the

curve of actual execution time is more likely to be similar to the curve of a reciprocal

logarithmic function as follows:

2execution_time(n) = execution_time(1) / log (n+1) + c ,

(IV.7)

where c is a constant value.

When c = 60000, especially, both curves are almost identical. This result im-

plies that the proposed grid computing requires the constant time (60 secs) to initiate

the MPJ module and the networking overhead reduces the performance to a logarith-

mic proportion. However, the results also show that the proposed network could suc-

cessfully improve in performance by reducing the semantic similarity computation

time for the two large-scale XML schemas.

66

IV.5. Chapter Summary

In this chapter, we proposed an innovative semantic similarity analysis ap-

proach for c-matching of XML schemas which exploits semantic information embed-

ded in XML schemas beyond existing methods. This was done by dividing data ele-

ments into layers and measuring semantic similarity using layer specific metrics. We

also implemented a prototype system to evaluate the proposed approach. This system

recommends for each element in a source XML schema a set of matching candidates

in a target schema based on the semantic similarity measures between the elements in

these two schemas. The proposed approach and prototype system have the potential

to provide valuable help for the human integrators solving the problem of XML

schema matching, merging and reuse.

A series of experiments have been conducted with encouraging results, the sys-

tem found a match to the human experts‟ matching results in 31 of 49 cases in a real

world application. The experiments also revealed that the problem is much more

complicated than we initially thought. One observation is that the scores of or similar-

ity measures vary greatly among the manual matchings (ranging from 0 to 1). This

calls for further examination of the similarity measures and of the way they are com-

bined, and for exploring more elaborated matching procedures.

We also proposed a service-oriented architecture for XML schema matching

based on a grid computing technology in order to reduce the computational cost for

the layered approach with large schemas. We implemented a prototype to evaluate the

proposed approach which can provide efficient and highly extensible XML schema

67

matching web services. The existing schema matching tools can extend their software

functionalities to support automated schema matching simply by invoking our web

services. The experiment results showed encouraging improvements in performance

by reducing significantly the computation time of the semantic similarity between

two large-scale XML schemas.

68

CHAPTER V

AN OPTIMIZATION APPROACH FOR XML DOCUMENT

SCHEMA MATCHING

In the previous chapter, we proposed the layered approach for analyzing c-

matching between two component schemas. Another important matching task for

B2B systems integration is the document schema matching (d-matching), which iden-

tifies relationships between nodes of two document schemas. The d-matching prob-

lems can be classified into one of two types: f-matching (all nodes are fully matched

to create an integrated schema) and a-matching (only atomic nodes are matched to

determine how to transform one instance into another).

In this chapter, we propose an a-matching algorithm for analyzing schema

matching between two XML document schemas using semantic similarity measures.

Our approach focuses on a combinatorial optimization problem of finding the best

matching between two sets of atomic nodes. It finds the optimal set of matching pairs

between two sets of atomic nodes in a principled manner by mathematical program-

ming. The proposed approach utilizes both structural and linguistic information in

XML schemas. For structural information, we focus on the path-contexts which iden-

tify one type of the structural context of atomic nodes. For linguistic information, we

utilize the WordNet to obtain the semantic information for the words in the labels of

nodes.

69

V.1. Matching Algorithm Overview

The matching algorithm takes two schemas as input and identifies the set of

matching pairs of all atomic nodes with the highest semantic similarity among all

possible sets of pair-wise matchings. Figure V.1 illustrates the matching process of

our approach for two input schemas, S1 and S2.

The algorithm breaks the complex combinatorial optimization problem of a-

matching into four matching stages: tree-to-tree (between the sets of atomic nodes of

the two schema trees), path-to-path (between the sets of nodes on the paths of two

atomic nodes), node-to-node (between sets of words in the labels of two nodes), and

word-to-word (between multiple senses of two words) matchings.

The main advantage of this decomposition is to make the matching problem

simpler. The optimal matching problem for each stage can be more easily addressed.

Another advantage is to provide a framework for users to iteratively analyze the re-

sults and input their feedbacks. It is widely accepted that the matching process cannot

be fully automated and user intervention is always required [Rahm 2001 and Shvaiko

2005]. In most existing matching algorithms, the user input is requested at pre-match

(to provide an initial matching) or at post-match simply to validate the matching out-

put. In our proposed approach, users can iteratively review the matching results of

each stage and input their feedbacks in terms of matching corrections between two

word senses, two words, two nodes, or two paths. We assume that users know the

contexts of schemas and understand the matching result to decide whether a matching

is correct to produce a desired transformation pair.

70

Figure V.1. Matching algorithm overview.

S1

input

User feedback

Matching can-

didates

Matching

result

matching

iteration

path matching

feedback
node matching

feedback

word matching

feedback

output

user interaction
(optional)

stage 3 stage 2 stage 1

Tree-to-Tree

matching

Path-to-Path

matching

Node-to-Node

matching

Word-to-Word

matching

stage 4

S2

Schema

word

sense

word node atomic

nodes

71

As can be seen in Figure V.2, each stage works on a bipartite graph, consisting

of two sets of vertices and a weight matrix between them, with the objective of find-

ing the 1-to-1 matching between vertices in one set to the other with the highest com-

bined weight. Therefore, we formulate these sub-problems as maximum-weighted

bipartite graph matching problems [Dulmage 1958].

Figure V.2. Weighted bipartite graph modeling for different levels of

matching.

Except for the word-to-word matching at the bottom stage, the weight matrix

between pairs of edges for each stage is a similarity matrix calculated by the previous

stage. For example, the similarity matrix for tree-to-tree matching stage is provided

by path-to-path matching stage. The word-to-word matching stage uses WordNet to

P
1
 P

2

N
1
 N

2

EP

EN

(b) path-to-path

(c) node-to-node

T
1
 T

2

P1

P2

(a) tree-to-tree

ET

W
1
 W

2

Ew

(d) word-to-word

atomic

node

node

word

word

sense

72

compute the semantic similarity between two words by identifying the optimal

matching pairs in respective senses.

Except the path-to-path matching stage, optimal matching at each stage can be

obtained according to the general Maximum-weighted Bipartite Matching algorithm

(MBM) [Douglas 1999]. The path-to-path matching requires an additional ordering

criterion [Carmel 2002] that path P1 includes most of the nodes of path P2 in the cor-

rect order as shown in Figure V.2 (b). This is called Ordered Maximum-weighted Bi-

partite Matching (OMBM) problem. Algorithms for solving the MBM and the OMBM

problems are described in the following sections.

V.2. Maximum-Weighted Bipartite Matching Algorithm

Tree-to-tree, node-to-node, and word-to-word matching stages can be formu-

lated as the general weighted bipartite graph matching problems. Let G be a weighted

bipartite graph with two sets of vertices, 1 2{ , ,..., }mU u u u and 1 2{ , ,..., }nV v v v , and

the set of edges, E. Edge eij in the graph connects the vertices ui and vj whose weight

wij is given in the weight matrix W. Vertices of the same set are not connected.

A matching M of graph G is a subset of E such that no two edges in M share a

common vertex. In other words, the matching M consists of a set of matching pairs

that satisfies 1-to-1 pair-wise matching. The maximum-weighted bipartite matching is

a matching whose sum of the weights of the edges is the highest among all possible

sets of pair-wise matchings. The optimal matching M can be found by integer pro-

gramming as defined below:

73

Definition V.1: (Optimal maximum-weighted bipartite matching) Given a matching

M between two vector sets U and V, let x be an incident set where ijx = 1 if (,)i j M

and 0 otherwise. wij is a weight for matching between i and j where i U and j V .

One can formulate the optimal maximum-weighted bipartite matching problem as fol-

lows:

Maximize:
,

ij ij

i U j V

w x
 

 , (V.1)

subject to:

1ij

i U

x


 j V  ,

1ij

j V

x


 i U  , and

{0,1}ijx  ,i U j V   .

Because integer programming is typically NP-hard (i.e., harder than a nonde-

terministic polynomial-time problem and in the worst case with running time expo-

nential to the problem size) [Papadimitriou 1981], we approximate it by a simple

greedy algorithm as follows:

Algorithm MBM-greedy(U,V,W)

1. m:= |U|, n:= |V|, M:= ;
2. sort W;

3. while (|U|>0 and |V|>0)

4. Choose vertices u and v connected with an edge e that

has the highest weight w in the weight matrix W;

5. if edges in M share neither u nor v

6. then M:= M{e}, U:= U-{u}, V:= V-{v}, wsum:= wsum+w;
7. end if;

8. W[u,v]:= 0;

9. end while;

10. Sim:= 2*wsum/(m+n);

74

11. return {M, Sim};

Figure V.3. Greedy algorithm for maximum-weighted bipartite matching.

The greedy algorithm simply sorts the weight matrix W in descending order,

and at each iteration it chooses an edge with the highest weight. The initial weight

matrix W is calculated by the previous matching stage. The chosen edge will be the

matching candidate if it shares no vertex with edges already in M. This process is re-

peated until there is no vertex to be matched in either U or V. The algorithm returns a

(sub) optimal matching M and the average weight of all edges in M as the measure of

similarity between U and V. In this greedy algorithm, the most expensive step is the

sorting of the weight matrix W of size | | | |U V . We use a quicksort algorithm

[Hoare 1962] that takes (log())O k k to sort k items. Therefore, the complexity of this

greedy algorithm is (| || | log(| || |))O U V U V .

V.3. Ordered Maximum-Weighted Bipartite Matching Algorithm

Some have suggested using the longest common sequence (LCS) to address the

ordering criterion of OMBM problems such as our path-to-path matching [Boukottaya

2005; Douglas 1999; and Mong 2002]. However, these suggestions only employ the

exact string matching between nodes on two path contexts. None of them utilizes the

semantic similarities of the nodes on the two path contexts. To consider the semantic

similarities of the nodes, we have developed an ordered maximum-weighted bipartite

matching algorithm based on dynamic programming as follows.

75

Definition V.2: (Optimal ordered maximum-weighted bipartite matching) Let G be a

weighted bipartite graph with two ordered sets of vertices 1 2{ , ,..., }mU u u u and

1 2{ , ,..., }nV v v v , and the set of edge E and the weight matrix W. The core algorithm,

OMBM (U, V), finds the optimal matching M between U and V by recursively parti-

tioning the problem into smaller sub-problems until the solution becomes trivial. Note

again that W is calculated by the previous matching stage (i.e., node-to-node match-

ing stage). For a sequence S=s1s2…sd, a subsequence shortened from the end is de-

noted Sk=s1s2…sk, where k d . We call Sk the prefix of S. The prefixes of U are U1,

U2 ,…, Um, and the prefixes of V are V1,V2,…Vn. Let OMBM (Ui, Vj) be the function

that finds the optimal matching of prefixes Ui and Vj. This can be solved by first re-

ducing the original problem to three simpler sub-problems with shortened prefixes

and by returning the solution for one of the sub-problems with maximum sum of

weights:

1) ui and vj match each other. Then, the optimal matching for Ui and Vj can be

formed by attaching edge eij to the optimal matching of two shorten sequences

1iU  and 1jV  , denoted (OMBM (Ui-1, Vj-1), eij).

2) ui and vj do not match each other. Then, either of them can be removed to shorten

one of two the sequences and OMBM (Ui, Vj) is reduced to either OMBM (Ui-1, Vj)

or OMBM (Ui, Vj-1).

Thus OMBM (Ui, Vj) can be computed by the following recursive function:

76

 

1

1

1 1

(,),
(,)

(,),

(,),

i j

i j

i j

i j ij

if i = 0 or j = 0

OMBM U V
OMBM U V

max OMBM U V otherwise

OMBM U V e





 




    
 


 

  
  

. (V.2)

where the function max returns the optimal matching among the three matchings from

the sub-problems based on the similarity scores returned by OMBM; it returns empty

if either Ui or Vj is reduced to null (i = 0 or j = 0).

The similarity score of OMBM (Ui, Vj), denoted SimOBMB (Ui, Vj), is the aver-

age weight (similarity score) of all edges (matching pairs) in the matching. It can be

calculated by Eq. III.1 as follows:

 
 ,

2
,

ij i j

OMBM i j ij
e OMBM U V

Sim U V w
i j 

 


.

(V.3)

The optimal matching M of two sets of ordered vertices U and V, |U| = m, |V| =

n, is then computed as:

   , ,m nM OMBM U V OMBM U V  .

(V.4)

By Eq. III.1, the similarity score of M, denoted SimOBMB (U, V) can be calculated

as follows:

 
2

,
| | | | ij

OMBM ij
e M

Sim U V w
U V 

 


.

(V.5)

The example below shows how the optimal matching and similarity score be-

tween two simple path contexts is calculated by Eqs. V.4 and V.5.

77

Example V.1: Consider two path contexts “PO/BillTo/Zip” and “PurchaseOrd-

er/Customer/Address/Postal”. Let P1 and P2 be the ordered sets of nodes on these

two paths:

1 { , , }PO BillTo ZipP n n n and 2 { , , , }PurchaseOrder Customer Address PostalP n n n n .

Suppose that the similarity scores among all node pairs between the two sets P1

and P2 are as follows:

 , 1.0N

PO PurchaseOrdersim n n  ,  , 0.6N

BillTo Customersim n n  ,

 , 0.4N

BillTo Addresssim n n  , and  , 1.0N

Zip Postalsim n n  .

The similarities between all other pairs are 0. By Eqs. V.3 and V.4, OMBM (P1,

P2) of Eq. V.2 returns the optimal matching for the nodes between the two paths as

follows:

{(,), (,), (,)}PO PurchaseOrder BillTo Customer Zip PostalM n n n n n n .

By Eq. V.5, the similarity score is

      1, 2 1.0 0.6 1.0 2 / 3 4 0.74OMBMSim P P       .

To efficiently execute the algorithm, we use a bottom-up approach [Bellman

2003]. The algorithm is as follows:

78

Algorithm OMBM-A(U,V,W)

1. for i from 1 to |U|
2. for j from 1 to |V|
3. A[i,j]:= maximum of A[i-1,j], A[i,j-1],

 and A[i-1,j-1]+W[i,j];

4. Sim:= 2*A[|U|,|V|]/(|U|+|V|);
5. return {A, Sim};

Figure V.4. Bottom-up dynamic programming algorithm for ordered maxi-

mum-weighted bipartite matching.

This algorithm starts from the simplest matching between U1 and V1 and contin-

ues to more complex matching problems. The calculated similarity scores for the op-

timal matchings (average weights by Eq. V.5) are stored in a similarity matrix A[i,j]

of the two dimensional array in Figure V.4. The bottom-up approach helps to avoid

repeated calculations of smaller problems, whose similarity scores are stored in the

similarity matrix A[]. The complexity is only O (|U||V|), i.e., linear to the size of the

similarity matrix A[].

Based on the similarity matrix A[] calculated by OMBM-A, Figure V.5 shows an

algorithm to generate the pair-wise matching between two nodes in U and V. This

pair-wise matching forms the optimal path-to-path matching.

Algorithm OMBM(U,V,W)

1. M:= ;
2. {A,Sim}:= OMBM-A(U,V,W);

3. i:= |U|, j:= |V|;

4. while i > 0 and j > 0

5. if A[i,j] equal to A[i-1,j] then i--;

6. else if A[i,j] equal to A[i,j-1] then j--;

7. else M:= M{ei,j}, i--, j--;
8. end if;

79

9. end while;

10. return {M, Sim};

Figure V.5. Dynamic programming algorithm for ordered maximum-weighted

bipartite matching.

How this bottom-up dynamic programming algorithm works is illustrated below

using the same example defined in Example V.1.

Example V.2: Consider P1 and P2 for the two path contexts defined in Example V.1.

The weight matrix W is initialized by the similarity scores between all pairs of nodes

as shown below:

Table V.1. An Example of Weight Matrix

W
3 2 1

POn
BillTon Zipn

4 PurchaseOrdern 0.0 0.0 1.0

3 Customern 0.6 0.0 0.0

2 Addressn 0.4 0.0 0.0

1 Postaln 0.0 1.0 0.0

The array A[] for calculating the matching similarity scores can be represented as fol-

lows.

Table V.2. An Example of Matching Similarity Score Table

A 3 2 1 0

4 1.0+1.6=2.6 1.6 1.0 0.0

3 1.6 0.6+1.0=1.6 1.0 0.0

2 1.6 0.4+1.0=1.4 1.0 0.0

1 1.0 1.0 1.0 0.0

0 0.0 0.0 0.0 0.0

80

Note that values in the array are not normalized. According to the algorithm

OMBM-A in Figure V.4, the value of A[i,j] is obtained from the maximum of the three

values: A[i-1,j], A[i,j-1], and A[i-1,j-1] + W[i,j], where 1 3i  and 1 4j  . The ini-

tial values of A[] set to zero.

The calculation starts from the simplest matching array A[1,1]. The algorithm

compares three values: A[1,0] = 0, A[0,1] = 0, and A[0,0] + W[1,1] = 1.0 and the max-

imum score 1.0 is chosen. To find the optimal matching by the ordered maximum

weighted bipartite matching algorithm, look at the first entry A[3,4]. It is calculated

by the maximum value among three matching scores: A[2,4] = 1.6, A[3,3] = 1.6, and

A[2,3] + W[3,4] = 1.6 + 1.0 = 2.6. The maximum value is 2.6, telling us the norma-

lized similarity by the average length of two paths is 2.6 (2 /(3 4)) 0.74   , which is

actually the same as what was calculated in Example V.1.

According to algorithm OMBM in Figure V.5, the optimal matching result can

be obtained by following the traces to reach the first entity A[3,4]. As highlighted in

Table V.2, the entities used to calculate A[3,4] are A[3,4], A[2,3], A[1,2], and A[1,1].

Then, the entities added their similarity scores are selected as matching: A[3,4],

A[2,3], and A[1,1], which lead to the optimal matching

 {(,), (,), (,)}PO PurchaseOrder BillTo Customer Zip PostalM n n n n n n .

Algorithm OMBM-A and OMBM are further enhanced by considering the dif-

ferences in importance for the individual nodes measured by their information con-

tents. We collect each node‟s frequency-of-occurrence in the schema trees and com-

81

pute the information contents by Eq. II.6. Figure V.6 shows the modified algorithm of

OMBM-A shown in Figure V.4 in which weights wij are modified by the IC values of

ui and vj.

Algorithm OMBM-A-IC(U,V,W)

1. for i from 1 to |U|

2. ic_sum:= ic_sum+ic(ui);

3. end for;

4. for j from 1 to |V|

5. ic_sum:= ic_sum+ic(vj);

6. end for;

7. for i from 1 to |U|

8. for j from 1 to |V|

9. ic_w:= W[ui,vj]*(ic(ui)+ic(vj));

10. A[i,j]:= maximum of A[i-1,j], A[i,j-1],
 and A[i-1,j-1]+ic_w;

11. end for;
12. end for;
13. Sim:= A[|U|,|V|]/ic_sum;
14. return {A, Sim};

Figure V.6. Algorithm enhanced by information contents.

Algorithm OMBM-A-IC modifies the original weights wij by the IC values of ui

and vj (line 9), and calculate new similarity weighted by the IC values. The modified

similarity is then normalized by the sum of IC values of all ui and vj (line 13). This

tends to give more weights to higher-level nodes because lower-level nodes are usual-

ly generic entities that appear widely as descendants of higher-level nodes and thus

have lower IC values. In addition, it also considers the differences in importance of

nodes at the same level. The OMBM-A-IC can be alternatively applied to consider the

differences in importance of nodes for OMBM. The complexity of this algorithm is

still O (|U||V|).

82

V.4. Overall Schema Matching Algorithm

Figure V.7 shows the algorithm for overall schema matching and explains how

each stage obtains the weight matrix by calling the optimization algorithm of the pre-

vious stage.

Algorithm A-matching(T1, T2)

1. return T2T-matching(T1,T2);

Function T2T-matching(T1, T2)

2. for i from 1 to |T1|

3. for j from 1 to |T2|

4. t2t-smatix[i,j]:= P2P-matching (path of T1’s i
th

 atom,

 path of T2’s j
th

 atom);

5. end for;

6. end for;

7. return MBM-greedy (T1’s atoms, T2’s atoms, t2t-smatix);

Function P2P-matching(P1, P2)

8. for i from 1 to |P1|

9. for j from 1 to |P2|

10. p2p-smatix[i,j]:= N2N-matching (P1’s ith node,
 P2’s j

th
 node);

11. end for;
12. end for;
13. return OMWM-IC (P1’s nodes, P2’s nodes, p2p-smatix);

Function N2N-matching(N1, N2)

14. for i from 1 to |N1|
15. for j from 1 to |N2|
16. n2n-smatix[i,j]:= W2W-matching (N1’s ith word,

 N2’s j
th
 word);

17. end for;
18. end for;
19. return MWM-greedy (N1’s words, N2’s words, n2n-smatix);

Function W2W-matching(W1, W2)

20. if wordnet definitions for W1 and W2 exists then

83

21. for i from 1 to |W1|
22. for j from 1 to |W2|
23. w2w-smatix[i,j]:= word-sense-sim (W1’s ith sense,

 W2’s j
th
 sense);

24. end for;
25. end for;
26. return MWM-greedy (W1’s senses, W2’s senses,

 w2w-smatix);

27. else
28. return word-desc-sim (W1, W2);
29. end if;

Figure V.7. Overall schema matching algorithm.

The algorithm considers matching between two schema trees as matching be-

tween two sets of atomic nodes (i.e., a-matching) with their respective path-contexts.

Each path consists of a sequence of nodes along the path from the root to the leaf of

the schema tree. Each node represents either an element or an attribute named by a

label of English word or concatenation of words or their abbreviations. To compute

semantics similarities between two words, we analyze optimal pair-wise matching

between multiple meaning (senses) of the two words.

The word-to-word matching algorithm uses two semantic similarity measure

functions: word-sense-sim based on WordNet taxonomy and word-desc-sim based on

textual description. In WordNet, nouns are organized into taxonomies in which each

node has a set of synonyms (a synset), each of which representing a single sense [Mil-

ler 1995]. If a word has multiple senses (meaning), it will appear in multiple synsets

at various locations in taxonomy. To compute the semantic similarity between two

words (two sets of senses), we use the MBM-greedy algorithm with the input of two

84

set of senses for words W1 and W2, respectively, and the similarities between the two

senses are calculated by Eq. II.6.

If a word does not exist in WordNet, we extract the textual description of a giv-

en word from the internet and then use string-similarity measures, such as the cosine

similarity [Sneath 1957], to calculate the similarity between the textual descriptions

of the two words.

V.5. Experiments and Results

A prototype system is implemented. The system implements MBM and OMBM

algorithms to compute the optimal a-matching between two XML schemas.

V.5.1. Experimental data

To test and evaluate the proposed approach, we used five real world XML

schemas for purchase orders (i.e., CIDX, Apertum, Excel, Norris, and Paragon) from

[Biztalk 2010 and Aumüller 2005]. Table V.3 summarizes the characteristics of those

XML schemas.

Table V.3. Characteristics of PO XML Schemas

Schemas CIDX Apertum Excel Norris Paragon

max depth 4 5 4 4 6

of nodes 40 145 55 65 80

of atomic nodes 33 116 42 54 68

85

V.5.2. Results analysis

In the experiment, as it was suggested in [Aumüller 2005], we compute the tree-

to-tree similarity of a-matching for all ten pairs of five XML schemas. Then for each

schema, we accept a matching to any of the other four if the similarity score is above

a fixed threshold 0.6. To evaluate the quality of our match result, we used several per-

formance metrics including “Precision”, “Recall”, “F-measure”, and “Overall”

[Aumüller 2005 and Makhoul 1999], against the results from manual matching

[Aumüller 2005]. These measures are then compared with the performances of other

approaches with the same setting [Madhavan 2001; Thang 2008; and Aumüller 2005].

Note that the “Overall” metric, proposed by [Aumüller 2005] to estimate the post-

match efforts, varies in [-1,1] and the other metrics vary in [0,1].

The performances of our results in “Precision”, “Recall”, “F-measure”, and

“Overall” are 0.85, 0.85, 0.85, and 0.69, respectively. To increase “Precision”, we

used a relative threshold which is chosen as the similarity of the matching with the

largest gap to the next best matching, among matching candidates with similarities

ranging from 0.5 to 0.6. Figure V.8 shows the performance analysis of the matching

result that our solution produced.

86

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Precision

Recall

F-measure

Overall

Figure V.8. Performance analysis #1.

The experiment results show that our matching performances of average Preci-

sion, Recall, F-measure, and Overall are 0.93, 0.83, 0.88, and 0.77, respectively.

Compared to the previous results that used a fixed threshold, the Recall slightly de-

creased, while the Precision significantly increased. The relative threshold also helps

to increase F-measure and Overall. For comparison purposes, the average scores of

performance metrics derived by other methods are given in Figure V.9.

The first comparison, as illustrated in Figure V.9 (a), is with Thang (2008) who

proposed an XML schema matching solution that combines linguistic, data type, and

path-context similarity measures. He also implemented the Cupid [Madhavan 2001]

algorithm for comparison purpose. We compared our result to both algorithms. In

general, all performance metrics of our approach are slightly better than Thang‟s and

significantly better than Cupid‟s.

87

Figure V.9. Performance analysis #2.

The second comparison is with COMA (COmbination MAtch) [Aumüller 2005],

which used various ways to combine different matchers. Since COMA only provides

performance graphs without the specific scores as shown in Figure V.9 (b), it is diffi-

cult to compare the performances with our result precisely. However, comparison be-

tween Figure V.8 and Figure V.9 (b) shows that our result is, in general, at least equal

(b) COMA: matcher combinations

(a) Thang and Cupid

0.93 0.91

0.74

0.83 0.83

0.68

0.88 0.87

0.710.77 0.75

0.44

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Our solution Thang Cupid

Precision

Recall

F-measure

Overall

88

to or slightly better than COMA‟s results even if some of their matchers used the ma-

nual matching called SchemaM [Aumüller 2005].

V.6. Chapter Summary

In this chapter, we have described a solution to identify semantic-based optimal

XML document schema matching using mathematical programming. This solution

identifies the optimal matching between two XML schemas on the assumption that

the a-matching problem can be globally optimized by reducing it to simpler problems,

such as path-to-path, node-to-node, and word-to-word matching. We have imple-

mented a prototype system for our solution and conducted experiments with actual

industry XML schemas. We compared our result to some other XML schema match-

ing approaches. The results were positive. The average matching performances of

“Precision”, “Recall”, “F-measure”, and “Overall” were 0.93, 0.83, 0.88, and 0.77,

respectively, which are better than or at least equal to other approaches‟ performances.

Although our approach primarily targets the XML schema matching problem,

the solution can be also applied to other matching problems - such as XML instance

matching if the instances can be represented as labeled trees (see Chapter VI). Our

solution is limited by the assumptions that only 1-to-1 matching is considered and

that schema designers correctly use the English terminologies when labeling the ele-

ments/attributes in the schemas. These limitations call for further research. Other di-

rections of research include methods to improve the performance by utilizing domain

specific terminology and taxonomy, ontology with formally defined concept seman-

tics, and user feedback.

89

CHAPTER VI

XML MATCHING APPLICATION –

SUPPLIER DISCOVERY

This chapter introduces an XML matching application to address the issue of

discovery of suppliers. The suppliers‟ manufacturing capability profiles and custom-

ers‟ requirements are typically represented based on semi-structured descriptions in

the form of textual information of their manufacturing products, processes, tools, ma-

terials, and resources. In this chapter, we employ a new form architecture based on

XML schema to help capturing requirements and capabilities in a better structured

way. Matchings between the collected requirements and capabilities are analyzed by

our optimal XML schema matching algorithm.

VI.1. Supplier Discovery Overview

In today‟s dynamic manufacturing industry, the discovery of manufacturing

suppliers – henceforth, supplier discovery – is essential for building a flexible net-

work of suppliers in the supply chain [Christopher 2004]. To facilitate supplier dis-

covery, several electronic marketplaces (e-marketplaces), such as Thomasnet 28 ,

28
 http://www.thomasnet.com/

90

mfg.com29, and GlobalSpec30, have been established. These e-marketplaces are com-

merce sites on public internet that allow large communities of customers and suppli-

ers to connect and trade with each other [Ariba 2000].

In general, the supplier discovery function in e-marketplaces involves two steps.

The first step is to collect supplier capabilities and customer requirements – hence-

forth collect function. In traditional e-marketplaces, form-based user interfaces are

typically used for the collect function [Dumas 2004 and Noia 2005]. However, those

forms are mostly fixed and pre-defined, so that they are not flexible enough to capture

a variety of requirements and capabilities. Therefore, some information is entered in

an unstructured way such as free texts. Different suppliers (or customers) often use

different terminologies and structures with their own semantics to represent their own

capabilities (or requirements). The requirements and capabilities collected by the tra-

ditional forms are mostly semi-structured by some tables and database schemas, or

even unstructured as textual description and with un-unified semantics.

The second step is to find suppliers whose capabilities are of the greatest relev-

ance to requirements specified by the customer – henceforth, search function. The

traditional e-marketplaces typically provide keyword search, directory search, and

database search capabilities. Several approaches have been proposed to enhance these

search functions (e.g., semantic-based search) [Ameri 2006; Guarino 1995; and Jang

29
 http://www.mfg.com/

30
 http://www.globalspec.com/

91

2008]. They mostly apply to the structured data models such as XML31, RDF32, and

OWL33 . These advanced search approaches cannot be applied to unstructured or

semi-structured information collected by traditional forms. Therefore, it is necessary

to first enhance the “form” architecture that collects requirements and capabilities in a

better structured way.

In this chapter, we propose new form architecture called eXtensible Dynamic

Form (XDF) to help capture requirements and capabilities in a better structured way.

Using XDF, we collect structural information of requirements and capabilities as

XML instances. For identifying similarities between pairs of XML instances for re-

quirements and capabilities, we extend the optimal XML schema matching algorithm

proposed in Chapter V.

VI.2. eXtensible Dynamic Form (XDF) Architecture

For better collection and organization of supplier capabilities and customer re-

quirements, XDF architecture allows users not only to extend the base form with new

form components for their own contents but also to reuse the existing form compo-

nents through intelligent search. It helps to represent the requirements and capabilities

in a better structured way. Figure VI.1 shows the overview architecture of XDF.

31
 XML – eXtensible Markup Language

32
 RDF – Resource Description Framework

33
 OWL – Web Ontology Language

92

Figure VI.1. Architecture of XDF.

The basic architecture of XDF relies on a form component library to provide a

collection of reusable form components, each of which can be attached as sub-

structure to base form or other form components. The form components are defined

by several XML schemas, including domain ontology, core component, and pre-

defined manufacturing schemas.

The domain ontology is a formal representation of knowledge as a set of con-

cepts within a specific domain, and the relationships among those concepts [Guarino

1995]. Several ontology approaches have been developed for manufacturing domain

[Ameri 2006; Jang 2008; and Kulvatunyou 2005], especially to facilitate supplier dis-

covery. They mostly provide a formal way to capture and represent semantic informa-

Repository

Domain

ontology

schema

Core

component

schema

Pre-defined

manufacturing

schema

Form

component

library

User-defined

schema

1. generate

base form

1.1 update

library

2. collect data by

dynamically

extending form

4. store XML instances to

repository

3. generate

XML instance

93

tion based on their ontology. However, most of the ontology developed so far is too

small to apply to the real industry.

To create a basic set of form components, XDF utilizes a manufacturing domain

ontology proposed by Ameri and Dutta (A&D) [Ameri 2006]. Based on the concepts

and their relationships defined in the domain ontology, we created an XML schema

model, called domain ontology schema, which represents the basic terminologies and

structures of form components. The domain ontology is small and only defines the

manufacturing domain specific concepts (e.g., equipments, materials, certifications

and so on). To support more terminologies and concepts widely used in e-Business

industry, XDF also utilizes OAG Common Core Components (CCC) XML schema

[OAGIS 2002]. This schema defines the common or “general” components that basi-

cally can be used across several business domains (e.g., Address, Party, and ID).

We also investigated several supplier capability profiles obtained from Tho-

masnet.com. Many terminologies and concepts shared among these suppliers are not

defined by both domain ontology and common core component schemas. This is be-

cause the domain ontology schema is too small to cover all the manufacturing con-

cepts and common core component schema only defines the “general” components.

For those terminologies and concepts that are mainly manufacturing domain specific

but not covered by ontology, we created a new XML schema called pre-defined man-

ufacturing schema.

As shown in Figure VI.1, the collect function of XDF is as follows. First, XDF

generates a base form based on the form component library. Users (suppliers or cus-

94

tomers) may create new form components, which will be encoded and stored as user-

defined schema. Secondly, the users fill out the base form with their data (i.e., re-

quirements or capabilities) by dynamically extending the base form. Thirdly, XDF

automatically generates XML instances based on the users‟ input data. Last, the gen-

erated XML instances are stored into a supplier capability repository to be used later

for search function.

VI.3. Search Algorithms for Supplier Discovery

The search function is typically based on an algorithm that computes a similari-

ty between requirement and capability information. The search result is then a ranked

list of suppliers, whose capabilities are of the greatest similarity to requirements spe-

cified by a customer. We focus on an XML-based search method, but also employ

keyword-based and ontology-based search methods for comparison purpose. These

methods are described in the following subsections.

VI.3.1. XML-based search

To analyze XML instances encoded for requirement and capability, we have ex-

tended our optimal XML schema matching algorithm proposed in Chapter V. The

XML instances can be represented as labeled trees similarly to XML schemas (see

Figure I.2). However, instances often include descriptive text data for instance values

which can be represented as labels in atomic nodes of the labeled trees. For example,

“high definition large format Hewlett Packard 1050C plotter” is an instance value for

an “Equipment” element. WordNet-based approach used in Chapter V is not effective

95

to analyze this descriptive text data. Among many text-based similarity metrics (see

Chapter II.1.1), we use the n-gram (specifically, tri-gram) similarity metric [Kondrak

2005] which is simple to implement and produces slightly better results than Cosine

coefficient [van Rijsbergen 1979] and Jaccard similarity [Sneath 1957]. We have also

further investigated IC-based approach by Eq. II.6 for weighting the similarities be-

tween two phrases according to their importance. Instead of getting IC of words from

WordNet and schema itself, we used the number of the web pages retrieved by

Google‟s search as IC which could represent phrase importance. Instead of combining

multiple ICs of words in the phrase, it actually provides more precise statistics for the

phrase. In addition, Google allows specifying web sites for domain specific search

scope.

The modified algorithm computes the semantic similarity between pairs of

XML instances for requirement and capability. The search result is a ranked list of

suppliers, whose capabilities are of the greatest semantic similarity to requirements

specified by a customer.

VI.3.2. Keyword-based search

For keyword-based search, we use an exact string matching method that simply

checks if the search keywords for customer requirements exist in the textual descrip-

tion of the supplier capabilities. The ranking of the returned set is also based on a

number of keywords found in the capability descriptions. The higher the number of

the matched keywords in descriptions of capabilities that a certain supplier can pro-

vide, the higher the rank of the supplier is.

96

VI.3.3. Ontology-based search

For ontology-based search, we use an ontology-based matching algorithm pro-

posed by Ameri and Dutta (A&D) which connects customers and suppliers based on

semantic similarities between the customer‟s requirements and suppliers‟ capabilities

[Ameri 2006]. The algorithm relies on semantic definitions found in the manufactur-

ing ontology rather than on syntactic descriptions of requirements and capabilities. It

is required that both supplier capabilities and customer requirements are described

formally using Manufacturing Service Description Language (MSDL), which is a

formal language based on Description Logic developed particularly for matchmaking

purposes [Baader 2003].

In addition to the logical reasoning, the quantification of similarity is supported

in the A&D approach by several methods that calculate semantic distances among

manufacturing concepts. The Information Content-based method and Feature-based

method [Lin 1988; Resnik 1999; and Tversky 1977] are two of such methods. To op-

timize similarity calculation for the domain of manufacturing, different calculation

methods were applied to different concepts. Specifically, the similarity scores for in-

dustry and product concepts in the A&D ontology are determined using an IC-based

approach by Eq. II.6. On the other hand, the similarities for process or material con-

cepts in the A&D ontology are computed using a feature-based method as follows:

(,) A B

A B A B B A

Sim A B
u v



   


 

,

(VI.1)

97

where A B is the number of features common to both the query and the service pro-

file, A B  is the number of features that are in the query but not in the service profile,

and B A  is the number of features that are in the service profile but not in the query

class.

Once semantic similarities among individual concepts are computed, the overall

similarity of a service profile (SP) to a given query (Q) is calculated as the sum of

similarities of the actor (the suppler) and similarities of the service.

VI.4. Experiments and Results

We implemented several prototype systems for XDF and four search methods.

A variety of experiments have been conducted with the real industry data.

VI.4.1. Performance measures for evaluation

We measure the performances of keyword-based and ontology-based search me-

thods, and they are compared with the performances of XML-based search methods.

The performances of these approaches are measured by the Recall and Precision me-

trics (see Eqs. II.7 and II.8). Because our search methods return the Ranked List of

Suppliers rather than one supplier as the search result, we employed new metric,

called “Top-k Recall”, that computes the fraction of the number of relevant suppliers

retrieved by search method among k relevant answers. In this experiment, we assume

that the number of the relevant answers is the same as the number of suppliers re-

trieved by search method. Thus, the Precision and Recall are the same. For Top 4 Re-

98

call, for example, top 4 relevant answers are chosen from the list of suppliers ranked

by human experts, and top 4 suppliers are retrieved by the algorithm as the result of

supplier discovery. If only 2 of 4 suppliers exist in the relevant answers, both Recall

and Precision are the same 0.5.

Figure VI.2. The adjusted weight function for the DCG metric.

As another performance metric for this experiment, we use the DCG perfor-

mance metric by Eq. II.13. The original weight function for DCG has been refined in

our experiment to reflect the characteristics of supplier discovery where top 10 sup-

pliers in general are of substantial importance with their ranking order being of mod-

erate significance to the result. The weight function, illustrated in Figure VI.2, can be

formulated as

5

1
()

1 p
f p

e 



,

(VI.2)

where p is the rank position of a supplier in the search result.

99

Therefore, the DCG adjusted by Eq. VI.3 accumulated at a particular rank posi-

tion p, called aDCGp, can be calculated as follows:

5
1

1

1

p

P i i
i

aDCG rel
e 



 
  

 
 ,

(VI.3)

where reli is the graded relevance of the result at position i.

The aDCGP can be alternatively applied to calculate the normalized DCG

(nDCG) by Eq. II.13.

VI.4.2. Experimental data

Initially, the supplier capabilities and customer requirements information were

collected in the form of textual descriptions. This information is then encoded into

XML instances by using XDF architecture. The proposed XML-based search method

identifies matchings between these XML instances (i.e., requirements and capabili-

ties). The search result is a list of suppliers ranked by similarities between supplier

capabilities and customer requirements.

We chose 30 sample suppliers, which have capabilities in machining processes,

randomly from manufacturers registered in the e-marketplace, Thomastnet.com. First,

raw data that describe capabilities were collected from the e-marketplace and then

refined by the data collected from the manufacturers‟ own web sites. Initially, the col-

lected raw data of supplier capability profiles consists of a set of keywords. These

words are directly used in the keyword-based search. The data is then manually en-

100

coded into ontological descriptions following the semantic search assumptions of the

selected approach. We also encode the data as XML instances by XDF architecture.

Two sample customer requirements were also collected from the same e-

marketplace. Raw data of customer requirements was technical specifications of cer-

tain products – called “center post” and “swing arm”. The technical specifications

were analyzed by human experts to extract a set of keywords to use it actually for

query. Two sample queries for the experiments have 7 and 16 keywords, respectively.

Some data was lost during the encoding for ontology (i.e., 4 of 7 and 5 of 16 key-

words were lost), because the ontology only covered a small set of terminologies.

VI.4.3. Results analysis

Based on the 30 sample suppliers and 2 queries, we have continued experiments

and evaluations of our work with help of domain experts at DSN Innovations Corp34.

We compare our XML-based search method to two other methods: keyword-based

and ontology-based methods with the same queries and same set of supplier samples.

For the fair comparison with ontology-based method that lost some data, we estab-

lished two experiments: 1) with the same sets of data as ontology-based matching ap-

proach uses (hereafter partialXML) – i.e., 3 and 11 keywords for two queries, respec-

tively, and 2) with full sets of data which is the same as keyword-based search me-

thod uses (hereafter fullXML) – i.e., 7 and 16 keywords for two queries, respectively.

34
 http://www.dsninnovations.org/

101

Thus, four search methods (i.e., keyword-based, ontology-based, partialXML-

based, and fullXML-based) based on two queries (i.e., “center post” and “swing arm”)

were executed to discover suppliers whose capabilities satisfy customer‟s require-

ments. The result of each search method is a ranked list of suppliers. To evaluate the

search results, domain experts working in the field of supplier discovery were re-

quested to analyze the requirements and capabilities. They manually produced a

ranked list of matched (discovered) suppliers. Then, the discovery result of each

search method was compared with the discovery results from human experts. Certain

performance measures, such as Top-k Recall (the size of k is specified by human ex-

perts) and nDCG, were calculated by using similarity scores from suppliers based on

the given queries and their rankings. The overall performances are as follows:

Table VI.1. Performances of Search Methods for Query #1

 Keyword Ontology PartialXML FullXML

Top 4 Recall 0.500 0.500 0.250 0.250

Top 8 Recall 0.688 0.750 0.688 0.750

nDCG 0.664 0.703 0.692 0.727

Table VI.2. Performances of Search Methods for Query #2

 Keyword Ontology PartialXML FullXML

Top 3 Recall 0.667 0.667 0.333 1.000

Top 6 Recall 0.500 0.500 0.500 0.500

Top 10 Recall 0.600 0.500 0.600 0.600

nDCG 0.837 0.902 0.848 0.920

102

For the fair comparison, we first compare the fullXML-based search with the

keyword-based search, which use the same number of keywords for two queries (7

and 16, respectively). The overall performance measures show that the fullXML-

based search performed better than the keyword-based search. Furthermore, nDCG

performances show that the gap between performances of two search methods in-

creased where more complex queries are used for the search – i.e., the nDCG gap of

Table VI.2 (0.920 – 0.837 = 0.083) is bigger than the nDCG gap of Table VI.1 (0.727

– 0.664 = 0.063). This is because the XML-based method can more effectively ana-

lyze the complex data in a structured way than keyword-based method that utilizes

the textual descriptions.

The second comparison is done between the partialXML-based search and the

ontology-based search. Both also use the same number of keywords for two queries

(3 and 11, respectively). The overall performances show that the ontology-based

search performs better than the partialXML-based search. This is because ontology-

based search can infer better logical relationships and similarity based on a formally

defined semantics. However, if we compare the ontology-based search to the

fullXML-based search, the performances show that the fullXML-based search per-

forms better. This is because the fullXML-based search utilizes more information cap-

tured by XDF than that used in ontology-based search.

Our experiments have certain limitations in terms of the small size of the sam-

ples and manually encoded experimental data. The experimental results are not suffi-

cient to show statistically significant differences. Based on the performance mea-

103

surements and experimental analysis, however, we can conclude that XML-based

search method (1) shows significant promise to perform better than keyword-based

search and (2) shows promise to perform at the same level or better as the ontology-

based search when using all the available information, which sometimes may not be

accessible by the ontology-based approach. The experiments also show that our op-

timal XML schema matching algorithm can be effectively used to enhance the search

function to facilitate the supplier discovery.

104

CHAPTER VII

CONCLUSION

VII.1. Summary of Contributions

The objective of this dissertation is to develop effective approaches to XML

schema matching, particularly applicable to XML schema integration and data trans-

formation between heterogeneous e-Business systems. For that our research supports

two different tasks: integration task between two different component schemas; and

transformation task between two business documents which confirm to different doc-

ument schemas.

For the integration task, we propose an innovative XML schema matching ap-

proach, called layered approach, which produces the best matching candidates be-

tween global type components of two component schemas, using their layer specific

semantic similarities. For the transformation task, we propose another innovative

XML schema matching approach, called optimization approach, which produces the

best sets of matching pairs for all atomic nodes between two document schemas,

based on semantics from both their linguistic and structural information.

Our approaches address three challenging problems in the schema matching.

First, the existing approaches have often failed to sufficiently investigate and utilize

semantics imbedded in the hierarchical structure of the XML schema which the

schema designer intended to. Secondly, due to synonyms and polysemies found in

natural languages, the meaning of a data node in the schema cannot be determined

105

solely by the words in its label. Last but not least, it is difficult to correctly identify

the best set of matching pairs for all data nodes between two schemas.

We evaluate our approaches with the state of the art evaluation metrics and

sample schemas obtained from several e-Business standard organizations and e-

Business system vendors. Comparative analysis is conducted to validate the proposed

approaches with a variety of experiences. In the layered approach, a series of experi-

ments have been conducted with encouraging results. The system found a match to

the human experts‟ matching in 35 of 49 cases in a real world application. The expe-

riment results show promises to assist experts in accomplishing the integration tasks

more efficiently. We also show that our approach can be made more efficient by grid

computing in a service-oriented architecture.

In the optimization approach, we compared our result to some other XML

schema matching approaches. The results were also encouraging. The average match-

ing performances of Precision, Recall, F-measure, and Overall were 0.93, 0.83, 0.88,

and 0.77, which are better than or at least equal to other approaches‟ performances.

We also extend this technique to supplier discovery, a practically important problem

in e-marketplaces. For that purpose, we proposed an eXtensible Dynamic Form

(XDF) architecture to help capturing requirements and capabilities in a better struc-

tured way. The experiment results based on XDF and our XML matching approach

show that the XML-based data collection and matching can be more efficient than

traditional search or even ontology based search.

106

VII.2. Future Work

We have made significant advances in understanding and developing solutions

for XML schema matching problems in various ways to support e-Business systems

to be interoperable; however, still substantial work remains in order to achieve the

goal of a comprehensive matching solution.

First, determining the best weights for combining individual similarity measures

is a challenge in the proposed c-matching. Some machine learning techniques are un-

der consideration, including regression and neural networks. Secondly, the label simi-

larity measure is only used for inner-layers of layered approach. Our experiments

show that labels at higher level are more important than the lower ones. There is also

evidence that the atomic layer becomes more important when the structure of the

element is shallow. It should be investigated, how to better incorporate the structural

information into semantic analysis. Thirdly, the proposed a-matching only considers

the 1-to-1 pair-wise matching. Other matching cardinalities, such as 1-to-many,

many-to-1, and many-to-many, should be also addressed to fully support the matching

tasks. Last, a parallel and distributed computing technology, called MPJ, is used to

improve the computation performance. Also, Hadoop and Globus Toolkit provide

better functionalities than MPJ, for parallel and distributed computing such as securi-

ty, resource and data management, communication, and fault detection. This calls for

further examination of parallel and distributed computing technologies.

These researches described above will help to increase the performance of the

matching algorithm. Furthermore, we state a few more work for future to better sup-

107

port the integrations and interoperability among the heterogeneous e-Business sys-

tems.

1) Our research only focuses on the matching activity between two XML sche-

mas for the successful B2B systems integrations. However, to fully support

B2B systems integrations, other activities, such as mapping, extending, and

reusing, beyond matching should be also investigated.

2) The semantic resources used in this research are thesauri and dictionary such

as WordNet. These resources are not domain-specific. For better matching of

domain-specific schemas, it is necessary to utilize the domain-specific dictio-

naries. However, these domain-specific dictionaries require a substantial effort

to be built up in a consistent way. Our matching approaches identify the

matchings among words (terminologies) or word senses while analyzing the

matching between two different schemas used by the same or similar domain

industry. Those matchings can help to identify the domain-specific terminolo-

gies and their relationships. Furthermore, the matching results can be used as

the initial resources to build up the domain-specific dictionaries. This calls for

further investigation.

3) An XML-based form architecture and data matching applications are pro-

posed to address the supplier discovery problems in the e-manufacturing do-

main. There are also many other domains that rely on schema matching such

as data warehouse, e-government, e-health, and semantic query processing.

108

Our schema matching solutions can be also applied to these domains. This

calls for further investigation.

109

REFERENCES

[AIAG 2008] AIAG (Accessed 2008), Automotive Industry Action Group. Available

at http://www.aiag.org

[Aikins 1981] Aikins, Janice, Rodney Brooks, William Clancey, et al. (1981), “Natu-

ral Language Processing Systems,” In The Handbook of Artificial Intelligence, Vol. I,

Barr, Avron and Edward A. Feigenbaum (eds.), pp. 283-321. Stanford/Los Altos, CA:

HeurisTech Press/William Kaufmann, Inc.

[Alan 2001] Kotok, A., and Webber, D. (2001), “ebXML: The New Global Stan-

dard,” New Riders Publishing Thousand Oaks, CA, USA, ISBN: 0735711178.

[Ameri 2006] Ameri, F., and Dutta, D. (2006), “An upper ontology for manufacturing

service description,” ASME 2006 International Design Engineering Technical Confe-

rences & Computers and Information in Engineering Conference, Philadelphia, Sep-

tember 10-13, 2006.

[Ariba 2000] Ariba (2000), “B2B marketplaces in the new economy,” Research re-

port. Available at http://www.ariba.com/com_plat/white_paper_form.cfm

[Asanovic 2006] Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P.,

Keutzer, K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., and Yelick,

K.A. (2006), “The landscape of parallel computing research: a view from Berkeley,”

Technical Report No. UCB/EECS-2006-183, EECS Department, University of Cali-

fornia, Berkeley.

[Aumüller 2005] Aumüller, D., Do, H.H., Massmann, S., and Rahm, E. (2005),

“Schema and ontology matching with COMA++,” In Proceedings of the Internation-

al Conference on Management of Data (SIGMOD), Software Demonstration.

[Baader 2003] Baader, F., and Nutt, W., (2003) “Basic Description Logics.” In F.

Baader, D. Calvanese, D. McGuiness, D. Nardi and P. F. Patel-Schneider (eds.), The

110

Description Logic Handbook: Theory, Implementation, and Applications, Cambridge

University Press, Cambridge, pp. 43–95

[Bellahsene 2011] Bellahsene, Z., Bonifati, A., Rahm, E. (2011), “Schema Matching

and Mapping,” Springer, ISBN: 978-3-642-16517-7.

[Bellman 2003] Bellman, R.E. (1957), “Dynamic Programming,” Princeton Universi-

ty Press, Princeton, NJ, Republished 2003: Dover, ISBN 0486428095.

[BizTalk 2010] BizTalk Server (Accessed 2010). Available at

http://www.microsoft.com/biztalk/

[Borthaku 2007] Borthaku, D. (2007), “The Hadoop distributed file system: architec-

ture and design.” Available at

http://hadoop.apache.org/common/docs/r0.17.2/hdfs_design.html

[Boukottaya 2005] Boukottaya, A., and Vanoirbeek, C. (2005), “Schema Matching

for Transforming Structured Documents,” In DocEng, pp. 2-4, DOI:

10.1145/1096601.1096629.

[Bussler 2001] Bussler, C. (2001), “B2B protocol standards and their role in semantic

B2B integration engines,” Bull Tech Comm Data Eng, 24 (1), pp. 3–11.

[Carmel 2002] Carmel, D., Maarek, Y., Mass, Y., Efraty, N., and Landau, G. (August

2002), “An Extension of the Vector Space Model for Querying XML documents via

XML fragments,” In ACM SIGIR 2002 Workshop on XML and Information Retrieval,

Tampere, Finland.

[Carpenter 2000] Carpenter, B., Getov, V., Judd, G., Skjellum, A., and Fox, G. (2000),

“MPJ: MPI-like message passing for Java,” Concurrency: Practice and Experience,

12 (11), pp. 1019-1038, DOI: 10.1.1.35.9869.

[Christopher 2004] Christopher, M., and Peck, H. (2004), “Building the resilient

supply chain,” International Journal of Logistics Management, 15 (2), pp 1-13.

111

[Cover 1991] Cover, T.M., and Thomas, J. A. (1991), “Elements of information

theory,” Wiley series in telecommunications, New York, ISBN: 0-471-24195-4.

[Dean 2004] Dean, J., and Ghemawat, S. (Dec. 2004), “MapReduce: Simplified Data

Processing on Large Clusters,” In Proceedings of OSDI ’04: 6th Symposium on Op-

erating System Design and Implemention, San Francisco, CA.

[Do 2003] Do, H.H., Melnik, S., and Rahm, E. (2003), “Comparison of Schema

Matching Evaluations,” Lecture Notes in Computer Science, 2593, pp. 221-237. DOI:

10.1.1.11.4792.

[Doan 2001] Doan, A.H., Domingos, P., and Halevy, A. (2001), “Reconciling Sche-

mas of Disparate Data Sources: A Machine-Learning Approach,” In Proceedings of

ACM SIGMOD 2001 Conference, pp 509-520.

[Douglas 1999] Douglas, W.B. (1999), “Introduction to Graph Theory,” (2
nd

 Edition),

Prentice Hall, Chapter 3, ISBN: 0-13-014400-2.

[Dulmage 1958] Dulmage, A.L., and Mendelsohn, N.S. (1958), “Coverings of bipar-

tite graphs,” Canadian Journal of Mathematics, 10, pp. 517–534.

[Dumas 2004] Dumas, M., Benatallah, B., Russell, N., and Spork, M. (Spring 2004),

“A configurable matchmaking framework for electronic marketplaces,” Electronic

Commerce Research and Applications, 3 (1), pp. 95-106.

[ebXMLCC 2008] (Accessed 2008), ebXML Core Components. Available at

http://www.ebxml.org

[Foster 1997] Foster, I., and Kesselman, C. (1997), “Globus: a metacomputing infra-

structure toolkit,” The International Journal of Supercomputer Applications and High

Performance Computing, 11 (2), pp. 115-128. DOI: 10.1177/109434209701100205.

[Giunchiglia 2004] F. Giunchiglia, P. Shvaiko, and M. Yatskevich, “S-Match: an al-

gorithm and an implementation of semantic matching,” Proc. of the European Seman-

tic Web Symposium (ESWS), 2004, pp. 61–75, DOI: 10.1007/978-3-540-25956-5_5.

112

[Guarino 1995] Guarino, N. (1995), “Formal Ontology: Conceptual Analysis and

Knowledge Representation,” International Journal of Human-Computer Studies,

43(2/3), pp. 625-640.

[He 2004] He, B., and Chang, K.C.C. (2004), “A holistic paradigm for large scale

schema matching,” SIGMOD Record, 33 (4), pp. 20-25, DOI: 10.1.1.58.7651.

[HL7 SAIF 2010] Health Level 7 (April 2010), HL7 Services-Aware Interoperability

Framework (SAIF).

[Hoare 1962] Hoare, C.A.R. (1962), ”Quicksort,” Computer Journal, 5 (1), pp. 10-15.

[Hovy 1999] Hovy, E.H., and Lin, C.Y. (1999), “Automated Text Summarization in

SUMMARIST,” in M. Maybury and I. Mani (eds.), Advances in Automatic Text

Summarization, Cambridge: MIT Press.

[IV&I 2008] IV&I (Accessed 2008), AIAG Inventory visibility & interoperability.

Available at http://www.aiag.org/committees/IVPE.cfm

[Jang 2008] Jang, J., Jeong, B., Kulvatunyou, B., Chang, J., and Cho, H. (2008),

“Discovering and integrating distributed manufacturing services with semantic manu-

facturing capability profiles,” International Journal of Computer Integrated Manu-

facturing, 21 (6), pp. 631–646.

[Jarvelin 2002] Jarvelin,K., and Kekalainen J. (2002), ”Cumulated gain-based evalu-

tion of IR techniques,” ACM Transactions on Information Systems, 20 (4), pp. 422-

446.

[Kondrak 2005] Kondrak, G. (2005), “N-gram similarity and distance,” In Proceed-

ings of International Conference on String Processing and Information Retrieval, pp.

115-126.

[Kulvatunyou 2005] Kulvatunyou, B., Cho, H., and Son, Y.J. (2005), “A semantic

web service framework to support intelligent distributed manufacturing,” Interna-

113

tional Journal of Knowledge-based and Intelligent Engineering Systems, 9, pp. 107–

127.

[Langenberg 2005] Langenberg, T. (2005), “Standardization and Expectations,”

Germany: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, ISBN-10:

3540281126, ISBN-13: 978-3540281122.

[Lerner 2000] Lerner, B.S. (2000), “A model for compound type changes encoun-

tered in schema evolution,” ACM Transactions on Database Systems, 25 (1), pp. 83-

127, DOI: 10.1.1.105.1542.

[Lin 1998] Lin, D. (1998), “An Information-theoretic definition of similarity,” In

Proceedings of the 15th International Conference on Machine Learning, pp. 296-304,

DOI: 10.1.1.55.1832.

[Lin 2000] Lin, C.Y., and Hovy, E.H. (2000), “The Automated Acquisition of Topic

Signatures for Text Summarization,” In Proceedings of the COLING Conference.

Strasbourg, France, DOI: 10.3115/990820.990892.

[Madhavan 2001] Madhavan, J., Bernstein, P.A., and Rahm, E. (2001), “Generic

schema matching with Cupid,” In Proceedings of the 27th International Conference

on Very Large Data Bases, pp. 49-58. DOI: 10.1.1.17.4650.

[Makhoul 1999] Makhoul, J., Kubala, F., Schwartz, R., and Weischedel, R. (February

1999), “Performance measures for information extraction,” In Proceedings of DARPA

Broadcast News Workshop, Herndon, VA.

[Markov 2007] Markov, Z., and Larose, D.T. (2007), “Data Mining the Web: Unco-

vering Patterns in Web Content, Structure, and Usage,” Wiley, ISBN: 978-0-471-

66655-4.

[Meadows 2004] Meadows, B., and Seaburg, L. (September 2004), “Universal Busi-

ness Language 1.0,” Organization for the Advancement of Structured Information

Standards (OASIS), Committee Draft.

114

[Medjahed 2003] Medjahed, B., Benatallah, B., Bouguettaya, A., Ngu, A., and Elma-

garmid, A. (May 2003), “Business-to-business interactions: issues and enabling tech-

nologies,” VLDB Journal, 12 (1), pp. 59–85, DOI: 10.1007/s00778-003-0087-z.

[Melnik 2002] Melnik, S., Garcia-Molina, H., and Rahm, E. (2002), “Similarity

flooding - a versatile graph matching algorithm,” In Proceeding of 18th International

Conference of Data Engineering, pp. 117-128, DOI: 10.1.1.61.4266.

[Miller 1995] Miller, G.A. (1995), “WORDNET: a lexical database for English,”

Communications of ACM, 38 (11), pp. 39-41, DOI: 10.1145/219717.219748.

[Milo 1998] Milo, T., and Zohar, S. (1998), “Using schema matching to simplify he-

terogeneous data translation,” In Proceeding of the 24th International Conference on

Very Large Data Bases, pp. 122-133, DOI: 10.1.1.30.2620.

[Mong 2002] Mong, L.L., Liang, Y.H., Wynne, H., and Xia, Y. (November 2002),

“XClust: Clustering XML Schemas for Effective Integration,” In Proceedings in 11th

ACM International Conference on Information and Knowledge Management (CIKM),

McLean, Virginia, DOI: 10.1145/584792.584841.

[Murphy 2008] Murphy, C.N., and Yates, J. (2008), “The International Organization

for Standardization (ISO) : Global Governance Through Voluntary Consensus,” New

York: Routledge, ISBN-10: 0415774292, ISBN-13: 978-0415774291.

[Noia 2005] Noia, T.D., Sciascio, E.D., Donini, F.M., and Pinto, A. (2005), “Ontolo-

gy-based natural language parser for e-marketplaces,” In 18th Intl. Conf. on Industrial

and Engineering Applications of Artificial Intelligence and Expert Systems, vol. 3533

of Lecture Notes in Artificial Intelligence.

[Noy 2001] Noy, N., and Musen, M. (2001), “Anchor-PROMPT: using non-local

context for semantic matching,” In Proceedings of the workshop on Ontologies and

Information Sharing at the International Joint Conference on Artificial Intelligence

(IJCAI), pp. 63–70.

115

[OAGIS 2002] OAGIS (2002), “Open Applications Group Interface Specification

V9.0.” Available at http://www.openapplications.org/

[Papadimitriou 1981] Papadimitriou, C.H. (1981), “On the complexity of integer pro-

gramming,” J. ACM, 28, pp. 765–768.

[Peng 2006] Peng, Y. (2006), “On Semantic Similarity Measures”, Technical Report

from Syllogism, Com to NIST.

[Qin 2009] Qin, P., Lu, Z., Yan, Y., and Wu, F. (2009), “A New Measure of Word

Semantic Similarity Based on WordNet Hierarchy and DAG Theory,” In Proceedings

of International Conference on Web Information Systems and Mining, pp. 181-185,

DOI: 10.1109/WISM.2009.44.

[Rada 1989] Rada, R., Mili, H., Bicknell, E., and Blettner, M. (1989), “Development

and application of a metric on semantic nets,” IEEE Transaction on Systems, Man,

and Cybernetics, 19 (1), pp. 17-30, DOI: 10.1109/21.24528.

[Rahm 2001] Rahm, E., and Bernstein, P.A. (2001), “A survey of approaches to au-

tomatic schema matching,” VLDB Journal, 10 (4), pp. 334-350, DOI:

10.1007/s007780100057.

[Resnik 1995] Resnik, P. (1995), “Using information content to evaluate semantic

similarity in a taxonomy,” In Proceedings of the 14th International Joint Conference

on Artificial Intelligence, pp. 448-453, DOI: 10.1.1.55.5277.

[Resnik 1999] Resnik, P. (1999), “Semantic similarity in a taxonomy: An informa-

tion-based measure and its application to problems of ambiguity in natural language,”

Journal of Artificial Intelligence Research, 11, pp. 95-130.

[van Rijsbergen 1979] van Rijsbergen, C.J. (1979), “Information retrieval,” (2
nd

 Edi-

tion), London: Butterworths, ISBN-10: 0408709294, ISBN-13: 978-0408709293.

116

[Saleem 2008] Saleem, K., Bellahsene, Z., and Hunt. E. (2008), “PORSCHE: perfor-

mance oriented schema mediation,” Information Systems, 33 (2), pp. 637-657. DOI:

10.1016/j.is.2008.01.010.

[Shim 2000] Shim, S.Y., Pendyala, V.S., Sundaram, M., and Gao, J.Z. (Oct. 2000),

“Business-to-business e-commerce frameworks,” IEEE Computer, 33 (10), pp. 40-47,

DOI: 10.1109/2.876291.

[Shvaiko 2005] Shvaiko, P., and Euzenat, J. (2005), “A survey of schema-based

matching approaches,” Journal on Data Semantics IV, LNCS 3730, pp. 146-171,

DOI: 10.1007/11603412_5.

[Sneath 1957] Sneath, P.H.A. (1957), “The application of computers to taxonomy,”

Journal of General Microbiology, 17 (1), pp. 201–226.

[STAR 2008] STAR (Accessed 2008), Standard for Technology in Automotive Retail.

Available at http://www.starstandard.org

[TBG 2008] TBG (Accessed 2008), UN/CEFACT International Trade and Business

Processes Group (TBG). Available at http://www.disa.org

[Thang 2008] Thang, H.O., and Nam, V.S. (2008), “XML Schema Automatic Match-

ing Solution,” International Journal of Computer Systems Science and Engineering, 4

(1), pp. 68-74.

[Tversky 1977] Tversky, A. (1977), “Features of similarity,” Psychological Review,

84 (4), pp. 327-352.

[W3C 1998a] W3C Recommendation, Extensible Markup Language (XML) 1.0

(1998). Available at http://www.w3.org/TR/REC-XML

[W3C 2001a] W3C Recommendation, XML Schema Part 0: Primer (2001). Available

at http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/

117

[W3C 2001b] W3C Recommendation, XML Schema Part 1: Structures (2001).

Available at http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/

[W3C 2001c] W3C Recommendation, XML Schema Part 2: Datatypes (2001). Avail-

able at http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

[Yang 2005] Yang, D., and Powers, D.M.W. (2005), “Measuring semantic similarity

in the taxonomy of WordNet,” In Proceedings of the 28th Australasian Computer

Science Conference, pp. 315-322.

118

APPENDICES

VII.3. Appendix A – Recommended Naming Rule of XML Schema

1) Each element or attribute XML name MUST have one and only one

fully qualified XPath (FQXP).

 For example: Communication/Address/StreetName

2) Element, attribute and type names MUST be composed of words in

the English language, using the primary English spellings provided in

the WordNet 3.0 (WordNet 3.0 online ser-

vice: http://wordnetweb.princeton.edu/perl/webwn).

3) Either Lower camel case (LCC) or Upper camel case (UCC) MUST be

used for naming attributes, elements and types.

4) Element, attribute and type names MUST be in a singular form unless

the concept itself is plural.

 Example of Singular and Plural concept forms:

 Singular – Allowed: <xsd:element name=”GoodsQuantity” …>

 Plural – Not Allowed: <xsd:element name=”ItemsQuantity” …>

5) Element, attribute and type names MUST be drawn from the follow-

ing set: a – z and A – Z.

 Example of Non-Letter Characters – Not Allowed

 <xsd:element name=”LanguageCode8” …>

http://wordnetweb.princeton.edu/perl/webwn

119

6) XML element, attribute and type names constructed from dictio-

nary entry names MUST NOT include periods, spaces, or other separa-

tors; or characters not allowed by W3C XML 1.0 for XML names.

 Example of Spaces in Name – Not Allowed <xsd:element

name=”Customized_ Language. Code:8” …>

7) XML element, attribute and type names MUST NOT use acro-

nyms, abbreviations, or other word truncations except those included in

the UN/CEFACT controlled vocabulary or listed in Appendix B.

 Example Acronyms and Abbreviations

 ID is an allowed abbreviation: <xsd:element name=”ID”>

 Cd is not an approved abbreviation : <xsd:element

name=”ReasonCd”>

8) Acronyms and abbreviations at the beginning of an attribute declara-

tion MUST appear in all lower case. All other acronyms and abbrevia-

tion usage in an attribute declaration must appear in upper case.

9) Acronyms MUST appear in all upper case for all element declara-

tions and type definitions.

120

VII.4. Appendix B –Abbreviations and Acronyms Accepted by XML

Schema Matching

VII.4.1. Acronyms

 BOD – Business Object Document

 BOM – Bill of Material

 DUNS – Data Universal Numbering System

 EFT – Electronic Funds Transfer

 GL – General Ledger

 HR – Human Resources

 HTML – Hyper Text Markup Language

 SCE – Supply Chain Execution

 UOM – Unit of Measure

 URI – Uniform Resource Identifier

 URL – Uniform Resource Locator

 WIP – Work In Process

VII.4.2. Abbreviations

 Class – Classification

 Doc – Document

 Enum – Enumeration

 ID – Identifier

 Ind – Indicator

 Max – Maximum

 Min – Minimum

 Ship – Shipment

 Sync – Synchronize

121

VII.4.3. Non-Oxford

 ABC Classification

 Subentity

 Subline

122

VII.5. Appendix C – Stop Words Removed by XML Schema Matching

This stop word list is obtained from Onix Text Retrieval Toolkit
35

. This

contains 429 words as follows:

a, about, above, across, after, again, against, all, almost, alone, along, already,

also, although, always, among, an, and, another, any, anybody, anyone,

anything, anywhere, are, area, areas, around, as, ask, asked, asking, asks, at,

away, b, back, backed, backing, backs, be, became, because, become,

becomes, been, before, began, behind, being, beings, best, better, between, big,

both, but, by, c, came, can, cannot, case, cases, certain, certainly, clear, clearly,

come, could, d, did, differ, different, differently, do, does, done, down, down,

downed, downing, downs, during, e, each, early, either, end, ended, ending,

ends, enough, even, evenly, ever, every, everybody, everyone, everything,

everywhere, f, face, faces, fact, facts, far, felt, few, find, finds, first, for, four,

from, full, fully, further, furthered, furthering, furthers, g, gave, general,

generally, get, gets, give, given, gives, go, going, good, goods, got, great,

greater, greatest, group, grouped, grouping, groups, h, had, has, have, having,

he, her, here, herself, high, high, high, higher, highest, him, himself, his, how,

however, i, if, important, in, interest, interested, interesting, interests, into, is,

it, its, itself, j, just, k, keep, keeps, kind, knew, know, known, knows, l, large,

largely, last, later, latest, least, less, let, lets, like, likely, long, longer, longest,

m, made, make, making, man, many, may, me, member, members, men, might,

more, most, mostly, mr, mrs, much, must, my, myself, n, necessary, need,

needed, needing, needs, never, new, new, newer, newest, next, no, nobody,

non, noone, not, nothing, now, nowhere, number, numbers, o, of, off, often,

old, older, oldest, on, once, one, only, open, opened, opening, opens, or, order,

ordered, ordering, orders, other, others, our, out, over, p, part, parted, parting,

35
 http://www.lextek.com/manuals/onix/stopwords1.html

123

parts, per, perhaps, place, places, point, pointed, pointing, points, possible,

present, presented, presenting, presents, problem, problems, put, puts, q, quite,

r, rather, really, right, right, room, rooms, s, said, same, saw, say, says, second,

seconds, see, seem, seemed, seeming, seems, sees, several, shall, she, should,

show, showed, showing, shows, side, sides, since, small, smaller, smallest, so,

some, somebody, someone, something, somewhere, state, states, still, still,

such, sure, t, take, taken, than, that, the, their, them, then, there, therefore,

these, they, thing, things, think, thinks, this, those, though, thought, thoughts,

three, through, thus, to, today, together, too, took, toward, turn, turned, turning,

turns, two, u, under, until, up, upon, us, use, used, uses, v, very, w, want,

wanted, wanting, wants, was, way, ways, we, well, wells, went, were, what,

when, where, whether, which, while, who, whole, whose, why, will, with,

within, without, work, worked, working, works, would, x, y, year, years, yet,

you, young, younger, youngest, your, yours, z

124

