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Abstract

Engineering of complex distributed real-time appli-
cations is one of the hardest tasks faced by the soft-
ware profession today. All aspects of the process,
from design to implementation, are made more di�-
cult by the interaction of behavioral and platform con-
straints. Providing tools for this task is likewise not
without major challenges. In this paper, we discuss
a tool suite at New Jersey Institute of Technology's
Real-Time Computing Lab which supports the devel-
opment of complex distributed real-time applications
in a suitable high-level language (CRL). The suite's
component tools include a compiler, a transformer-
optimizer, an allocator-migrator, schedulability ana-
lyzers, a debugger-monitor, a kernel, and a (simu-
lated) network manager. The overall engineering ap-
proach supported by the suite is to provide as sim-
ple and natural an integrated development paradigm
as possible. The suite tools address complexity due to
distribution, scheduling, allocation and other sources
in an integrated manner (largely) transparent to the
developer. To reect the needs of propagation of func-
tional and non-functional requirements throughout the
development process, a number of robust code trans-
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formation and communication mechanisms have been
incorporated into the suite. To facilitate practical use
of the suite, the developed programs compile-transform
to a safe subset of C++ with appropriate libraries and
runtime support.

1 Introduction

Two exciting areas have emerged in recent years
from, in part, the real-time community. One, compiler
support for real-time systems, is studying and modi-
fying well-understood compiler technology in the con-
text of real-time and complex computer systems. The
other, arising from the intersection between real-time
systems, software engineering, and fault-tolerance and
reliability, is the newly-recognized �eld of complex
computer systems, dealing with large applications with
complex dependencies running on distributed hetero-
geneous platforms. These interact, and also a�ect and
are a�ected by the choice of real-time language, by
aspects of the run-time system such as scheduling, by
speci�cation methodology, and so on.

1.1 Motivation and related work

The motivation for developing real-time program-
ming languages is to facilitate writing of correct and
maintainable real-time programs, through more ef-
fective use of abstraction, compilation, and a pri-
ori analysis. Among the many computer languages,
design has not only considered environment (e.g.,
batch or interactive) and paradigm (e.g., imperative



or object-oriented), but also intended application do-
main. Thus, FORTRAN was designed speci�cally for
scienti�c computing and COBOL for business applica-
tions; real-time computing can similarly bene�t from
special-purpose languages. While several languages
have been designed or designated to be used in real-
time computing, until recently they have lacked, to a
signi�cant extent or entirely, the notion of real time
as a �rst-class entity.

Schedulability analysis | a key requirement for a
high-level real-time language | was originally de�ned
by Stoyen (formerly, Stoyenko) [19, 38, 39, 40, 43], and
refers to any pre-execution or symbolic language-level
analysis of programs that either determines whether
programs will meet their critical timing constraints
when executed, or derives programs' timing charac-
teristics. While the theory and implementation of
schedulability analyzers are beyond the scope of this
paper (see for example [19, 22, 24, 29, 30, 31, 43]), it is
important to realize that such analyses and tools can-
not be applied to conventional higher-level languages,
sequential or concurrent, for two largely independent
reasons. First, such languages lack the syntactic and
semantic support to de�ne real-time processes and
constraints. Second, constructs such as while loops,
recursion, access to dynamic memory, and some forms
of interprocess communication and synchronization
may have unbounded (and unpredictable) worst-case
execution times. Thus, conventional languages need to
be either modi�ed or extended with additional higher-
level directives or \pragmas" to facilitate their use in
real-time computing.

In addition, schedulability analysis requires pre-
dictable system behavior from both hardware and soft-
ware. Ideally, the time taken for execution of each
machine instruction should be known, with no un-
predictable delays from hardware or system calls. In
practice, timable units are more typically basic blocks,
so that variations in execution times of individual in-
structions (and e�ects of instruction scheduling and
simple pipelining) tend to average out and can be ac-
counted for [15]. In many cases, time-critical real-
time applications are being implemented on such pre-
dictable platforms, assembled from existing compo-
nents (see for example [13, 14]). Much of the e�ort
lies in making instruction execution, memory access,
and I/O externally predictable.

1.2 The real-time language scene

Higher-level real-time languages have been pro-
posed beginning with the Plankalk�ul of Zuse in
1946 [53], through the creation and standardization of
CCITT and Pearl in the 1970's, to modern approaches
using Ada [50, 1, 4, 34] and Real-Time Java [26]. All
have, however, signi�cant shortcomings. The early
languages naturally do not include now standard high-
level language constructions, and the modern lan-
guages have their own problems.

The approach we have chosen to follow in CRL [47]
had its origins in Real-Time Euclid [19, 40], which was
the �rst language to include a complete schedulabil-
ity analyzer independent of scheduling methodology,

and to explicitly refuse to compile programs which
contained segments (other than the outermost driver
loop) whose execution time was unbounded, or other-
wise failed to meet their timing constraints. Related
languages include Tomal [18], Flex [23], RTC++ [16],
and High-Integrity PEARL [42].

A second motivation and area of related work for
CRL is recent work on compiler and environment sup-
port for program development, and for tools such as
compilers or debuggers (such as [7, 8, 9, 27, 44]) and
to re�ne static timing computation ([5, 24, 28]).

One of the common themes is the perceived need
for a constraint granularity �ner than entire process
frames. A common suggestion is to allow timing con-
straints on loop bodies or called functions; another
is to allow constraints between more-or-less arbitrary
pairs of observable events. Our own approach accords
with that independently proposed by [7], which allows
these, but also the beginnings and ends of arbitrary
statements, to serve as anchors for absolute or rela-
tive constraints.

1.3 Our contribution: an integrated de-
velopment environment for complex
real-time systems

In this paper, we describe an integrated develop-
ment environment | under construction at the Real-
Time Computing Lab at NJIT | for complex real-
time systems. Currently, the prototype environment is
based on CRL. The integrated environment will even-
tually make heavy use of a full range of compiler anal-
yses and tools, and will include among its components:

� A tool for assigning modules of complex computer
systems to processors in an arbitrary con�gura-
tion, and for statically evaluating the resulting
assignment.

� A reasonable language for programming real-time
or complex applications, providing for exibility
of program idiom and constraint expression while
remaining as safe for complex real-time applica-
tions as Real-Time Euclid [19] is for the applica-
tions for which it was designed.

� Compiler analyses and other support for schedu-
lability analysis, veri�cation of constraints (in-
cluding constraint propagation and consistency
checking), elision of run-time checks on assertions,
and extraction of hints for the optimizer (e.g.,
where timing constraints are violated) and the
kernel scheduler (e.g., where timing constraints
or resource constraints are tight), and the rest
of the run-time system (e.g., bounds on message
sizes), plus the schedulability analyzer itself.

� A tool, automatic or semi-automatic, for deter-
mining the safety of standard compiler trans-
formations for optimization, parallelization, and
speculative execution, in the presence of timing
and other constraints, and for applying those
transformations if their safety and pro�tability
can be demonstrated.



� Compiler and environment tools for o�-the-clock
pro�ling, monitoring, debugging, testing and
evaluating complex computer systems, both in
the development phase, and for software mainte-
nance. These would include, for instance, a logger
and various data-ow tools for displaying def-use
chains, call graphs, interfaces, and so on.

� A workload generator, a simulator, and a testbed
for determining the net pro�tability in apply-
ing certain types of heuristics, transformations,
and/or policies to applications with synthesized
realistic workloads, constraints, and dependen-
cies. These tools will also permit testing of
partially-developed systems.

� A run-time environment, including kernel support
for communication and dynamic scheduling, both
for symbolic execution/simulation and for actual
execution.

� Interfaces and hooks for other tools, including on-
the-clock observers and transformations to sup-
port fault tolerance and other requirements, and
for the analyses needed to support those tools.

� A user interface and help system to aid in devel-
opment.

This integrated environment aims to provide com-
prehensive tools for all phases of the development and
deployment of complex real-time systems. We will fur-
ther describe each component in the following sections.

2 Overview of the platform compo-
nents

The platform consists of seven major components,
as shown in the Figure 1.1 A more detailed discussion
follows in the balance of the paper.

The input for the prototype may include, in ad-
dition to source code, an architecture �le describing
the target processors' architecture, an instruction time
map for that architecture, and a global assertions �le
providing user annotations to be used by the trans-
formation engine, in, for example, performing partial
evaluation. (There may be other, local assertions em-
bedded in the source.)

The �rst component is the compiler for the CRL
language. The front end of the compiler generates
intermediate code (in this implementation, a safe sub-
set of C++), including run-time checks, and extracts
constraints, assertions and other directives, and cre-
ates �les containing this information, for use by static
analyzers and by the run-time environment.

The compiler also generates a set of representa-
tions: a call (multi-)graph capturing caller and callee
relationships and bindings, and a data dependence
graph and control ow graph for each process and each

1The assignment tool is currently neither CRL-based nor
integrated, and is thus not discussed subsequently.
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Figure 1: The platform software components

method, to be used both by the timing tool and by the
transformation engine. Currently we are not generat-
ing any low-level or machine code, but relying on the
intermediate code in our analysis. The timing tool
then uses the instruction timing map plus the archi-
tecture �le to assign times to atomic statements (but
not structured statements or calls) of the intermediate
code.

The analysis/transformation engine uses the timed
intermediate code generated by the timing tool (imple-
mented by de�ning a time variable incremented while
traversing statements of every basic block by the ex-
ecution time of statements of that block) and applies
static analysis and various transformations, as dis-
cussed in earlier sections, to improve the code. More-
over, it tries to eliminate some checks, and to detect
certain classes of errors, resulting in a �nal version of
the code and of the constraint �le.

The schedulability analyzer then takes the trans-
formed code and constraint �le, and certi�es schedu-
lability modulo the validity of constraints and asser-
tions. The schedulability analyzer also reports a pos-
sible object-to-processor assignment (in which some
objects may be replicated on every processor), and a



partial or complete static scheduler.

The run-time preprocessor (linker) translates the
intermediate code into executable code. The run-time
kernel uses the executable code and the �nal con-
straint �le and consults the static schedule generated
by the schedulability analyzer to schedule tasks, allo-
cate resources, and manage object queues. The net-
work simulator provides the kernel with the delays due
to communications (transmissions and message queu-
ing). Finally, the user interface component displays
some measurements, such as performance, processes
missing deadlines, and average case improvement.

3 The compilation process

Inputs to the compilation process include (1) the
source code, (2) a �le containing descriptions of ar-
chitectural components, describing processors, links,
devices, etc. (for now, we assume a homoge-
neous network with an arbitrary topology), includ-
ing instruction-class/time maps, network topology,
and other interconnection details, and (3) a (possi-
bly empty) �le of global compile-time assertions for
the partial evaluator. The output from the compiler
will be an intermediate code program (in C++) and
a timing constraints �le. In addition, the compiler
will construct the graphical representations described
above: a call graph (caller and callee relationship and
bindings), and for each process and method, a data
dependence representation used by the timing tool,
and a control ow graph, to be used by the analy-
sis/transformation engine, as illustrated in Section 5.
Currently, the compiler generates use-def and def-use
chains [2] as a data dependence representation, with
monolithic handling of arrays, that is, a reference to
one entry of an array is considered as using the whole
array. (However, since records in CRL cannot con-
tain access/pointer �elds, each �eld accessor is rep-
resented by a separate variable.) The intermediate
code is then subject to transformations by the analy-
sis/transformation engine after timing analysis. Cor-
respondence between generated code and control ow
graph is currently maintained by two pointers per ba-
sic block, to the starting and ending line numbers of
the translated block, respectively, which is su�cient
for our current transformation set.

Some restrictions have been imposed to facilitate
the compilation process. As in Pascal, use of, or refer-
ence to, any variable or object must be preceded by an
explicit declaration of that variable or object. All pa-
rameters of objects, methods and threads are passed
by value, result, or value-result (with the compiler
free to optimize if appropriate); in addition, object
parameters must be explicitly speci�ed as imported
or exported (or neither). The compiler will match
any call to a method or a thread against the inter-
face of that method or thread. The language provides
only static scoping and at present disallows all alias-
ing. This places severe restrictions on the use of array
index expressions. These restrictions, both on array
index expressions and aliasing between array elements,
will probably be relaxed in the future (particularly as
arrays are treated as monolithic in our analyses).

Currently, we do not assume any target architec-
ture for the compilation process. Given such a plat-
form, the transformed C++ code will be further com-
piled and linked with other library routines, and the
kernel will be responsible for invoking the generated
executable code.

4 The timing tool

The timing tool is used to provide a safe static es-
timate of the execution time of programs. Inputs to
the tool include the timing map of instructions ex-
ecuted by the target architecture, given as a table
of (instruction type, processor type, required execu-
tion time) triples, As we currently assume a homo-
geneous platform, the timing map is currently a set
of (instruction type, required execution time) pairs.
We also do not currently model the e�ects of archi-
tectural features such as addressing modes, memory
hierarchies, or pipelining. We hope to consider these
in our future work.

To resolve the execution time of calls, the timing
tool computes for each method the total time for in-
structions and calls, propagating backward from leaf
methods in the call graph, which is unwound if neces-
sary in the presence of (bounded) recursion. For re-
mote calls, the tool must consider communication de-
lays that messages may anticipate due to contention.
We assume an upper bound on the propagation of mes-
sages throughout the network; delays can be left as
parameters in timing expressions, or this upper bound
substituted.

The timing tool calculates two types of execu-
tion times: �rst, the worst-case execution time for
each process, to resolve references to other methods
through calls; and second, a timing annotation on ev-
ery executable statement, both simple and structured,
to aid in transformation, using the timing map.

Currently, the execution time of each basic block
is computed by the timing tool and stored in the
process or method control ow graph, to be used in
justifying safety and pro�tability of transformations,
which then update the timing information. The tim-
ing tool also adds a statement to the output interme-
diate code at the end of each basic block, which adds
the block execution time to a local time variable; the
value of this variable is used to propagate timing infor-
mation to the run-time environment, as discussed in
Section 8. The worst-case execution time of the whole
method/thread is then deduced using the execution
time of basic blocks and the time it spends in calls;
this is then stored with the method/thread entry in
the call graph.

As we are generating intermediate rather than tar-
get code in the current implementation, we use a map
for the basic data types (classes) de�ned by the lan-
guage. The execution time of instructions (methods
in basic classes) is based on assumed properties on the
architecture and operating system. Compound state-
ments and calls are annotated by the compiler with
their initialization time and any other constant execu-
tion time, exclusive of the cost of the statements in the



body; for example, for a loop, the timing costs include
initialization time and time for a worst-case number
of instances of jumping to the header and evaluating
the loop condition. The time for the entire composite
statement can be derived by time-attribute combining
rules for each type of structured statement.

The output of the timing tool is a timed interme-
diate code. The transformation engine then uses that
output and the timing constraints �le generated by
the compiler to check the feasibility, safety and prof-
itability of transformations, as elaborated in the next
section.

5 The analysis and transformation en-

gine

As mentioned above, the transformation engine
uses the data dependence graph, the call graph, and
the control ow graph generated by the compiler to de-
tect various possible code transformations [45, 46, 51].
The timing constraints �le is consulted to test the
safety of proposed transformations; the timing pro-
�le generated by the timing tool is used to measure
pro�tability.

Currently the tool supports a limited number of
transformations. Ultimately, the tool will support a
much larger number of transformation rules aimed at
improving code and/or facilitating analyses while not
worsening the timing of the code. The engine applies
the transformations as a sequence of steps. In each
step, a di�erent transformation or kind of transforma-
tion is considered. The order in which the transfor-
mations are to be applied remains an issue to be ad-
dressed in future experiments. It may also be useful
to repeat some steps because of successful transfor-
mations in other steps. For example, we can re-apply
branch/clause transformations if a condition is elim-
inated by the conditional linker. This dependence is
represented by the feedback arrow (1) in Figure 1.

The analysis/transformation component has two ef-
fects: �rst, it changes the code according to the rules
of the transformations applied; second, it may relax
some constraints or strengthen assertions, most likely
through interaction with the developer/user. Some
transformations, such as branch/clause transforma-
tions, change only the timing analysis and/or �nal
code, without a�ecting timing constraints, while oth-
ers, such as dead-code elimination, may a�ect both
code and constraints.

Apart from per process transformations, we have
developed an approach to collect, manipulate or delete
delays across processes (see [52]), either for process
optimization, or to provide \free time" for monitor-
ing and debugging, context switch, or checkpointing
for fault tolerance. The tool will eventually consider
non-functional criteria beyond timing, such as fault-
tolerance or security.

The output from this tool is updated timed inter-
mediate code, as well as an updated timing constraints
�le. These outputs are then used by the schedulability
analyzer, as illustrated in the following section. The

schedulability analyzer may need to call the transfor-
mation engine if it is not able to guarantee schedula-
bility (branch (2) in Figure 1), as clari�ed in the next
section.

6 The schedulability analyzer

The schedulability forms of the code (produced by
the analysis and transformation engine) and of the
constraint �le are passed to a schedulability analyzer,
which may use either an exhaustive or a heuristic
analysis to produce an assignment and a certi�cate
of schedulability. The analyzer may also report a par-
tial static schedule to be used by the run-time envi-
ronment. In addition, it may generate directives for
migration and cloning to the assignment tool.

The schedulability analyzer may also consult the
assignment tool for the feasibility and pro�tability of
certain transformations, as in the case of paralleliza-
tion and speculative execution (feedback (3) in Fig-
ure 1). If some of these are either infeasible or un-
pro�table, the schedulability analyzer will report this
fact (feedback (2) in Figure 1) to the transformation
engine, requiring it to undo the transformation. More-
over, if the analyzer cannot �nd a feasible schedule, it
may request more e�ort to be spent on analyses and
transformations, either by focused optimization, or in
the sense of [8], to enhance the schedulability of the
code.

Finally, the schedulability analyzer generates certi-
�ed intermediate code from which the compiler back-
end will generate executable code. In the current im-
plementation, we use the C++ compiler and linker, as
discussed in the following section.

7 The linker

As mentioned, we are not considering a speci�c ar-
chitecture at the moment. The target code machine
implementation is a mixture of native C++ state-
ments for some control statement support, and a set
of C++ class objects, types, and resources and for
the kernel interface. Thus, the linker is simply the
C++ compiler, which compiles the certi�ed interme-
diate code generated by the schedulability analyzer,
and links that code with kernel code, as well as with
the basic C++ classes.

The executable code generated in this stage is ex-
ecuted by the run-time environment, which simulates
distributed processing of the code over a network of
processors.

8 The run-time environment

The run-time environment consists of a kernel, a
network simulator and a user interface.

8.1 The kernel

While the kernel is currently physically imple-
mented as a single process, it maintains the abstrac-
tion of distributed operation and can be easily split up
should our platform become physically distributed.



The kernel is executed as a continuous loop; ev-
ery iteration, it checks an event list, selects the next
event, and performs the appropriate action. Events
include: scheduling a thread, executing a call to a
method, sending a message to a remote object (mak-
ing a call to a method of an object currently residing
on a di�erent processor), and updating object queues.
Every entry in the event table has a time-stamp to
determine when the kernel should react to that event,
and every object has a queue to serialize access to all
methods exported by that object. The order in that
queue depends on the scheduling criteria used and the
arrival order of messages. A kernel replica is emulated
for every processor in the network.

Synchronized clocks are emulated (maintained by
the kernel) for the entire network. Should the im-
plementation migrate to a physically-distributed sys-
tem, we would recommend use of GPS or standard
time sources for synchronization, as advocated in [14].
The time is measured in abstract real-time units. All
events are stamped with time of occurrence.

The kernel responds to an event by initiating the
required activity; for example, by activating thread ex-
ecution or initiating the execution of methods. Thus,
calls (except some calls to local methods or system
libraries) are directed as requests or as events to the
kernel. The kernel actually makes the call by execut-
ing the callee method. This implementation has an
implicit problem with the values of out parameters at
the conclusion of the callee, when the execution of the
caller is resumed; moreover, there is no way in this de-
sign to remember the old state in case of preemption.
We address these problems later in this subsection.

Each emulated kernel replica maintains two sets of
queues: object queues and processor queues. The ob-
ject queue is a general priority-based queue. Access
to an object will be serialized using its queue. All re-
quests (calls) to services (methods) provided by this
object will be added to its queue. Every processor may
host multiple objects. The processor queue contains
the highest priority requests from the object queues
assigned to that processor. Every loop iteration in the
kernel algorithm, the object queues of every processor
are checked. If there are any calls (requests) still pend-
ing, one will be scheduled to run. The selection of the
method to be executed will be based on some real-time
scheduling criterion, where for simplicity we currently
use Earliest Deadline First. However, any scheduling
discipline can be used. The kernel executes the code
of that method/thread, which may generate a new set
of events. The kernel marks the new events with the
correct time-stamp and add them to the event table.
On completion of the task, the kernel is updated to
reect the time spent in execution (through use of
the time-increment statements at the end of execu-
tion blocks); in principle, we could instead use the
timing table for a static worst-case estimate of time if
communication is costly. In either case, the updated
time is used to stamp events produced by the exe-
cuted method/thread. Message events are channeled
through the network simulator (see subsection 8.2).

As mentioned earlier, the kernel makes the calls to
callee object methods. This causes three problems.
First, the kernel must remember values of out param-
eters of the call and pass them back to the caller, both
for local calls, and for remote calls to methods of other
objects assigned to di�erent processors. The problem
becomes still harder for remote calls that invoke other
calls. The second problem is similar, but arises from
preemption. The kernel must remember the values
of local variables to correctly resume execution. Fi-
nally, the kernel must remember the method program
counter, in order to determine the next statement to
execute after resuming execution, and to keep track
of the elapsed time. Nonetheless, these problems, and
the transformations used to resolve them, will not af-
fect the simulated behavior of the program.

We start by addressing the third problem. Ev-
ery method/thread is subdivided into a set of non-
preemptable units (submethods/subthreads); every
unit then runs to completion without preemption.
We believe strongly that robust real-time execution
is well-supported by schedulers which preempt on the
basis of major inter-object control transfers in the ap-
plication program. For CRL (and many other lan-
guages), this implies that preemption should typically
occur at largely at calls (or returns), and the criteria
we use for determining preemption points are based
on calls. In general, we subdivide into two meth-
ods/threads whenever we �nd a call. The �rst part
ends at the call, while the second part resumes with
the following statement (that is, with the return). We
will further subdivide the second part if we �nd an-
other call, and so on. As usual with such approaches,
this scheme may be modi�ed in some cases, as in the
presence of sequences of data-independent calls, or
for long blocks of (typically array-based) computation.
We discuss how the kernel will handle the execution
of these units later in this section.

To overcome the second problem, we change the
scope of the declaration of local variables de�ned
within a method to be the scope of the object (assum-
ing all recursive calls are unwound). In other words,
local variables for any method will become part of the
object internal state. Variables are to be renamed,
e.g., by using method name as a pre�x, so that no two
methods assign a common name incompatibly. Thus,
in the case of local calls, the kernel does not have to
worry about out parameters, as every variable (includ-
ing the parameters) are part of the object state and
can be seen by other methods in the object; the com-
piler restricts accesses to those legal under the original
semantics. This will also hold for those submethods
generated by inserting preemption points, as just dis-
cussed. Figure 2 shows the change in code due to in-
sertion of preemption and changing the scopes of local
declarations.

For external calls, the solution is quite di�erent, as
the caller and callee do not share state. We instead
use a store-and-forward mechanism, as in [41], to re-
member the parameters of the previous call.2

2Actually, the CRL situation is easier to address than that



ORIGINAL TRANSFORMED

Object O1 Object O1

var v1, var v1,

var v2 var v2

private:

method m1 var m1_mv1,

var mv1, var m1_mv2

var mv2, method m1_1

. .

. .

call O2.m1() call O2.m1()

. endmethod m1_1

. method m1_2

. .

. .

call O3.m5() call O3.m5()

. endmethod m1_2

. method m1_3

. .

. .

. .

endmethod m1 endmethod m1_3

Figure 2: Example of the insertion of preemption
points.

For example, if the �rst call makes another external
call, we need to retrieve the values of the parameters
of the �rst call in order to resume execution after re-
turning from the second call. In store-and-forward,
we usually pass the values of input parameters of the
caller in addition to the parameters required by the
callee. Thus, calls to methods have a variable-length
list of parameters. Whenever an external call is found
within a method/thread, code must be added to store
those parameters. All methods and threads will use a
standard parameter list consisting of two stacks. The
�rst stack has the parameters of the call. Statements
will be added to the code of the method/thread to pop
the parameters from that stack. All the parameters of
that call will be pushed again onto the stack at pre-
emption points (when making calls) so that they can
be retrieved when the call returns. The second stack
contains the source object and the next submethod to
be executed. The kernel will pop that stack when a
call returns to determine which object made that call.

Every call in the program will be replaced by a call
to the function store-and-forward. The parameters
needed for store-and-forward are: source id (where to
return), target id (which method to call), and the ac-
tual parameters of the caller. The post-processor re-
places external calls with a return statement. The id's
referred to above can be addresses, or object id and
method name. For example: if O1:m1 1 calls O2:m3
then the source id will be the address of O1:m1 2,

of general C, C++, Lisp and other languages, as discussed in
SUPRA-RPC [41], as CRL does not allow out-of-scope refer-
ences, so that only explicit parameters (or explicitly-generated
auxiliary variables) need to be supported in this situation.

ORIGINAL TRANSFORMED

Object O1 Object O1

var v1, var v1,

var v2 var v2

private:

method m1 var m1_mv1,

var mv1, var m1_mv2,

var mv2, method m1_1

. .

. .

call O2.m3(..) store_and_forward(

. O2.m3_1,..)

. return

. endmethod m1_1

endmethod m1 method m1_2

.

.

endmethod m1_2

Figure 3: Example of the application of the store-and-
forward mechanism.

while the target id will be the address of O2:m3 1.
Figure 3 shows an example of the code transformations
performed by the post-processor to support store-and-
forward: the external call has been replaced with
a store-and-forward request to the kernel, and the
method returns. Later, the kernel will send a message
to the target object and resume execution at m1 3
upon the return from the call to O2:m3.

As the motivation for this transformation of the
code is to enable the implementation of the run-time
kernel, we decided to implement them by a post-
processor of the intermediate code just before inte-
grating the code with the linker. The input to the
post-processor is (restricted, annotated) C++ code;
the output will also be annotated C++.

The kernel interacts with the other subcomponents
of the run-time environment, as shown in Figure 1.
First, it calls the network simulation routine to calcu-
late communication delays through the network when
invoking an external call. In addition, the kernel mea-
sures the execution time of various threads and meth-
ods and reports that to the user along with other
statistics through the user interface module, as dis-
cussed in Subsection 8.3. A local time variable is added
to every method/submethod. A statement at the end
of every basic block is added to increase that variable
by the time of the block, as computed by the timing
tool. Figure 4 shows the C++ translation of a CRL
method update status. The value of time is pushed
onto the stack, and the kernel will pop it to deter-
mine the execution time of that method (not including
any communication delays). The purpose of provid-
ing measures of execution time at run-time is to cor-
relate the basic timing measures based on the timing
map with actual execution. For some operations, the
amount of time is an integer constant, while for others
it is expressed as a parameterized expression. In prac-



int update_status_1(System_Stack *sp ) {

long time = 0;

cin >> x ;

time += 3 ;

cin >> y ;

time += 3 ;

cin >> theta ;

time += 3 ;

// CALL to vel.get(theta,speed)

sp->Param_Stack.pushPointer((void*) &theta);

sp->Param_Stack.pushPointer((void*) &speed);

sp->Obj_Stack.pushPointer((void*) this);

sp->Obj_Stack.pushPointer((void*) &update_status_2);

sp->Obj_Stack.pushPointer((void*) &vel);

sp->Obj_Stack.pushPointer((void*) &vel.get_1);

sp->Param_Stack.pushLong(time);

store_forward(self.id, "navigation.update_status_2",

vel.id, "vel.get_1", sp->no);

return(1);

}

Figure 4: An example of the �nal code to be linked
with the kernel.

tice, some of these parameterized expressions depend
only on compile-time knowable information such as
operand list length, or iteration and time constraint
requirements, and are thus easily resolved and spe-
cialized into constants statically at link or elaboration
time. However, timing expressions may also depend
on the distribution of operands and objects and pro-
cesses across the network (this is relevant in calls), and
on the usage of shared resources.

Once again, the reader is asked to note that while
our physical implementation is single process, the ker-
nel fully supports distribution in the application. Nat-
urally, there would be some di�erences in the ac-
tual implementation, but these would be rather mun-
dane and well-understood. For instance, in a true
distributed implementation we would need to extend
store-and-forward elements with full-edged stubs,
which would (un)marshal and convert call- and return-
parameters | a problem overcome in the late Eighties-
early Nineties.

8.2 The network architecture simulation
tool

The network simulation tool provides the timing
delay that thread execution anticipates due to dis-
tributed allocation of objects. The simulator uses ar-
chitectural information including a description of the
network topology, various distances between nodes,
and the transmission medium, as provided in archi-
tecture description �le.

Initially, the simulator reads an assignment �le gen-
erated by the assignment tool, providing a mapping
for every object to a processor. Interaction with the
kernel is in the form of requests providing the source
object and the target object as well as the size of the
message to be sent. The simulator consults the object

map, and determines the source processor and the tar-
get processor. Using the topology description, it then
�nds the appropriate route along which to transfer the
request.

There is a message queue in every node maintained
by the network simulator. If a message is to be trans-
ferred on a busy link, it will be queued until the
link is free. The transmission rate will be depen-
dent on the medium and the distance the message
has to travel. The simulator consults some internal
table (data sheet) to calculate the transmission time
over that line. The kernel will not block waiting for
the results of that request. The results of that call
are reported back using the same message format but
the previous target object becomes a source for the
return, and conversely. The total communication de-
lay time is the sum of the transmission times and the
communication queuing time (forward for the request
and backward for the results). The total service time
for the kernel request is the sum of the communication
delay and the execution time of the speci�ed method
within the target object, plus the object queuing de-
lay, as illustrated in the previous section.

There is no interaction between the network simu-
lator and the user interface in the current implementa-
tion. All results and status reported to the user come
only from the kernel. In the future, we may provide
a graph to show the current status of the network,
including communication queues and bottlenecks. In
the next section, we describe the user interface sub-
component of the run-time environment.

8.3 User interface

In the current implementation, the user interface
is used only to display measurements and statistics
on the applicability of transformations and their ef-
fects on performance, deadlines, and processor utiliza-
tion. Development of a graphical interface is work in
progress. It eventually will be possible to draw exe-
cution progress �gures, providing the user with infor-
mation on what every processor is doing. Moreover,
the measurements and statistics mentioned above will
also be presented using graphs. In the future, we may
extend these capabilities to include a facility for a�ect-
ing the execution behavior and for providing run-time
assertions.

9 Status

The CRL support environment is currently un-
der development in the Real-Time Computing Lab
at NJIT. The compiler, linker and the runtime are
largely operational, though we are in the process of
providing a generalized symbol table and general tim-
ing constraint support. A number of transformations,
such as speculative execution, have been supported
and work is on the way to support more. Basic timing
and schedulability analysis tools are in place. As al-
ready stated, the work on the assignment tool for CRL
is in its early stages, though there are other assignment
and allocation tools in operation (developed for other
Lab projects). The tools can be demonstrated, with



care, to interested parties. We anticipate being able
to distribute the tools sometime in 1998 or earlier.
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