
1

CMSC 435
Texture

Penny Rheingans
UMBC

2

Texture Mapping

• Def: mapping a function onto a surface;
function can be:
– 1, 2, or 3D
– sampled (image) or mathematical function

Mapped Parameters

• Surface color (Catmull 74)
• Specular reflection (Blinn and Newell 76)
• Normal vector perturbation (Blinn 78)
• Specularity (Blinn 78)
• Transparency (Gardner 85)
• Diffuse Reflection (Miller and Hoffman 84)
• Shadows, displacements, etc (Cook 84)
• Local coord system (Kajiya 85)

3

Map Indices

• Surface parameters
• Ray direction

– reflection/environment mapping
• Surface normal direction

– diffuse reflection mapping
– transparency/refraction mapping

Key Challenges

• Mapping function determination
• Resolution issues
• Texture design/capture

4

Mapping Functions

• Standard projecting functions
– planar
– cylindrical
– spherical

• Mechanism
– Two-stage mapping
– Reverse projection

• Arbitrary

Two-stage Mapping

• S-mapping
– map to simple 3D shape
– intermediate surfs: plane, cylinder, cube, sphere

• O-mapping
– map 3D texture onto surface
– map entities: reflected view ray, surface

normal, line through centroid, intermediate
surface normal

5

Planar Mapping

• For xy aligned plane

• Reverse projection
!

u,v() =
x " x1
xr " x1

, y " y1
yr " y1

$
%

&

'
(

6

Cylindrical Mapping

• For cylinder with point
(rcosθ, rsinθ, hz)

• Texture coords
(u,v) =(θ/2π, z)

7

Spherical Mapping

• For sphere with point
(rcosθsinφ, rsinθsinφ, rcosφ)

• Texture coords

!

u,v() =
"
#
2
,
#
2 $%
#
4

&

'

(
(

)

*

+
+

8

Map Entity

• What entity gives coords in map shape?

9

Mapping onto Parametric Patches

• Use scaled surface u,v parameters for
texture u,v

10

Mapping onto Polygons

• Like parametric surfaces, but use explicit
vertex texture coords

• Interpolation issues
– screen space interp results in errors from

nonlinearity and lack of rotational invariance
– use small pgons to minimize artifacts

• Correct solution: actual projection at each
pixel

11

Texture Aliasing

• Undersampling of texture map leads to
texture aliasing

• Oversampling can show limited texture res

Supersampling

• Sample texture multiple times per pixel and
reconstruct

12

Filtering

• Steps
– reconstruct continuous signal from samples
– warp signal
– low pass filter signal using convolution
– resample at new resolution

• Filters
– space-invariate
– space-variant

Filtering

• Basic method (Catmull 78)
– Project pixel pgon onto texture map
– Average color over projected area

13

Filtering Types

• Direct Convolution
– average multiple samples from texture (usually

selected in texture space)
• Prefiltering

– construct multi-resolution copies of texture
• Fourier filtering

– low pass filter texture in frequency space

Mipmappng

• Precalculate filtered maps at a range of
resolutions (Williams 83)

• Higher memory requirements

14

Mipmapping Process

• Compute pixel area
in mipmap

• Average from two
closest maps

Anti-aliasing: none, mipmapped, supersampled,
supersampling and mipmapping

15

Prefiltering Methods

• Pyramid/mipmaps
– construct pyramid of different resolution maps

• Summed area tables
– not constrained to square areas

• Repeated integration
– generalization to higher order integration by

repeated sampling

Reflection Mapping

• Look up reflections on an object from a map
simulating surrounding environment

16

Environment Mapping

• Surround scene with maps simulating
surrounding detail

17

Ray tracing Environment Mapping

Ray tracing Environment mapping

18

Ray tracing Environment Mapping

Bump Mapping

• Perturb surface normals to simulate shape
variations

19

Bump mapping Displacement Mapping

20

Refraction Mapping

• Perturb refraction rays through transparent
surface by disruption of surface normal

21

Procedural Approaches

• Simple Functions
• Noise
• Statistical Synthesis from Samples
• Simulation
• Developmental

Simple Functions

• Simple functions can produce interesting
effect
– ramp
– sine

22

• Fractional
coord

• 2D distance
from center

• Color table index from fractional coordinate

23

Noise Textures

• Randomness can create more natural textures
• Ken Perlin, An Image Synthesizer, SIGGRAPH ‘85.

Lattice Noise

• Assign random numbers to lattice points
• Interpolate for interior values

• Perlin, ‘85

24

Gradient Noise

• Generates random vectors at lattice points
• Lattice points not perturbed
• Uses gradients for interior points

• Perlin ‘85

25

Changing frequency and altitude

26

Texturing with Noise

Grey = noise(x,y,z)
if (grey > threshold)

white
else

black

Using Noise to Perturb Textures

27

Procedural Properties

• Color
• Normal direction

Procedural Properties (cont.)

• Normal
• Color

28

Procedural Properties (cont)

• Thresholded color
• Normal (turbulence)

Hypertexture

29

30

31

32

Hypertexture

• Ken Perlin and Eric Hoffert, Hypertexture,
SIGGRAPH ‘89.

• Extend 3D procedural noise textures to
include opacity component to create volume
models
– object density function D(x)
– Density modulation function (DMF) fi

33

Boolean Operations

• Intersection
• Complement
• Difference
• Union

Base DMFs

• Bias
• Gain
• Noise
• Turbulence
• Arithmetic functions

34

Basic Noise

• Basic noisy sphere

• Vary
– Frequency
– Amplitude

Turblence

• Mix different frequencies of noise

35

Shaped Noise

• Vary only single component

Transparency

• Refractive Hypertexture

36

Erosion

• Boolean intersection of fractal sphere with
cube

Fire

• Density func:
• Colormap

37

Fur

• Project points to
create hairs

• Modulate density
• Control bias and

gain
• Add noise in

growth direction

38

Noisy Things

• Color
• Specularity
• Opacity/Density
• Normals
• Displacements
• Index of Refraction
• Procedural Texture Parameters

39

40

41

