
Timing Analysis for
Sensor Network Nodes of
the Atmega Processor
Family
By: Sibin Mohan,

Frank Mueller,
David Whalley, and
Christopher Healy

Introduction

Networks of Embedded systems (EmNets)
Atmel Atmega family CPUs
Limited Research into timing constraints on
these architectures
Goal: Provide a timing framework of tools

Tool should give worst-case execution time (WCET)
WCET should be tight bound of actual timing
WCET should be safe (never underestimate actual)

Verification of result correctness

Use a 3 step system
Compile and run code on actual hardware
Run same code on cycle-accurate simulator
(provided by hardware manufacturer)
Run same code through developed timing
analysis framework

Types of Timing Analysis:
Dynamic

Simulates execution on worst case input
WCET Safety can not be guaranteed
Can be difficult to determine worst input set
Hardware/Software interactions can hide worst-case

Architectural complexities: pipelines and cache
Static

Examines code
Analyzes all possible execution paths
Combines paths to construct worst case execution
Does not trace code execution
Does not take variable state into consideration
Guarantees WCET

Timing Analysis Framework

Performs Static Timing Analysis
Originally designed for SPARC I
Modified to support Atmel architecture
Enhanced to provide tighter WCET bounds
Uses Fixed-point algorithm to determine WCET
of loops and functions
WCET tree constructed:

Paths -> loops -> functions -> program

Timing Analysis Framework

Program information:
Compiler produces Control Flow
Loop bounds through analysis or programmer

Hardware information
Cache description and behavior
Pipeline description

Timing Analyzer: Pipeline

Pipeline Simulator handles for each path
Structural Hazards
Data Hazards
Branch Prediction
Cache Misses

Timing Analyzer: Path Analysis

Takes path info from pipeline simulator
Longest execution path selected
Fixed-Point algorithm for loops

Uses longest path of loop body
Faster each iteration (benefit from cache)
Stop when cache stops improving execution
of body
Can now bound WCET of loop

Modifications to Architecture

Variable Cycle Instructions
Example:

Branch: 1 cycle if not taken
Fall through to next instruction

Branch: 2 cycle if taken
Memory lookup of target instruction required

Past approaches would assume always max
Overly pessimistic, especially when in loops
Unnecessarily bloats WCET estimates

Variable Cycle Instructions

During fixed-point algorithm, instructions that
modify control flow are analyzed
Solution: modify length of path chosen by this
instruction
For branch example: assume instruction takes 2
cycles and reduce not-taken path by one cycle
to compensate.
Fixed-point algo will operate as before and
produce tighter WCET bound

Variable Cycle Instructions

Modifications to Architecture

Pipeline Modeling across Loops Iterations
Simulators tend to estimate WCET of
loops by (loop count) * (body WCET)
Ignores pipeline state between iterations
Common errors when compensating

Place blocks end to end producing noop (ci)
Place IF phase end to end overlapping EX
phase of pipeline (cii)

Atmega Architecture

Atmega128 / Atmega103 processors
CMOS 8-bit RISC controller
Separate memory for program and data
Separate bus for program and data
Two stage pipeline IF & EX
No cache

Instruction Set

16 bit or 32 bit wide instructions
Integer based, floating point in emulation
only
Almost all instructions are 1 or 2 cycles

organized into 2 categories for analysis
Some variable cycle instructions (loads,
compares, branches…)

Handled through modifications described

Experimentation
Benchmarks

C-Lab embedded WCET suite
NesC benchmarks

Worst-case measurements in terms of processor
cycle count
Hardware timing obtained using interrupt-driven
routines and hardware counters

Two hardware counters initialized to 0
Increment counter 1 at each cycle
At overflow of counter 1, counter 2 incremented

Worst-case input sets manually constructed
Same assembly output from complier used for
all 3 levels of experiment

Hardware overhead compensation

Hardware/Simulator vs. Timing
Analyzer Mismatch

Analyzer provides WCET
for loops and functions
which can leave out
initialization blocks
Hardware and simulator
can provide arbitrary
block WCET
Causes result
discrepancies
Must be compensated for
when comparing WCET

Timing Analysis for NesC

Programming Language for applications running
on the TinyOS platform
Defined especially for distributed embedded
wireless sensor networks
Built on C
NesC compiler converts to intermediate C code
Timing analysis can be performed on
intermediate code
Loop bounds can be determined manually from
C code

Experiment Results
Initialization block

compensation Simulator
under-

estimated!
Loop stalls
removed

Variable
Cycle

Instructions

Note: All ratios are with respect to Mica Motes “After Adjustment”

Scalability of Timing Analyzer

Input size scaled for fibcall benchmark

	Timing Analysis for Sensor Network Nodes of the Atmega Processor Family
	Introduction
	Verification of result correctness
	Types of Timing Analysis:
	Timing Analysis Framework
	Timing Analysis Framework
	Timing Analyzer: Pipeline
	Timing Analyzer: Path Analysis
	Modifications to Architecture
	Variable Cycle Instructions
	Variable Cycle Instructions
	Modifications to Architecture
	Atmega Architecture
	Instruction Set
	Experimentation
	Hardware overhead compensation
	Hardware/Simulator vs. Timing Analyzer Mismatch
	Timing Analysis for NesC
	Experiment Results
	Scalability of Timing Analyzer

