

Texture Mapping

• Def: mapping a function onto a surface; function can be:

- 1, 2, or 3D

- sampled (image) or mathematical function

Mapped Parameters

- Surface color (Catmull 74)
- Specular reflection (Blinn and Newell 76)
- Normal vector perturbation (Blinn 78)
- Specularity (Blinn 78)
- Transparency (Gardner 85)
- Diffuse Reflection (Miller and Hoffman 84)
- Shadows, displacements, etc (Cook 84)
- Local coord system (Kajiya 85)

Map Indices

- Surface parameters
- Ray direction
 - reflection/environment mapping
- Surface normal direction
 - diffuse reflection mapping
 - transparency/refraction mapping

Key Challenges

- Mapping function determination
- Resolution issues
- Texture design/capture

Mapping Functions

- Standard projecting functions
 - planar
 - cylindrical
 - spherical
- Mechanism
 - Two-stage mapping
 - Reverse projection
- Arbitrary

Two-stage Mapping

- S-mapping
 - map to simple 3D shape
 - intermediate surfs: plane, cylinder, cube, sphere
- O-mapping
 - map 3D texture onto surface
 - map entities: reflected view ray, surface normal, line through centroid, intermediate surface normal

Cylindrical Mapping

- For cylinder with point (rcosθ, rsinθ, hz)
- Texture coords $(u,v) = (\theta/2\pi, z)$

<text><text>

Mapping onto Polygons

- Like parametric surfaces, but use explicit vertex texture coords
- Interpolation issues
 - screen space interp results in errors from nonlinearity and lack of rotational invariance
 - use small pgons to minimize artifacts
- Correct solution: actual projection at each pixel

Filtering

• Steps

- reconstruct continuous signal from samples
- warp signal
- low pass filter signal using convolution
- resample at new resolution

• Filters

- space-invariate
- space-variant

Filtering Types

- Direct Convolution
 - average multiple samples from texture (usually selected in texture space)
- Prefiltering
 - construct multi-resolution copies of texture
- Fourier filtering
 - low pass filter texture in frequency space

Mipmappng

- Precalculate filtered maps at a range of resolutions (Williams 83)
- Higher memory requirements

Mipmapping Process

- Compute pixel area in mipmap
- Average from two closest maps

Prefiltering Methods

- Pyramid/mipmaps
 - construct pyramid of different resolution maps
- Summed area tables
 - not constrained to square areas
- Repeated integration
 - generalization to higher order integration by repeated sampling

Reflection Mapping

• Look up reflections on an object from a map simulating surrounding environment

Refraction Mapping

• Perturb refraction rays through transparent surface by disruption of surface normal

Procedural Approaches

- Simple Functions
- Noise
- Statistical Synthesis from Samples
- Simulation
- Developmental

Texturing with Noise

Grey = noise(x,y,z) if (grey > threshold) white else black

Procedural Properties

- Color
- Normal direction

Procedural Properties (cont)

- Thresholded color
- Normal (turbulence)

Hypertexture

- Ken Perlin and Eric Hoffert, Hypertexture, SIGGRAPH '89.
- Extend 3D procedural noise textures to include opacity component to create volume models
 - object density function D(x)
 - Density modulation function (DMF) f_i

Boolean Operations

- Intersection
- Complement
- Difference
- Union

<section-header><text>

Fur

- Project points to create hairs
- Modulate density
- Control bias and gain
- Add noise in growth direction

Noisy Things

- Color
- Specularity
- Opacity/Density
- Normals
- Displacements
- Index of Refraction
- Procedural Texture Parameters

