
1

CMSC 435
Introductory Computer Graphics

Viewing
Penny Rheingans

UMBC

Relationship among Coord Systems

The matrix underneath each stage determines the transformation applied
at that stage for the perspective and parallel projections

2

Viewport Transformation
• Window to viewport transform

– Have projection coordinates (canonical view volume)
-1 <= x <= 1, -1 <= y <= 1, -1 <= z <= 1

– Need device coordinates
-0.5<= x <= nx, -0.5 <= y <= ny , z unchanged

• Steps
Translate lower left corner to origin:

T(1,1,0)
Scale to correct size:

S(nx/2, ny/2,1)
Translate into place:

T(-0.5, -0.5 0)

!

Mvp =

nx
2

0 0 nx "1
2

0
ny
2

0
ny "1
2

0 0 1 0
0 0 0 1

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

View Volumes
View volume

bounded by
front, back,
top, bottom,
and side
planes. Front
and back
planes are
parallel to the
view plane at
positions zfront

and zback along
the zv axis.

3

Projection
• Perspective

– Line AB projects to A’B’
(perspective projection)

• Parallel
– Line AB projects to A’B’

(parallel projection)
– Projectors AA’ and BB’ are

parallel

Simple Parallel Tform
View plane is normal to direction of projection

xs = xv, ys = yv, zs = 0
Orthographic view volume bounded by

x: l,r = left, right
y: b,t = bottom, top
z: n,f = near, far

!

Tort =

2
r " l

0 0 "
r + l
r " l

0 2
t " b

0 "
t + b
t " b

0 0 2
n " f

"
n + f
n " f

0 0 0 1

$

%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(

4

Code Fragment
construct Mvp
construct Morth
M = MvpMorth
for each line segment (ai, bi) do
p = Mai
q = Mbi
drawline(xp, yp, xq, yq)

Simple Perspective Tform
• Assume line from center of projection

to center of view plane parallel to view
plane normal.

• Center of projection is at origin.
• Have P(xv, yv, zv)
• Want P(xs, ys)

5

Simple Perspective Tform
• Have P(xv, yv, zv)
• Want P(xs, ys)
• By similar triangles:

!

xs
d

=
xv
zv
, ys
d

=
yv
zv

!

" xs =
d
zv
xv,ys =

d
zv
yv

Simple Perspective Tform
• Have P(xv, yv, zv), want P(xs, ys)
• By similar triangles:

• In homogeneous coords
x = xv, y=yv, z = zv, w = zv/n

• Do perspective divide to get
screen coords
xs = x/w, ys = y/w, zs = z/w = n

!

xs
n

=
xv
zv
, ys
n

=
yv
zv

!

" xs =
xv
zv
n
,ys =

yv
zv
n

!

x
y
z
w

"

$
$
$
$

%

&

'
'
'
'

=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 n 0

"

$
$
$
$

%

&

'
'
'
'

xv
yv
zv
1

"

$
$
$
$

%

&

'
'
'
'

6

World and View Spaces
• World space

– Used for modeling
– Right-handed

• View space (simple)
– Camera/viewer at origin
– View along zv axis
– xv and yv aligned with

display system

!

V =Tview "W #

xv
yv
zv
1

$

%

&
&
&
&

'

(

)
)
)
)

=Tview

xw
yw
zw
1

$

%

&
&
&
&

'

(

)
)
)
)

Camera Transform
• Transforms world to wiew

coords:
– Aligning a viewing system with

the world coordinate axes using a
sequence of translate-rotate tforms.

– Translate view point to origin of
world coordinate space.

– Rotate to align view coordinate
axes (xv, yv, zv) with world
coordinate axes (xw, yw, zw)

7

Basic Viewing System
• Viewing system using

– camera position C (or e)
– viewing vector N (or -g)
– up vector V (or t)
– view plane distance d (or n)

• The world coordinate system is right-handed, the view
coordinate system is left-handed.

• Characteristics
– View direction controllable
– Camera up controllable
– No view volume specified
– No view plane window specified
– Perspective projection with viewport as center of projection

Implementing Basic Viewing
• Translation as before:

T(-cx, -cy, -cz)

• Rotate to align axes:

• Convert to left-handed
coordinates:
S(1, 1, -1)!

R =

ux uy uz 0
vx vy vz 0
nx ny nz 0
0 0 0 1

"

$
$
$
$

%

&

'
'
'
'

8

View Transformation
1. Translate origin of world

coordinate system to origin
of view coordinate system
(transformation of
coordinate system is
inverse of that which moves
points)

!

T1 =

1 0 0 "cx
0 1 0 "cy
0 0 1 "cz
0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

View Transformation
2. Rotate coordinate system

90° about x’ axis. Use θ = -
90.

!

T2 =

1 0 0 0
0 cos" #sin" 0
0 sin" cos" 0
0 0 0 1

$

%

&
&
&
&

'

(

)
)
)
)

=

1 0 0 0
0 0 1 0
0 #1 0 0
0 0 0 1

$

%

&
&
&
&

'

(

)
)
)
)

9

View Transformation
3. Rotate about y’ by θ so that

(0,0,cz) lies on z’ axis.

!

T3 =

cos("#) 0 sin("#) 0
0 1 0 0

"sin("#) 0 cos("#) 0
0 0 0 1

$

%

&
&
&
&

'

(

)
)
)
)

=

cos# 0 "sin# 0
0 1 0 0
sin# 0 cos# 0
0 0 0 1

$

%

&
&
&
&

'

(

)
)
)
)

View Transformation
4. Rotate about x’ by φ so that

the origin of the original
coordinate system lies on z’
axis.

!

T4 =

1 0 0 0
0 cos("#) "sin("#) 0
0 sin("#) cos("#) 0
0 0 0 1

$

%

&
&
&
&

'

(

)
)
)
)

=

1 0 0 0
0 cos# sin# 0
0 "sin# cos# 0
0 0 0 1

$

%

&
&
&
&

'

(

)
)
)
)

10

View Transformation
5. Reflect z’ axis to create left-

handed coordinate system.

!

T5 =

1 0 0 0
0 1 0 0
0 0 "1 0
0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

View Transformation
6. Twist about z’ so that y’ aligns

with V.

!

T6 =

cos" #sin" 0 0
sin" cos" 0 0
0 0 1 0
0 0 0 1

$

%

&
&
&
&

'

(

)
)
)
)

11

Viewing Example
Camera at (6,8,7.5)
View towards (0,0,0)
VPN (-6,-8, -7.5)
View up (-3.6, -4.8, 8.8)

1. Translate world origin to view origin

!

T1 =

1 0 0 "6
0 1 0 "8
0 0 0 "7.5
0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

Viewing Example

2. Rotate 90° about x’.

!

T2 =

1 0 0 0
0 0 1 0
0 "1 0 0
0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

12

Viewing Example

3. Rotate about y’ by θ so that (0,0,cz)
lies on the z’ axis.

 cosθ = -8/10
 sinθ = -6/10

!

T3 =

".8 0 ".6 0
0 1 0 0
.6 0 ".8 0
0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

Viewing Example

4. Rotate about x’ by φ so that the
origin of the original coordinate
system lies on the z’ axis.

 cosφ = 10/12.5
 sinφ = 7.5/12.5

!

T4 =

1 0 0 0
0 .8 ".6 0
0 .6 .8 0
0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

13

Viewing Example

5. Reflect z’ axis to create left-handed
coordinate system.

!

T5 =

1 0 0 0
0 1 0 0
0 0 "1 0
0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

Viewing Example

6. Twist about z’ axis so that y’ aligns
with V.

where ye = ysTyw = T5T4T3T2T1yw

V=(-3.6,-4.8, 8)
ye = (-3.6, -4.8, 8)
α = 0

!

T6 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

"

$
$
$
$

%

&

'
'
'
'

!

" = cos#1 V $ ye
V $ ye

%

&
'

(

)
*

14

Viewing Example
• Multiply it all

together

• Cube at origin

!

V = T6T5T4T3T2T1 =

".8 .6 0 0
".36 ".48 .8 0
".48 ".64 ".6 0
0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

T1

Compositions of Translations and
Rotations

• Resulting matrix has form

!

M =

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

"

$
$
$
$

%

&

'
'
'
'

15

Basis Rotation Shortcut
• Where u’x, u’y, u’z are

unit basis vectors
• Assume we’ve already

performed translation,
so x’0 = y’0 = z’0 = 0

• Can rotate to align basis
vectors using

• Expressed in
coordinates of S
!

R =

" u x1 " u x2 " u x3 0
" u y1 " u y2 " u y3 0
" u z1 " u z2 " u z3 0
0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

where
" u x = " u x1 " u x2 " u x3[]
" u y = " u y1 " u y2 " u y3[]
" u z = " u z1 " u z2 " u z3[]

Applying the Shortcut
• Given view direction vector N

• Given view up vector V

!

n =
N
N

= n1,n2,n3()

!

u =
N "V
N "V

= u1,u2,u3()

v = u " n = v1,v2,v3()

R =

u1 u2 u3 0
v1 v2 v3 0
n1 n2 n3 0
0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

16

Shortcut Example
Camera at (6,8,7.5)
View towards (0,0,0)
VPN (-6,-8, -7.5)
View up (-3.6, -4.8, 8.8)

!

n =
N
N

= n1,n2,n3() = ("6 /12.5,"8 /12.5,"7 /12.5) = (".48,".64,".6)

!

R =

".8 .6 0 0
".36 ".48 .8 0
".48 ".64 ".6 0
0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

T1!

v = u " n = v1,v2,v3() = #.36,#.48,.8()
!

u =
N "V
N "V

= u1,u2,u3() =
#8 $ 8 ##7.5 $ #4.8,#7.5 $ #3.6 ##6 $ 8,#6 $ 4.8 ##8 $ #3.6()

N "V
=
#100,75,0()
N "V

= #.8,.6,0()

Advanced Viewing System

• Characteristics
– View position and direction controllable
– Camera up controllable
– View volume specified, but view plane constrained to be

coincident with near plane
– Perspective with center of projection at view point

• Frustum from six planes
• Left-handed system
• Using

– Camera position (C)
– View direction (N, -Zv)
– View up (Yv)
– Distance to near (n) and

far (f) plane

17

Advanced Viewing System
View volume specified by

xv = [r,l]zv/n (sides)
yv = [t,b]zv/n (top/bottom)
zv = n,f (near/far)

View plane has dimensions (r-l)×(t-b)

• Want 3D screen space for
– 3D clipping
– Visibility calculation

• Choose zs such that
– Zs normalized for maximum precision
– x,y positions unchanged on near plane

Projection for Advanced View
• Full perspective transform

– x = (2n/(r-l))xv /zv+ ((l+r)/(l-r))
– y = (2n/(t-b))yv/ zv + ((t+b)/(b-t))
– z = ((f+n)/(n-f))zv + 2fn/(f-n)

• Using homogeneous coordinates
– x = (2n/(r-l))xv + ((l+r)/(l-r))zv

– y = (2n/(t-b))yv + ((t+b)/(b-t))zv

– z = ((f+n)/(n-f)) + 2fn/(f-n)/ zv

– w = zv

• So

!

x
y
z
w

"

$
$
$
$

%

&

'
'
'
'

=

2n
r (l

0 l + r
l (r

0

0 2n
t (b

b + t
b (t

0

0 0 f + n
n (f

2 fn
f (n

0 0 1 0

"

$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'

xv
yv
zv
1

"

$
$
$
$

%

&

'
'
'
'

