Timing Analysis for
Sensor Network Nodes of

the Atmega Processor

Family
By: Sibin Mohan,
Frank Mueller,

David Whalley, and
Christopher Healy

" A
Introduction

m Networks of Embedded systems (EmNets)
m Atmel Atmega family CPUs

m Limited Research into timing constraints on
these architectures

m Goal: Provide a timing framework of tools

Tool should give worst-case execution time (WCET)
WCET should be tight bound of actual timing
WCET should be safe (never underestimate actual)

Verification of result correctness

Use a 3 step system
Compile and run code on actual hardware

Run same code on cycle-accurate simulator
(provided by hardware manufacturer)

Run same code through developed timing
analysis framework

Types of Timing Analysis:

m Dynamic
Simulates execution on worst case input
WCET Safety can not be guaranteed
Can be difficult to determine worst input set

Hardware/Software interactions can hide worst-case
m Architectural complexities: pipelines and cache

m Static

Examines code

Analyzes all possible execution paths

Combines paths to construct worst case execution
Does not trace code execution

Does not take variable state into consideration
Guarantees WCET

"
Timing Analysis Framework

Performs Static Timing Analysis

Originally designed for SPARC |

Modified to support Atmel architecture
Enhanced to provide tighter WCET bounds

Uses Fixed-point algorithm to determine WCET
of loops and functions

m WCET tree constructed:
Paths -> loops -> functions -> program

Timing Analysis Framework

I C
Source WL
Estimate

Control Flow
and Constraint

Files Information

Machine
Dependent
Information

m Program information:

Compiler produces Control Flow

Loop bounds through analysis or programmer
m Hardware information

Cache description and behavior

Pipeline description

"
Timing Analyzer: Pipeline

m Pipeline Simulator handles for each path
Structural Hazards
Data Hazards
Branch Prediction
Cache Misses

Timing Analyzer: Path Analysis

akes path info from pipeline simulator

m Longest execution path selected
m Fixed-Point algorithm for loops

Uses longest path of loop body
Faster each iteration (benefit from cache)

Stop when cache stops improving execution
of body

Can now bound WCET of loop

" A
Modifications to Architecture

Variable Cycle Instructions

Example:

Branch: 1 cycle if not taken
s Fall through to next instruction
Branch: 2 cycle if taken
= Memory lookup of target instruction required

Past approaches would assume always max
Overly pessimistic, especially when in loops
Unnecessarily bloats WCET estimates

"
Variable Cycle Instructions

m During fixed-point algorithm, instructions that
modify control flow are analyzed

m Solution: modify length of path chosen by this
Instruction

m For branch example: assume instruction takes 2
cycles and reduce not-taken path by one cycle
to compensate.

m Fixed-point algo will operate as before and
produce tighter WCET bound

Variable Cycle Instructions

branch instruction
,’/ with variable execution
Red cycles-
4 cycles
by 1on)
|

this path '

______ Not Taken Path (A, B, D)

N Taken Path (A, C,D)

Modifications to Architecture

Pipeline Modeling across Loops lterations

m Simulators tend to estimate WCET of
loops by (loop count) * (body WCET)

m [gnhores pipeline state between iterations
m Common errors when compensating

Place blocks end to end producing noop (ci)

Place IF phase end to end overlapping EX
phase of pipeline (cii)

= - -

natrl) msirl :
B ciructions IF EX matrd 1 1 Instra 3
2
instrl =
1 fnstra 3 2 S 3 2
Insirz - 3 IF of instrl
2 L 3 nstrl : B overlaps
o _— - , with EX
Instrl 1 ' of Instra
Instr3 = 2 matrz | 2 | 1 2 of previous
nstrs 3 2 Iter
3 2
| 3 2 2
3 natra -
3
3
a) Single Iteratton of Loo
(@ Stngl B (b) Correct Handling of Loop Iterations
Instrl 1 Insirl 1 Instrl 1
instrz 5 1 insire 3 instrz 1 1
OR
2 2 2
Instra 3 2 insir3 3 2 instra 3 2
Instrl
3 3 X 1 3
» . IF and EX . - 3 t:nrer]_ap
NOT - e
tnstrl . overl d 2 NOT
mstrl Feriappe Correct
! mstrz | 2 | 1 |Extra Cycle mstrs | 3 | 2
met] 2 - |Introduced .
2
nsir3 3 2 3
Instra 3 2 :
. 3
3
i) Over-estimaton of WCET (1) Under-estimation of WC

{c) Incorrect Handling of Loop [terations

"
Atmega Architecture

m Atmegal28 / AtmegalO3 processors

m CMOS 8-bit RISC controller

m Separate memory for program and data
m Separate bus for program and data

m Two stage pipeline IF & EX

m No cache

" A
Instruction Set

m 16 bit or 32 bit wide Instructions
m Integer based, floating point in emulation
only
m Almost all instructions are 1 or 2 cycles
organized into 2 categories for analysis

m Some variable cycle instructions (loads,
compares, branches...)
Handled through modifications described

"
Experimentation

m Benchmarks
C-Lab embedded WCET suite
NesC benchmarks

m \Worst-case measurements in terms of processor
cycle count

m Hardware timing obtained using interrupt-driven
routines and hardware counters
Two hardware counters initialized to O
Increment counter 1 at each cycle
At overflow of counter 1, counter 2 incremented
m \Worst-case input sets manually constructed

m Same assembly output from complier used for
all 3 levels of experiment

Hardware overhead compensation

O1 = overhead for starting and stopping timers [cycles]
O2 = overhead per invocation of overflow handler |cycles]
x = value of cycle counter
y = value of overflow counter
We note that an overflow occurs once every 65,536 cy-
cles, because we use a 16 bit counter as the cycle counter.
Then, the total execution time for the benchmark 1s ob-

tained as follows:

total _time = y = 26 +

Accounting for the start and stop overhead, we get:

weet’ = total _time — O,

Now, accounting for the overflow handling overhead, we
obtain our final WCET estimate:

weet = fu;{:ef — (:y % OE)

Hardware/Simulator vs. Timing

Analyzer Mismatch

m Analyzer provides WCET
for loops and functions
which can leave out
Initialization blocks

m Hardware and simulator
can provide arbitrary
block WCET

m Causes result
discrepancies

m Must be compensated for
when comparing WCET

label:

I

|

Y
StartTimer()

Loop Initialisation Code

= T = WCET
I Estimated
for this
1 Reginn
' of Code
Check Condition
Retun to label if Condition —

StopTimer()
I

Y

"
Timing Analysis for NesC

m Programming Language for applications running
on the TinyOS platform

m Defined especially for distributed embedded
wireless sensor networks

m Builton C
m NesC compiler converts to intermediate C code

m Timing analysis can be performed on
Intermediate code

m Loop bounds can be determined manually from
C code

"
Experiment Results

removed

Loop stalls

v

C Benchmark Mica Motes Simulator Timing Analyzer
™ Before After Before After |Rqtio|| Imitial |[Ratio| After |Ratio|After Var. |Ratio
Adjustment | Adjustment || Adjustment | Adjustment Results Pipeline Fix Instr. Fix
sum array 141,524 141,500 141,521 141.49?“ 0.99 161.498| 1.14 141,500| 1.00 | 141.600(1.00
fi beall 151 145 146 14q| 0.96 258 1.78 202 1.39 146 1.01
msertsort 1,629 1,613 1,622 1.606] 0.99 1,978| 1.23 1.880| 1.17 1861 1.15
matrix mult 1,851 1.845 1.848 1.842" 0.99 2,318| 1.26 2070) 1.12 1,878 1.01
bubble sort 3,628.249| 3.628,239| 3.628,249| 3,628.239|1.00 ||3.900,998| 1.08 | 3.650,000| 1.01 |3,776.518| 1.04
NesC Benchmark Mica Motes Simulator Timing Analyzer
I Before After Before After |Ratio|| Imitial |[Ratio| After |Ratio|After Var. |Ratio
Adjustment | Adjustment || Adjustment | Adjustment Results Pipeline Fix Instr. Fix)
ArraySum 86 81 97 02]1.14 105| 1.30 87| 1.07 88| 1.09
RCS5.encrypt 15,956 15,951 15,951 15,946 1.00 17,958 1.13 16,088 | 1.00 16,088| 1.00
RC5.decrypt 15,860 15,855 15,855 15,850/ 1.00 17.982| 1.13 16,112] 1.01 16,122] 1.01

Note: All ratios are with respect to Mica Motes “After Adjustment”

"
Scalability of Timing Analyzer

160

h @ Actual Execution Cycles

B WCET Estimates from Timing Analyser

120

=
=

=
=0

Execution Cycles
w
b

I
=

b2
= ==

5 10 15 oop Bound<? 25 30

Input size scaled for fibcall benchmark

	Timing Analysis for Sensor Network Nodes of the Atmega Processor Family
	Introduction
	Verification of result correctness
	Types of Timing Analysis:
	Timing Analysis Framework
	Timing Analysis Framework
	Timing Analyzer: Pipeline
	Timing Analyzer: Path Analysis
	Modifications to Architecture
	Variable Cycle Instructions
	Variable Cycle Instructions
	Modifications to Architecture
	Atmega Architecture
	Instruction Set
	Experimentation
	Hardware overhead compensation
	Hardware/Simulator vs. Timing Analyzer Mismatch
	Timing Analysis for NesC
	Experiment Results
	Scalability of Timing Analyzer

