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Abstract

The Integrated Modular Avionics (IMA) approach can
achieve lower overall hardware costs and reduced level of
spares by getting multiple applications that have
traditionally been implemented using separate, federated
units to share hardware resources. However, the IMA
approach also brings new challenges that did not exist in
the federated setup. Avoiding unwanted dependencies
among applications and managing the reuse of legacy code
tops the list of challenges. This paper describes a two-layer
software architecture, which enables the integration of
multiple applications while maintaining strong spatial and
temporal partitioning among application modules. In
addition, the architecture allows the reusability of existent
software modules by enabling the integration of
applications written for different real-time operating
systems.

1. Introduction

The recent advances in computer technology encouraged
the avionics industry to take advantage of the increased
processing and communication power and combine
multiple federated applications into a shared platform. A
new concept, called the Integrated Modular Avionics
(IMA) [1], was developed for integrating multiple software
components into a shared computing environment powerful
enough to meet the computing demands of these
traditionally separated components. This integration has the
advantage of lower hardware costs and reduced level of
spares. Further reductions in weight and power
consumption are also expected. To capture the numerous
advantages of the IMA approach, there are currently major
market forces pushing the industry in this direction.

The Integrated Hazard Avoidance System (IHAS) and
the Integrated Environmental Control System (IECS) are
examples of IMA projects at Honeywell. The IHAS system
integrates flight safety avionics such as Traffic Collision

Avoidance System (TCAS), Enhanced Ground Proximity
Warning System (EGPWS) and Weather Radar. The IECS
system controls the operating environment to ensure safe
use of the equipment on the aircraft and the comfort of
passengers. For example, the IECS system adjusts (by
cooling or heating) the operating temperature of hydraulic,
electrical and mechanical power devices and equipment,
de-ices and defogs windshield and controls cabin pressure
and passengers’ air-condition. The IHAS and IECS systems
achieve substantial reduction in the very expensive flight-
worthy hardware, in the weight and volume of the avionics
and in the power consumption. Such reduction lowers the
development cost of avionics and increases the efficiency
of aircraft operation.

However, the IMA approach also brings new issues.
Chief among these issues is the problem of avoiding
unwanted dependencies among applications.  It is
necessary to be able to show, with a very high level of
assurance, that a problem or failure in one application
cannot have an adverse impact on any other application.
Without such level of assurance the aircraft certification
authorities (e.g. the Federal Aviation Administration) will
be unwilling to certify the installation of such systems on
an aircraft. Such a requirement is usually referred to as
strong partitioning among the integrated applications.

Supporting the reuse of legacy applications is another
very important issue that the IMA approach raises.
Requiring the redevelopment and revalidation of existing
application software can introduce excessive costs that
diminish the advantage of the IMA approach. Statistics
show that the cost of software re-development for safety
critical systems is prohibitive [2]. Software reuse provides
economical values and accelerates time to market [3].

Several efforts have been made to define a standard
operating environment for integrated modular avionics
applications [6,7]. This paper describes a new approach for
implementing a software architecture that enables software
reuse while complying with IMA specifications. Reusing



software includes legacy applications and third party
modules for which the source code is not accessible.

The following subsections describe the partitioning
issues and different approaches for supporting software
reuse in an IMA environment. The fault model and system
model assumed throughout the paper is also discussed. The
remainder of the paper is organized as follows: Section 2
describes the functional components of the proposed
software architecture. Enforcing strict time-based
scheduling and handling of exceptions is discussed in
section 3. A prototype implementation of the architecture
is described in section 4. A survey of related work is given
in section 5. The paper is concluded with a summary and
discussion of future directions in section 6.

1.1 Strong Software Partitioning
Strong partitioning conceptually means that the boundaries
among applications are well defined and protected so that
operations of an application module will not be disrupted
nor corrupted by erroneous behavior of another application
[8]. Containing the effects of faults is very crucial for the
integrated environment to guarantee that a faulty
component may not cause other components to fail and
risk generating a total system failure. For instance, in an
ideal IMA-based avionics, a failure in the cabin’s
temperature control system must not negatively influence
critical flight control systems such as the flight manager.

In federated avionics setup, applications share very
little with each other and partitioning comes naturally, yet
very costly due to the excessive use of computing
resources. In an IMA environment, an application might
share a resource with others and thus, its correct operation
becomes dependent on their use of the resource. When
multiple avionics application software coexist on the same
computer, partitioning is particularly challenged in the way
applications access memory, seize and release the CPU and
interface with input and output devices. Usually
applications are allocated different memory regions while
CPU and I/O device access time are divided among them
based on a schedule, commonly generated in avionics
before the integration of these applications.

Although dividing memory and resource access time
among applications forms enough boundaries and
facilitates the integration, it cannot guarantee that those
boundaries will not be violated under some faulty
conditions. Therefore, the IMA environment needs to
ensure strong partitioning among the integrated
applications both spatially and temporally. The address
space of each application should be protected against
unauthorized access by other applications. In addition, an
application should not be allowed to overrun its allocated
quota of resource usage and delay the progress of other
integrated applications. This paper focuses only on
partitioning both the CPU and Memory and provides very
brief insight for I/O handling.

1.2 Reusing Legacy Avionics Software
In recent years, the software industry has started to realize
the cost of developing high quality software. Many design
methodologies and techniques are proposed to achieve
software reusability at different levels of the software
development [3]. In avionics applications, the incentives
for software reuse are very attractive since developing and
certifying software, according to the DO-178B guidelines
[4] is both time-consuming and expensive.  However most
legacy applications were developed without consideration
of future reuse of modules, nor using standard interface
such as POSIX [5] to operating system services. That
leaves only reusing the entire application software as an
option.

The same also applies to third party’s applications that
could potentially be integrated in the IMA environment
and for which the source code are not accessible for
competition’s concerns. In addition, it is very hard to get
all avionics vendors and aircraft integrators to agree on a
common architecture. Therefore, it is very common that
vendors select different software environments for their
products. To capture the full potential of cost saving using
the IMA approach the software architecture should allow
the integration of applications, developed using a different
software environment, without imposing change to neither
the code nor the operating system interface.

1.3 Fault Model
Strong partitioning implies that any erroneous behavior of
a faulty application partition should not affect other healthy
applications. This erroneous behavior of an application can
be the result of a software fault or a failure in a hardware
device used exclusively by that application. The fault can
be generic, accidental or intentional in nature and
permanent, transient or intermittent in duration. However,
we assume that there are application-specific semantic
checks, which verify the validity of the communicated data
to detect errors due semantic-related generic faults in the
application software. We also assume that the system is not
liable to Byzantine faults, i.e. all faults manifest
themselves into errors, which are detected in the same way
by all the other healthy modules. In addition, we assume
that faults occur one at a time with no simultaneity.

An attempt by a faulty component to corrupt other
healthy system components should lead to an error. Only
applications that communicate with that faulty application
partition need to be aware of the error and perform
recovery according to the nature of the application. On the
other hand, operations on healthy applications that do not
communicate with the faulty application will not be
affected.

1.4 System Model
In our environment, we assume that the CPU will not
receive any interrupts from I/O devices. The I/O device
should either operate on a polling-basis or be supported by



a device controller that is included in the design to
handshake with the device and buffer the data.  In safety-
critical real-time applications, such as avionics, frequent
interrupts generated by I/O devices to the CPU risk the
system predictability and complicate system validation and
certification. In addition, the use of device controller or I/O
co-processor is very common on modern computer
architectures to off-load the CPU and boost the
performance.

We also assume that the CPU either supports memory-
mapped I/O or provides mechanism to enable partition-
level access protection for IO-mapped devices. In all cases,
access to I/O devices should not require the use of
privileged instructions. In recent years, support of
memory-mapped I/O devices has become almost standard
on microprocessors. For example, the Motorola PowerPC
processor supports memory-mapped devices only. Using
the memory management unit, access to a memory-mapped
device can be controlled by restricting the address space of
an application. An application can access the device using
regular memory access instructions if the device address is
in its address space. On the other hand, the Intel Pentium
processor supports both memory-mapped and IO-mapped
devices. However, the I/O instructions of the Pentium
processor are privileged. Thus only memory-mapped
devices are allowed if the Pentium processor is to be used
in our environment.

The underlying hardware is expected to provide
certain services that are essential for the implementation of
the software architecture. We assume the availability of a
memory protection mechanism to define memory partitions
and control the read, write, and/or execute access to these
memory partitions. A high-resolution real-time clock and
at least one countdown timer are required. The countdown
timer should be able to generate hardware interrupts.  It is
worth noting that such features are almost standard on
commercially available computer boards serving the
embedded applications industry.

2. Two-Layer Software Architecture
In this section, we present new software architecture for
integrating real-time safety-critical avionics applications.
The architecture, depicted in figure 1, is fundamentally a
two-layer operating environment that complies with the
ARINC specification 653 [6] and the Minimum
Operational Performance Standards for Avionics Computer
Resource [7]. However, our approach goes one step further
by enabling the integration of legacy software modules
together with their choice of real-time operating systems in
one CPU board. The following describes the functional
components of the architecture.

System Executive: The bottom layer of the architecture,
termed the System Executive (SE), provides each
application module with a virtual machine [23], i.e. a
protected partition, inside which the application can

execute together with its choice of real-time operating
system. This way, the application is isolated from other
applications in the space domain (i.e. memory address
space).

Generally, spatial partitioning can be enforced via
hardware [9] or software means [10,11]. Ensuring the
integrity of memory access via software means, typically
through the insertion of checks in the code, can complicate
the integration and the certification of the application. In
order to insert such checks in the application’s source code,
if available, the application will have to be revalidated and
re-certified. On the other hand, using a tool, such as [11] to
automatically insert memory access checks in the binary
image is intrusive to the validated temporal behavior of the
avionics application. Therefore, we rely on hardware
means such as the memory management unit available with
most modern processors to enforce spatial partitioning.

Time-domain isolation is accomplished by sharing the
CPU and other resources among applications based on a
pre-computed static timetable. The system executive
maintains a real-time clock to strictly implement the
timetable in which each application is assigned well-
defined time slices. Providing time services to the
applications is quite challenging since applications used to
run exclusively on a computer and had a continuous time
notion. In the new architecture, the application will be
preempted and internal clock (timekeeper) will be
suspended until the application seizes the CPU again. We
have developed an algorithm that provides the application
with time services while enforcing temporal partitioning
among the integrated applications. Details of the time
management are described in section 3.

In addition to ensuring spatial and temporal
partitioning, the SE handles context switching, facilitates
inter-application / inter-processor communication, and
initializes / monitors / terminates application partitions.
The details of the inter-application communication
mechanisms are not discussed in this paper.
It should be noted at this point that only the SE would have
the ability to execute in the highest privileged CPU mode.
All other partitions execute in a less privileged CPU mode
thus ruling out the possibility of an application corrupting
the memory protection set up or violating other
applications’ rights to use the CPU. Any function typically
implemented by an operating system that requires a
privileged CPU mode of operation, thus interfering with
the responsibilities of the SE, is replaced by a call to the
Interface Library. The Interface Library redirects such calls
to the SE.

The SE is the main loop that controls the operation of
the entire operation. It starts by initializing all hardware
resources, and setting up the memory partitions. It then
enters an indefinite loop in which it busy-waits for the
starting time of the next partition, as indicated by the
scheduling timetable, before it switches control to that
partition. When the time slice of the selected partitions



expires, control of the CPU returns to the SE, and the loop
continues. Before dispatching a partition, the CPU is
downgraded to the less-privileged User mode of operation.
The CPU is upgraded to the privileged Supervisor mode at
the end of the partition’s time slice.

Application Executive: Each application, which may
consist of multiple tasks, is assigned a protected memory
partition, thus preventing a fault in one application
partition to negatively effect (propagate to) other
applications. The SE will be able to support applications
written for different operating systems. To accomplish this
feature, each application is accompanied by its own
Application Executive (AE) as well as an Interface Library
(IL) to the system executive’s services. The application
executive, which represents the top layer of the software
architecture, is actually a customized version of the
operating system of choice. The customization ensures that
specific options of the real-time operating system, acting as
a partition executive, are included (excluded or replaced) in
order for the application to run in non-privileged mode.
The AE handles intra-application communication and
synchronization. The AE also manages the dynamic
memory requirements of the application within the
boundaries of the application’s own memory partition.
The AE may also implement its own strategy for
scheduling the application’s tasks. All the application
executive’s functions related to inter-application and inter-
processor communications are handled through the
Interface Library to the SE.

While application loading is performed by the SE, all
application-specific initialization is done by the AE. The
AE will not perform any boot sequence procedures such as
probing for or initialization of hardware devices,
initializing interrupt tables, setting up the memory
management unit (MMU) registers, etc. Such procedures
are replaced by the proper initialization of the
corresponding data structures.

Interface Library: Since operating systems in general
assume privileged access to the hardware, the system
executive needs to export services to application
executives that emulate privileged instructions [23]. These
services include exception handling, interrupt enabling and
disabling and access to processor internal state e.g. during
thread context switching. The Interface Library (IL)
encapsulates these services. The application is linked with
the IL instead of some of the original operating system’s
libraries. A different version of the IL is built for each
supported operating system. The IL acts as a gateway
between the application and the computer’s hardware
services, which are now provided by the SE instead of the
application’s native operating system. Section 3 includes
detailed discussion of the IL

Device drivers: Device handling, according to our system
model, can be performed by either the SE or the AE.
Handling I/O devices within the SE will require the
implementation of synchronization mechanisms to
maintain correct order of operations among the
applications and thus complicate the design of the SE.
Maintaining the simplicity of the SE is a design goal in
order to facilitate the SE certification. In addition including
device handling within the SE increases its the sensitivity
to device changes and might mandate the re-certification of
the SE when a new device is added or removed. On the
other hand, application executives cannot handle shared
I/O devices without coordination among themselves.

Our approach is to allow the AE to handle I/O devices
that are exclusively used by that application (partition).
The AE synchronization primitives can be used to manage
access to a device made by tasks within the partition. The
SE will ensure that every device in the system is mapped to
one and only one partition. In order to support a shared
device among partitions such as a backplane data bus, a
device daemon (handler) will be allocated to a dedicated
partition. The device daemon serves access requests to that
device made by the application partitions. The shared
device manager partition still has exclusive access to the
device. Application partitions that need read or write
access to a shared device communicate with the device
daemon via inter-partition communication primitives. This
paper focuses only on partitioning both the CPU and
Memory. I/O device handling is not discussed any further.

2.1 Architecture’s Effectiveness for IMA
The presented two-layer architecture supports robust
partitioning, allows reuse of legacy software and facilitates
system validation. The architecture enforces strict spatial
boundaries and CPU time quota among the integrated
applications. Ensuring spatial and temporal partitioning
guarantees that the system will continue to operate safely
under the presence of software faults and failures in
hardware devices, which are exclusively used by an
individual application. Since each application cannot
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 Figure 1: New avionics software architecture



exceed its allocated time and cannot write to any memory
region outside its permissible space, the effect of a
software fault in that application will be limited to the
application itself and would not propagate to other
partitions.

The architecture increases reusability of existent
application modules that may have been developed by
multiple vendors for different real-time operating systems.
The System Executive provides a virtual machine for
applications to run. A set of library routines would need to
be linked with the application in order to be executed in the
integrated environment. The approach requires neither
modifying application programs nor the availability of the
source code, thus overcoming an important hurdle in
reusing legacy application and integration of third-party
software. Modifying legacy applications tends to be very
costly due to the need for re-validation of previously
certified development. Source code of third-party software
is either radically expensive or simply inaccessible. The
architecture simplifies the integration of such a diverse mix
and minimizes the need to re-validate previously certified
software.

In addition, the architecture reduces overall
certification costs by maintaining design simplicity and
eliminating the need to re-test a whole set of applications
when only a single module is added, upgraded, or removed
from the system. The System Executive is designed to be
largely independent from the integrated application
modules. Such design approach maintains the stability of
the system executive and does not require the certification
of the System Executive every time a new application
module is integrated or an old module is upgraded. The
architecture allows application modules to be developed
separately and facilitates incremental integration. An
application can be developed and tested using the
Application Executive’s environment before integration.
By ensuring partitioning, the application would not be
negatively impacted with any erroneous behavior of other
integrated application in our environment.

Although the two-layer architecture introduces
overhead and penalizes system performance, the flexibility
and reduced development cost justifies such performance
degradation. In addition, the recent published research
about layered µ-kernel-based systems proved that the
overhead is not radically high [12,13,22]. Experiments on
the L4 Linux [13] systems showed an overhead of 5% to
10% compared to monolithic Linux.

In addition, in our architecture multiple copies of the
same real-time operating system need to exist if multiple
application partitions were developed using that particular
RTOS. We do not see this as a major concern since the
price of RAM has dramatically gone down in the recent
years and the footprint of an embedded real-time operating
system is often small. On the other hand, The alternative
approach is to integrate tasks from multiple applications,
which requires the revalidation of all of them, a job that is

way more expensive than the increase in the required RAM
size.

3. SE and AE Interface
The system executive's main functions are the management
of partitions, serving privileged requests for hardware
access and the handling of inter-partition communication,
or IPC. The description of the IPC services is out of the
scope of this paper. The focus here is to describe how the
SE guarantees each partition its quota of the CPU time and
maintain the consistency between their internal clock and
the overall system clock. This is a difficult challenge since
each partition has its own AE. In this section, we describe
how the time slice of each partition is strictly enforced
without adversely affecting the operation of the AE. In
addition, algorithms for emulating privileged functions for
application executives are also discussed.

3.1 Time Management
It is essential to keep track of the passage of time both at
the system executive level as well as at the application
executive level. In a stand-alone federated configuration,
an application executive keeps track of the progress of time
in units of clock ticks. A tick counter is incremented upon
the receiving of an interrupt from a periodic timer
indicating the passage of clock tick. In the integrated setup
the AE will be preempted and will no longer regularly
receive the timer interrupt to track the time and it has to
rely on the SE to be the timekeeper. Therefore, the system
executive needs to maintain a global time notion while
successfully enforcing the time-based scheduling of
partitions. Tracking system-wide global time is essential to
provide the application with a reference clock so that,
application dependent events could be tracked inside the
partition.

There are two alternative approaches to maintain
global time and enforce temporal partitioning. In the first
approach, the SE may rely on an independently running
high-resolution real-time clock built into the CPU or the
board to keep track of global time while using a countdown
timer to enforce the execution schedule of partitions.  The
second approach calls for using a periodic countdown
timer to generate interrupts at equidistant points in time
(SE-ticks) so that the SE updates the proper data structures
representing the current time and schedule partitions. In the
second approach, all time-dependent events may only
occur at the start of one of these SE-ticks.

The size of the SE-tick will be constrained by the
clock tick sizes of the application executives. In the
absence of an independent real-time clock, the SE tick
period is selected as the greatest common divisor of the
clock tick periods of the different application executives
that share the same CPU board. For example, if there are
three application partitions with tick periods of 10, 13 and
20 milliseconds, the SE-tick has to be 1 millisecond.



Receiving interrupts at that much higher rate might cause
thrashing since the CPU will end up spending most of the
time serving timer interrupts. Given the right duration for a
SE-tick the second approach can be used as well.
Assuming the first approach, the algorithm for tracking
time at the AE level is presented section 3.1.2.

3.1.1 Time-Based Dispatching. During the system
integration phase, an off-line scheduler builds a static
timetable indicating when, and for how long, each partition
shall use the CPU. This timetable depends on the real-time
constraints and resource requirements of each individual
partition as well as on the resource availability. A partition
may be allocated multiple disjoint time slices with possibly
different duration each.

At run time, the SE dispatches and preempts partitions
according to the timetable. First, the SE inspects the
timetable to determine the next partition. Next, the SE sets
up the necessary environment so that a countdown timer
generates an interrupt at the end of the time slice of the
selected partition. Finally, the SE switches context to the
selected partition, which then starts executing.

The application executive always acts as the entry
point of every application partition. The AE applies its own
scheduling policy to determine which application task to
dispatch. Once the partition’s time slice expires the
context-switching back to the system executive is
immediately started. The current time is recorded and the
current state of the partition is saved, to be used in
restoring the application context when later scheduled.

The next time the partition is dispatched by the system
executive, the partition’s own clock is adjusted and the
CPU is handed over to the application executive. The latter
will determine which task to dispatch next. The time-based
partition dispatching and preemption is illustrated in the
control-flow diagram of figure 2. This figure also
emphasizes that on re-entry, control of the CPU is handed
over to the AE, even if a regular application task was
interrupted by the most recent time-slice expiration event.

While a partition is executing, a timer will be set to
interrupt every clock tick of the corresponding AE so that
the application execution behavior would not change.
Figure 3 demonstrates the fact that the countdown timer
may be required to generate several interrupts before the
expiration of the time slice of a partition. These interrupts
help the application executive monitor the progress of
time. This is discussed in more details in the next section.

3.1.2 The Timer Interrupt Service Routine. The timer
interrupt-service-routine (ISR) is the main routine that
enforces temporal partitioning, handles context switching
and updates the AE internal time. The algorithm of the
timer ISR presented in this section assumes the availability
of a high-resolution independent real-time clock enabling
the SE to keep track of the global time. Figure 4 presents a
flowchart of the timer (ISR) and the partition dispatcher of

the SE, side-by-side. The length of a time slice is not
restricted by the clock tick of application executives.

In preparation to the dispatching of the next partition,
the SE checks the allocated time slice and determines the
number of full-length AE clock ticks ‘Nticks’, as well as
any partial tick, ‘parTick’. The SE calculates ‘Nticks’ and
‘parTick’ as functions of the selected partition’s clock tick
length and the allocated time slice. After waiting for the
starting time, the SE sets up the countdown timer
according to the computed values of ‘Nticks’ and
‘parTick’.

As the partition executes the timer ISR periodically
decrements ‘Nticks’, then invokes the application
executive’s appropriate routine to update the partition’s
current time. Once all full-length ticks have been
exhausted, the countdown timer is programmed to generate
one final interrupt after duration of ‘parTick’. The ISR
starts the context-switching procedure once the time slice
expires. In order to simplify the implementation and reduce
the overhead of the timer ISR, the time slice of each
partition is forced to start at the boundary of the AE’s
clock tick.

Except for the very first time, the partition’s re-entry
point is always in the middle of the timer ISR. The ISR
adjusts the AE’s time data structures to account for the

Figure 3: Time-based partition dispatching
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elapsed time during which the partition was preempted,
and then immediately returns to the AE. The reason behind
having the AE start each time slice is to check for any
partition-related events, e.g. arriving messages or
watchdog timers, that may have occurred while the
partition was preempted by the SE. Such events, if exist,
may affect the scheduling decisions of the AE and make a
different task eligible to acquire the CPU instead of the one
that was interrupted by the expiration of the previous time
slice. The time slice need not be a multiple of the AE’s
clock tick length.

Since global time continuously advances even when a
partition is not running, the next time that partition is
dispatched its tick counter is properly updated. This lump
sum update, which is performed by ISR , should account
for the time elapsed since the most recent time slice the
partition has used the CPU. The delivery of possibly
multiple clock ticks is not interrupted by the application
executive’s scheduler until all ticks, and messages, have
been successfully delivered. It is required that the clock
tick rate of all application executives must be known at the
creation of the scheduling timetable. In addition,
application executives are not permitted to change their
clock tick rates at run time.

During the execution of a critical section, the AE
usually disables interrupts to ensure that updating internal
data structure is an atomic operation and thus maintains the
consistency of the data. Interrupt disabling is a privileged
operation that will be trapped, as we explain next, and will
be replaced by setting an indicator
‘AE_Interrupt_Disabled’. If the AE is preempted during
the critical section, the data consistency will be ensured
when execution resumes to where it stopped. Since the
delivery of the clock tick(s) to the AE might result in
awakening a higher priority task, a different thread could
be scheduled. Therefore, the clock tick will be delivered
only if the AE did not indicate that it wanted the interrupts
disabled so that data consistency could be guaranteed. In
such case, the delivery of the clock tick will be deferred
until the AE indicates its readiness to accept interrupts. As
shown in figure 4, deferred clock ticks are queued for
future delivery.

3.2 Emulated Privileged Operations
Execution of privileged instruction while running in User
mode generates an exception. The details of exception
handling heavily depend on the hardware platform.
However, the concepts remain almost unchanged across
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platforms. Some platforms, such as the Intel processor
family, use the term “interrupt” to refer to external
asynchronous events that are not related to the currently
executed instruction, such as an asynchronous signal from
a device. The term “exception” is reserved for events
related to the currently executed instruction, such as
“divide by zero” or “illegal opcode”. Other platforms, such
as the PowerPC, use the term “exceptions” to refer to both
types of events. In the following discussion, we will follow
the PowerPC approach for using the term “exception”.

Fundamentally, all platforms provide mechanisms to
recognize and respond to different kinds of exceptions.
Any processor should be able to identify the source of the
arriving exception, and may elect, under program control,
to postpone handling of this exception.

When an exception occurs, the CPU jumps to a
predetermined fixed location in memory where an
Exception Handling Routine (EHR), or at least an entry
point to one, resides. Before the first instruction in such
EHR is started, the CPU is promoted to the supervisor
mode. Such high privilege is required to properly handle
the exception. The mode of operation that existed prior to
taking the exception is restored at the end of the EHR.

Typically, an exception handler has three code
segments; namely an entry segment, a body segment, and
an exit segment. The entry and exit segments take care of
saving and restoring the processor status upon entry and
exit from the exception handler, respectively. The body
segment provides the core function of responding to the
event causing the exception. Exception handlers should be
coded to allow nesting of multiple exceptions.

In our approach of a two-layer operating environment,
it is essential that the system executive be the first to

respond to any exception. However, in order to maintain
application portability, the SE may invoke the procedures
of the currently running AE to perform application-specific
handling of some of the exceptions. Privilege violations
and system calls exceptions are of particular interest, since
they are being trapped in order to emulate privileged
operations for the AE.

3.2.1 Privilege Violation Exception. Contemporary
processors provide security mechanisms for the operating
system by having at least two privilege levels; namely the
User and Supervisor levels. Certain instructions require the
supervisor privilege to execute, otherwise the CPU
generates a privilege violation exception. The proposed
two-layer software architecture calls for running the entire
application partition, including the application executive
itself, at the user level. This is essential to protect the
isolation environment, setup by the system executive from
being corrupted by any partition.

As part of its legitimate operation, however, the AE
may require all external asynchronous interrupts to be
disabled for a short period before they are re-enabled. Such
requirement arises, for example, when handling
semaphores, dynamic memory allocation, linked list
pointers, and other critical sections of the AE code. In
general, the AE disables the interrupts to enforce its own
concurrency control policy among the tasks running inside
its partition. Since the enforcement of the time-based
scheduled depends on the countdown timer interrupt being
recognized as soon as it arrives, the AE must not disable
the interrupts. This is one of the reasons the entire AE is to
run in a less privileged mode than the SE. Therefore, any
attempt by the AE to disable/enable interrupts will be
treated as a privilege violation exception.

Priviledge Violation
Exception Handler
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Figure 5: Privilege Violation exception handler
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Figure 6: The System Call exception handler
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To meet these two conflicting demands, we introduce
the Privilege Violation exception handler, shown in figure
5. Having confirmed that the violation was made by the
AE, the handler will set a flag, AE_Interrupt_Disabled,
but will not physically disable the interrupts. One such flag
exists for each AE in the system. If the timer generates an
interrupt before the AE re-enables the interrupts, the
AE_Interrupt_Disabled flag instructs the timer ISR not to
deliver the clock tick(s), as indicated in figure 4. At the
proper time, the AE will re-enable interrupts, and the
privilege violation exception will deliver the missed clock
tick(s), if any.

3.2.2 System Call Exception. User mode applications
should be able to request services from the system
executive, which runs in Supervisor mode. This is usually
supported by the System Call instruction. The system call
is considered a software-generated exception, thereby
automatically elevating the processor to supervisor mode.
Many system executive’s services require such high
privilege in order to access hardware resources. The
handling of the system call exception is demonstrated in
figure 6. Certain system calls will be served by the system
executive. Others will be relayed to the AE for service
after resetting the CPU back to User privilege level. In fact,
the appropriate AE functions are invoked as regular
subroutines from within the System Call exception handler.
These subroutines are identified by studying the exception
handlers of the each application executive. For each AE,
there exists a flag, called Inside-AppExec, which indicates
whether the CPU is executing inside that AE code. This
flag is used by the Privilege Violation exception handler,
as demonstrated in figure 5.

4. Prototype Implementation
In order to prove and demonstrate the feasibility of the
proposed architecture, we implemented a prototype using a
commercial embedded board. The board houses an 80
MHz Motorola PowerPC 603e and 32MB of RAM. The
PowerPC 603e provides a memory management unit
(MMU) and a high-resolution 64-bit time base register.
The PowerPC also contains a decrementer register that can
be programmed to generate an interrupt after a pre-
specified period. Both the time base and the decrementer
registers have a resolution of 120 nanoseconds. On top of
the hardware platform, we implemented the system
executive that cyclically schedules heterogeneous
application executives such as Wind River’s VxWorks [14]
and Cygnus’s eCos [15]. VxWorks and eCos are two
extreme cases of applications executives from the
perception of our design. VxWorks provides binary kernel
and modifiable board support packages written in C, while
eCos provides all C++ kernel sources to the designer.

We were confronted by several implementation issues
that we had to address. First, there was the issue of
temporal and spatial isolation of application partitions. To

guarantee temporal partitioning, we built a cyclic scheduler
in the SE that dispatches partitions based on statically built
timetable. Necessary timer interrupts for the cyclic
scheduling were generated using the decrementer facility
of the PowerPC. Reference timing was provided by the 64-
bit time base register of the PowerPC. To guarantee spatial
partitioning, we strictly applied memory protection rules
among applications and between the SE and application
partitions. Both the BAT (Block Address Translation) and
Segmentation/Paging schemes of the MMU on the
PowerPC were applied in order to implement spatial
partitioning. The BAT mechanism was used to protect the
SE’s address space from the applications whereas
Segmentation/Paging mechanism is used to protect each
application’s address space from other application
partitions. Combined use of the two different techniques
enabled us to achieve very low overhead in context
switching.  Since significant invocations of SE’s exception
handling services are expected, the BAT scheme was used
to map SE addresses to expedite access to these services.
All these invocations require context switching between
AE and SE because the execution environment is different.

We confronted with at least five other implementation
issues for porting a new RTOS in our software
environment. These issues include the initialization, time
tick service, exception handling, the SE’s services, and
user mode restriction. Since the SE exclusively initializes
sharable hardware resources such as CPU, MMU and
Interrupt Controller, the AE is allowed to initialize its own
kernel information only. In regard to the time tick service,
the SE should inform the AE of the arrival of a local time
tick. The frequency of local time ticks is a parameter of
each AE. Then it is the responsibility of the AE to run its



own time tick service routine that may cause, for example,
thread switching. Exceptions are handled at two stages.
First, the SE traps all exceptions and handles only those
that threaten the temporal or spatial isolation. The SE
relays the remaining exceptions to the currently running
AE, which then performs its own exception handling
strategy. The most important porting challenge of all, was
to force that the entire code of an AE to run in user mode
instead of the privileged supervisor mode. Kernel routines
that attempt to enable or disable the external interrupts or
to perform thread switching inside the application partition
were all replaced by interface library routines. Such a way
prevents violation of application partitioning.

As expected, it was easier to port an open-source
RTOS, such as eCos, than a one with only a binary kernel
such as VxWorks. This was because most of the porting
efforts were related to the kernel itself not the board
support packages of VxWorks. However, we were able to
successfully port VxWorks by analyzing its binary kernel
and by trapping and replacing the routines, that assumes
privilege execution level. The design of the prototype
environment is depicted in figure 7.

The two-layer architecture introduces overhead that
slows the system performance. The overhead generally
affects AE’s operations related to clock tick handling and
privileged instructions. Through the experiment, we
measured the following SE’s operations to quantify the
impact on the application performance:
•  Clock tick overhead: The execution time for the timer

ISR related to partition scheduling and time
management is found to be about 8 µs. That overhead
affects the AE’s tick handling.

•  Partition context switching: The average inter-
partitioning context switching time was observed to be
about 40 µs.  This time reflects saving the context
(about 40 CPU registers) of the preempted partition,
setting the hardware timer to accommodate the new
AE's time slice and local time tick frequency, and
finally loading of the new partition's context.

•  Intra-AE task context switching: Generally the
machine-status saving and loading is no longer done
by the AE and a SE library is to be invoked to provide
such a service. Switching to the SE usually extends the
time for saving and restoring the machine status. If the
context switching is triggered by the termination or
suspension of a task, the overhead is minimal (in the
order of 2-3 µs) compared to the case where the AE
runs in privileged mode. Task switching triggered by
tick events and scheduling will be increased by about
8 µs since the SE timer ISR is invoked.

•  Emulating privileged instruction: Since both VxWorks
and eCos applications usually run with the RTOS in
privileged mode, the system call exception did not
affect the AE operations in our experiment. For
privilege violation exception such as interrupt disable

instruction, the overhead of trapping such instruction
was observed to be about 5 µs.

5. Related Work
There have been a growing number of contemporary real-
time operating systems (RTOSs) both in the academia and
in the commercial marketplace. Systems such as MARUTI
[16] and MARS [17] represent a time-triggered approach
in the scheduling and dispatching of safety-critical real-
time applications, including avionics. However these
systems, either provide no partitioning scheme, as in the
case of MARUTI, or they rely completely on proprietary
hardware, as in the case of MARS.

Commercial RTOSs such as Neutrino [18] provide
varying levels of memory isolation for applications.
However, applications written for any of them are RTOS
specific. In addition, it is not possible for applications,
which are written for one RTOS to coexist on the same
CPU with a different RTOS without a considerable effort
of re-coding and re-testing. Our approach overcomes those
drawbacks by ensuring both spatial and temporal
partitioning while allowing the integration of application
developed using a contemporary RTOS.

The Airplane Information Management System
(AIMS) on board the Boeing 777 commercial airplane is
among the few examples of IMA based systems [24].
Although, the AIMS and other currently used modular
avionics setup offer strong partitioning, they lack the
ability of integrating legacy and third party’s applications.
In our approach, a partition is an operating system
encompassing its application. All previous architectures
have the application task(s) as the unit of partitioning.

The system executive, in our approach, can be viewed
as virtual machine monitor that exports the underlining
hardware architecture to the application partitions. The
concept of virtual machines has been used for variety of
reasons such as cross-platform development [19], fault
tolerance [20], and for the development of hardware-
independent software [21].  Although some of these virtual
machines restrict memory access to maintain partitioning,
we are not aware of any that enforces temporal partitioning
or supports real-time operating systems. Needless to say
that, it does not guarantee any hard real-time constraints
any better that the host operating system does.

Decomposing the operating system services into a µ-
kernel augmented with multiple user-level modules has
been the subject of extensive research, such as SPIN [10],
Flux [23], Exokernel [22], and L4 [12]. The main objective
of these µ-kernel-based systems is to efficiently handle
domain-specific applications by offering flexibility,
modularity, and extendibility. However, none of these
systems is suitable for hard real-time applications.

RT-Mach and CVOE are among the few µ-kernel
based RTOSs that supports spatial and temporal
partitioning. Temporal guarantees in RT-Mach are



provided through an operating system abstraction called
processor reserve [26]. Processor reservation is accepted
through an admission control mechanism employing a
defined policy. CVOE is an extendable RTOS that
facilitates integration through the use a callback
mechanism to invoke application tasks [25]. Yet tasks from
different applications will be mixed and thus legacy
application can not smoothly be integrated without
substantial modification and revalidation.

6. Conclusion and Future Work
In this paper, we described the design and implementation
of a two-layer architecture to support the Integrated
Modular Avionics approach. The presented architecture
allows for the safe integration of applications including
their real-time operating systems as well. Legacy
application software need not be changed to work in the
new architecture. We consider that encapsulating the
application and its RTOS in one partition and having
multiple such partitions to safely exist in the same CPU is
one of the strongest achievements of our work.

As a natural extension to this work, we are currently
designing and implementing the required inter partition
communication schemes that will provide a reliable
channel between partitions and allow for both one-to-one
and broadcast type of communication. In addition, we also
plan to conduct fault-injection experiments to test the
resilience of the presented software architecture.
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