
1

CMSC 435
Introductory Computer Graphics

 Pipeline
Penny Rheingans

UMBC

Announcements
• Wed-Sat on travel

– Limited email access
– Guest lecture Thurs by Wes Griffin on OpenGL

• Project 2
– Status/issues

2

Graphics Pipeline
• Object-order approach to rendering
• Sequence of operations

– Vertex processing
• Transforms
• Viewing
• Vertex components of shading/texture

– Rasterization
• Break primitives into fragments/pixels
• Clipping

– Fragment processing
• Fragment components of shading/texture

– Blending

Line Drawing
• Given endpoints of line, which pixels to draw?

3

Line Drawing
• Given endpoints of line, which pixels to draw?

Line Drawing
• Given endpoints of line, which pixels to draw?

• Assume one pixel per column (x index), which
row (y index)?

• Choose based on relation of line to midpoint
between candidate pixels

4

Line Drawing
• Implicit representation

– f(x,y)=(y0-y1)x + (x1-x0)y + x0y1 - x1y0 = 0
– Slope m = (y1-y0)/(x1-x0) (assume 0 ≤ m ≤ 1)

• Midpoint algorithm
y=y0
d = f(x0+1, y0+0.5)
for x = x0 to x1 do

draw (x,y)
if (d < 0) then

y = y+1
d = d + (x1 - x0) + (y0 - y1)

else
d = d + (y0 - y1)

Scan conversion
• Problem

– How to generate filled polygons (by determining which pixel
positions are inside the polygon)

– Conversion from continuous to discrete domain

• Concepts
– Spatial coherence
– Span coherence
– Edge coherence

5

Scanning Rectangles

for (y from y0 to yn)
 for (x from x0 to xn)
 Write Pixel (x, y, val)

Scanning Rectangles (2)

for (y from y0 to yn)
 for (x from x0 to xn)
 Write Pixel (x, y, val)

6

Scanning Rectangles (3)

for (y from y0 to yn)
 for (x from x0 to xn)
 Write Pixel (x, y, val)

Scanning Arbitrary Polygons
• vertices:

(4, 1) , (7, 13) , (11 , 2)

7

Scanning Arbitrary Polygons (2)
• vertices:

(4, 1) , (7, 13) , (11 , 2)

• Intersect scanline w/pgon edges => span extrema

Scanning Arbitrary Polygons (3)
• vertices:

(4, 1) , (7, 13) , (11 , 2)

• Intersect scanline w/pgon edges => span extrema
• Fill between pairs of span extrema

8

Scanning Arbitrary Polygons (4)
• vertices:

(4, 1) , (7, 13) , (11 , 2)

For each nonempty scanline
 Intersect scanline w/pgon edges => span extrema
 Fill between pairs of span extrema

Example Cases (2)

4 intersections w/ scanline 6 at x = 1, 6, 6, 12 1/7

9

Example Cases (3)

• 3 intersections w/scanline 5 at x = 1, 1, 11 5/7

Example Cases (4)

3 intersections w/scanline 5 at x = 1, 1, 11 5/7
==>
Count continuing edges once (shorten lower edge) now x=1, 11 5/7

10

Example Cases (5)

4 intersections w/ scanline 1at x = 5, 5, 10, 10

Example Cases (6)

4 intersections w/ scanline 1 at x = 5, 5, 10, 10
=>
Don't count vertices of horizontal edges.
Now x = 5, 10

11

Scanline Data Structures
Sorted edge table:

all edges
sorted by min y

holds:
 max y
 init x
 inverse slope

Active edge table:
edges intersecting current
scanline

holds:
 max y
 current x
 inverse slope

Scanline Algorithm
1. Bucket sort edges into sorted edge table
2. Initialize y & active edge table

y = first non- empty scanline
AET = SET [y]

3. Repeat until AET and SET are empty
Fill pixels between pairs of x intercepts in AET
Remove exhausted edges
Y++
Update x intercepts
Resort table (AET)
Add entering edges

12

Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

bucket sort edges into sorted edge table

sort on minY: 1
store:
 max Y: 11
 min X: 4
 1/m : (Xmax - Xmin) / (Ymax - Ymin) = (1 - 4) / (11 - 1) = -3 / 10

13

Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

bucket sort edges into sorted edge table

Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

bucket sort edges into sorted edge table
initialize active edge list to first non empty scanline

14

Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

bucket sort edges into sorted edge table
initialize active edge list to first non empty scanline
for each non empty scanline
 fill between pairs (x=4,12)

Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

bucket sort edges into sorted edge table
initialize active edge list to first non empty scanline
for each non empty scanline
 fill between pairs (x=4,12)
 remove exhausted edges
 update intersection points
 resort table
 add entering edges

15

Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

bucket sort edges into sorted edge table
initialize active edge list to first non empty scanline
for each non empty scanline
 fill between pairs (x=3 1/10,12)
 remove exhausted edges
 update intersection points

Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

bucket sort edges into sorted edge table
initialize active edge list to first non empty scanline
for each non empty scanline
 fill between pairs (x=3 1/10,12)
 remove exhausted edges
 update intersection points
 resort table
 add entering edges

16

Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

bucket sort edges into sorted edge table
initialize active edge list to first non empty scanline
for each non empty scanline
 fill between pairs (x = 2 8/10, 9; 9,12)
 remove exhausted edges
 update intersection points
 resort table
 add entering edges

Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

bucket sort edges into sorted edge table
initialize active edge list to first non empty scanline
for each non empty scanline
 fill between pairs (x=2 5/10, 7 2/3; 10,12)
 remove exhausted edges
 update intersection points
 resort table
 add entering edges

17

Fill Variants

Fill between pairs:
 for (x = x1; x < x2; x++)

framebuffer [x, y] = c

Fill Variants (2)
• Pattern Fill

Fill between pairs:
 for (x = x1; x < x2; x++)
 if ((x + y) % 2)
 framebuffer [x, y] = c1
 else
 framebuffer [x, y] = c2

18

Fill Variants (3)
• Colorwash

Red to blue

Fill between pairs:

 for (x = x1; x < x2; x++)
 framebuffer [x, y] = C0 + dC * (x1 - x)

For efficiency carry C and dC in AETand calculate color incrementally

Fill Variants (4)
• Vertex colors

Red, green, blue

Fill between pairs:

 for (x = x1; x < x2; x++)
 framebuffer [x, y] =

 Cy1x1 + [(x - x1)/(x2 - x1)*(Cy1x2 - Cy1x1)]/dCx

For efficiency carry Cy and dCy in AET calculate dCx at beginning of scanline

19

Barycentric Coordinates
• Use non-orthogonal coordinates to describe

position relative to vertices

– Coordinates correspond to scaled signed distance from
lines through pairs of vertices

!

p = a+" b # a() +$ c# a()

!

p ",#,$() ="a +#b+$c

Barycentric Example

20

Barycentric Coordinates
• Computing coordinates

!

" =
ya # yb()x+ xb # xa()y+ xayb # xbya
ya # yb()xc + xb # xa()yc + xayb # xbya

!

" =
ya # yc()x+ xc # xa()y+ xayc # xcya
ya # yc()xb + xc # xa()yb + xayc # xcya

!

" =1#$ #%

Alternative Computation

21

Barycentric Rasterization
For all x do

For all y do
Compute (α, β, γ) for (x,y)
If (α ∈ [0,1] and β ∈ [0,1] and γ ∈ [0,1] then

c = αc0 + βc1 + γc2
Draw pixel (x,y) with color c

Barycentric Rasterization
xmin = floor(xi)
xmax = ceiling(xi)
ymin = floor(yi)
ymax = ceiling(xi)
for y = ymin to ymax do

for x = xmin to xmax do
α = f12(x,y)/f12(x0,y0)
β = f20(x,y)/f20(x1,y1)
γ = f01(x,y)/f01(x2,y2)
If (α ∈ [0,1] and β ∈ [0,1] and γ ∈ [0,1] then

c = αc0 + βc1 + γc2
Draw pixel (x,y) with color c

22

Barycentric Rasterization
• Computing coordinates

!

" =
f01(x, y)
f01(x2, y2)

=
y0 # y1()x+ x1 # x0()y+ x0y1 # x1y0
y0 # y1()x2 + x1 # x0()y2 + x0y1 # x1y0

!

" =
f20 (x, y)
f20 (x1, y1)

=
y2 # y0()x+ x0 # x2()y+ x2y0 # x0y2
y2 # y0()x1 + x0 # x2()y1 + x2y0 # x0y2

!

" =
f12 (x, y)
f12 (x0, y0)

=
y1 # y2()x+ x2 # x1()y+ x1y2 # x2y1
y1 # y2()x0 + x2 # x1()y0 + x1y2 # x2y1

Visibility
• We can convert simple primitives to

pixels/fragments
• How do we know which primitives (or which

parts of primitives) should be visible?

23

Back-face Culling
• Polygon is back-facing if

– V•N > 0

• Assuming view is along Z (V=0,0,1)
– V•N + (0 + 0 + zn)

• Simplifying further
– If zn > 0, then cull

• Works for non-overlapping convex
polyhedra

• With concave polyhedra, some
hidden surfaces will not be culled

Painter’s Algorithm
• First polygon:

– (6,3,10), (11, 5,10), (2,2,10)

• Second polygon:
– (1,2,8), (12,2,8), (12,6,8), (1,6,8)

• Third polygon:
– (6,5,5), (14,5,5), (14,10,5),(6,10,5)

24

Painter’s Algorithm
• Given

List of polygons {P1, P2, …. Pn)
An array of Intensity [x,y]

• Begin
Sort polygon list on minimum Z (largest z-
value comes first in sorted list)

For each polygon P in selected list do
For each pixel (x,y) that intersects P do

Intensity[x,y] = intensity of P at (x,y)
Display Intensity array

Painter’s Algorithm: Cycles
• Which order to scan?

• Split along line, then scan 1,2,3

25

Painter’s Algorithm: Cycles
• Which to scan first?

• Split along line, then scan 1,2,3,4 (or split another polygon and
scan accordingly)

• Moral: Painter’s algorithm is fast and easy, except for
detecting and splitting cycles and other ambiguities

Depth-sort: Overlapping Surfaces
• Assume you have sorted by

maximum Z
– Then if Zmin > Z’max, the surfaces do

not overlap each other (minimax test)
• Correct order of overlapping

surfaces may be ambiguous. Check
it.

26

Depth-sort: Overlapping Surfaces
• No problem: paint S, then S’

• Problem: painting in either
order gives incorrect result

• Problem? Naïve order S S’ S”;
correct order S’ S” S

Depth-sort: Order Ambiguity
1. Bounding rectangles in xy plane do

not overlap
• Check overlap in x

x’min > xmax or xmin > x’max -> no overlap

• Check overlap in y
y’min > ymax or ymin > y’max -> no overlap

2. Surface S is completely behind S’
relative to viewing direction.
• Substitute all vertices of S into plane

equation for S’, if all are “inside” (< 0),
then there is no ambiguity

27

Depth-sort: Order Ambiguity
3. Surface S’ is completely in front S

relative to viewing direction.
• Substitute all vertices of S’ into plane

equation for S, if all are “outside” (>0),
then there is no ambiguity

Depth-sort: Order Ambiguity
4. Projection of the two surfaces onto

the viewing plane do not overlap
• Test edges for intersection
• Rule out some pairs with minimax tests

(can eliminate 3-4 intersection, but not
1-2)

• Check slopes -- parallel lines do not
intersect

• Compute intersection points:
• s = [(x’1-x’2)(y1-y’1) - (x1-x’1)(y’1-y’2)]/D
• t = [(x1 - x2)(y1 - y'1) - (x1 - x'1)(y1 - y2)]/D
• D = (x'1 - x'2)(y1 - y2) - (x1 - x2)(y'1 - y'2)

28

Z-Buffer
• First polygon

– (1, 1, 5), (7, 7, 5), (1, 7, 5)
– scan it in with depth

• Second polygon
– (3, 5, 9), (10, 5, 9), (10, 9, 9), (3, 9, 9)

• Third polygon
– (2, 6, 3), (2, 3, 8), (7, 3, 3)

Z-Buffer Algorithm
• Originally Cook, Carpenter, Catmull
• Given

List of polygons {P1, P2, …., Pn}
An array x-buffer[x,y] initialized to +infinity
An array Intensity[x,y]

• Begin
For each polygon P in selected list do

For each pixel (x,y) that intersects P do
Caluclate z-depth of P at (x,y)
If z-depth < z-buffer[x,y] then

Intensity[x,y] = intensity of P at (x,y)
Z-buffer[x,y] = z-depth

Display Intensity array

29

Z-Buffer: Calculating Z-depth
• From plane equation, depth at position (x,y):

z = (-Ax - By - D)/C
• Incrementally across scanline (x+1, y)

z’ = (-A(x+1) - By - D)/C
 = (-Ax - By - D)/C - A/C
 = z - A/C

• Incrementally between scanlines (x’, y+1)
z’ = (-A(x’) - B(y+1) - D)/C
 = z - (A/m + B)/C

Z-Buffer Characteristics
• Good

– Easy to implement
– Requires no sortng of surfaces
– Easy to put in hardware

• Bad
– Requires lots of memory (about 9MB for 1280x1024

display)
– Can alias badly (only one sample per pixel)
– Cannot handle transparent surfaces

30

A-Buffer Method
• Basically z-buffer with additional memory to

consider contribution of multiple surfaces to a
pixel

• Need to store
– Color (rgb triple)
– Opacity
– Depth
– Percent area covered
– Surface ID
– Misc rendering parameters
– Pointer to next

Taxonomy of Visibility Algorithms
• Ivan Sutherland -- A Characterization of Ten

Hidden Surface Algorithms
• Basic design choices

– Space for operations
• Object
• Image

– Object space
• Loop over objects
• Decide the visibility of each

– Timing of object sort
• Sort-first
• Sort-last

31

Taxonomy of Visibility Algorithms
• Image space

– Loop over pixels
– Decide what’s visible at each

• Timing of sort at pixel
– Sort first
– Sort last
– Subdivide to simplify

Scanline Algorithm
• Simply problem by

considering only one
scanline at a time

• intersection of 3D scene
with plane through
scanline

32

Scanline Algorithm
• Consider xz slice

• Calculate where visibility can
change

• Decide visibility in each span

Scanline Algorithm
1. Sort polygons into sorted surface table (SST)

based on Y
2. Initialize y and active surface table (AST)

Y = first nonempty scanline
AST = SST[y]

3. Repeat until AST and SST are empty
Identify spans for this scanline (sorted on x)
For each span

determine visible element (based on z)
fill pixel intensities with values from element

Update AST
remove exhausted polygons
y++
update x intercepts
resort AST on x
add entering polygons

4. Display Intensity array

33

Scanline Visibility Algorithm
• Scanline α

– AST: ABC
– Spans

• 0 -> x1

• x1 -> x2

• x2 -> max

background
ABC
 background

Scanline Visibility Algorithm
• Scanline β

– AST: ABC DEF
– Spans

• 0 -> x1

• x1 -> x2

• x2 -> x3

• x3 -> x4

• x4-> max

background
ABC
 background
DEF
background

34

Scanline Visibility Algorithm
• Scanline γ

– AST: ABC DEF
– Spans

• 0 -> x1

• x1 -> x2

• x2 -> x3

• x3 -> x4

• x4-> max

background
ABC
DEF
DEF
background

Scanline Visibility Algorithm
• Scanline γ + 1

– Spans
• 0 -> x1

• x1 -> x2

• x2 -> x3

• x3 -> x4

• x4-> max

background
ABC
DEF
DEF
background

background
ABC
background
DEF
background

• Scanline γ + 2
– Spans

• 0 -> x1

• x1 -> x2

• x2 -> x3

• x3 -> x4

• x4-> max

35

Characteristics of Scanline Algorithm
• Good

– Little memory required
– Can generate scanlines as required
– Can antialias within scanline
– Fast

• Simplification of problem simplifies geometry
• Can exploit coherence

• Bad
– Fairly complicated to implement
– Difficult to antialias between scanlines

Taxonomy Revisted
• Another dimension

– Point-sampling
– continuous

36

BSP Tree: Building the Tree
BSPTree MakeBSP (Polygon list) {
 if (list is empty) return null
 else {
 root = some polygon ; remove it from the list
 backlist = frontlist = null
 for (each remaining polygon in the list) {
 if (p in front of root)

 addToList (p, frontlist)
 else if (p in back of root)
 addToList (p, backlist)
 else {
 splitPolygon (p,root,frontpart,backpart)
 addToList (frontpart, frontlist)
 addToList (backpart, backlist)
 }

 }
 return (combineTree(MakeBSP(frontlist),root,
 MakeBSP(backlist)))
 }
}

Building a BSP Tree

37

Building a BSP Tree
• Use pgon 3 as root, split on its plane
• Pgon 5 split into 5a and 5b

Building a BSP Tree
• Split left subtree at pgon 2

38

Building a BSP Tree
• Split right subtree at pgon 4

Building a BSP Tree
• Alternate tree if splits are made at 5, 4, 3, 1

39

BSP Tree: Displaying the Tree
DisplayBSP (tree)
{
 if (tree not empty) {
 if (viewer in front of root) {
 DisplayBSP (tree -> back)

 DisplayPolygon (tree -> root)
 DisplayBSP (tree -> front)

 }
 else {
 DisplayBSP (tree -> front)

 DisplayPolygon (tree -> root)
 DisplayBSP (tree -> back)

 }
 }
}

BSP Tree Display
• Built BSP tree structure

40

BSP Tree
Display

For view point at C
at 3 : viewpoint on front -> display back first

at 4 : viewpoint on back -> display front first

BSP Tree
Display

For view point at C
at 3 : viewpoint on front -> display back first

at 4 : viewpoint on back -> display front first (none)
display self
 display back

41

BSP Tree
Display

For view point at C
at 3 : viewpoint on front -> display back first

at 4 : viewpoint on back -> display front first (none)
display self
display back

at 5b : viewpoint on back -> display front (none)
 display self

 display back (none)

BSP Tree
Display

For view point at C
 at 3 : viewpoint on front -> display back first
 at 4 : viewpoint on back -> display front first (none)
 display self

 display back
 at 5b : viewpoint on back -> display front
 display self

 display back (none)
 display self

42

BSP Tree
Display

For view point at C
 at 3 : viewpoint on front -> display back first
 at 4 : viewpoint on back -> display front first (none)
 display self

 display back
 at 5b : viewpoint on back -> display front
 display self

display back (none)
 display self
 display front

BSP Tree
Display

For view point at C
 at 3 : viewpoint on front -> display back first
 at 4 : viewpoint on back -> display front first (none)
 display self

 display back
 at 5b : viewpoint on back -> display front
 display self

 display back (none)
 display self
 display front

at 2 : viewpoint on back -> display front first

43

BSP Tree
Display

For view point at C
 at 3 : viewpoint on front -> display back first
 at 4 : viewpoint on back -> display front first (none)
 display self

 display back
 at 5b : viewpoint on back -> display front
 display self

display back (none)
 display self
 display front

at 2 : viewpoint on back -> display front first
at 5a : viewpoint on back -> display front (none)

 display self
 display back (none)

BSP Tree
Display

For view point at C
 at 3 : viewpoint on front -> display back first
 at 4 : viewpoint on back -> display front first (none)
 display self

 display back
 at 5b : viewpoint on back -> display front
 display self

display back (none)
display self
display front

at 2 : viewpoint on back -> display front first
at 5a : viewpoint on back -> display front (none)

 display self
 display back (none)

 display self
 at 1 : viewpoint on back -> display front (none)
 display self

display back (none)

44

Shading Revisited
• Illumination models compute appearance at a

location
• How do you efficiently fill areas?

Diffuse Shading Models

Flat shading

Gouraud shading

45

Flat Shading Algorithm

For each visible polygon
Evaluate illumination with polygon

normal
For each scanline

For each pixel on scanline
Fill with calculated intensity

Interpolated Shading Algorithm
For each visible polygon

For each vertex
Evaluate illumination with vertex
normals

For each scanline
Interpolate intensity along edges

(for span extrema)
For each pixel on scanline

Interpolate intensity from
extrema

46

Vertex Normals

• The normal vector at vertex V is calculated as the
average of the surface normals for each polygon
sharing that vertex

Gouraud Calculations

1. Calculate intensity at vertices (I1, I2, I3)
2. Interpolate vertex intensities along edges (Ia, Ib)
3. Interpolate intensities at span extrema to pixels (Ip)

Ia = I1+(I2-I1)/(ya-y1)/(y2-y1)

Ib = I1+(I3-I1)/(yb-y1)/(y3-y1)

Ip = Ia+(Ib-Ia)/(xp-xa)/(xb-xa)

47

Barycentric Rasterization
xmin = floor(xi)
xmax = ceiling(xi)
ymin = floor(yi)
ymax = ceiling(yi)
for y = ymin to ymax do

for x = xmin to xmax do
α = f12(x,y)/f12(x0,y0)
β = f20(x,y)/f20(x1,y1)
γ = f01(x,y)/f01(x2,y2)
If (α ∈ [0,1] and β ∈ [0,1] and γ ∈ [0,1] then

c0 = evaluate_illumination(x0,y0,z0)
c1 = evaluate_illumination(x1,y1,z1)
c2 = evaluate_illumination(x2,y2,z2)
c = αc0 + βc1 + γc2
Draw pixel (x,y) with color c

Problems with Interpolated Shading
• Polygon silhouette

• Perspective distortion

• Orientation dependence

• Problems at shared vertices

• Unrepresentative vertex
normals

48

Phong Shading
• Ideally: shade from normals of

curved surface
• Approximate with normals

interpolated between vertex normals

Na=|Pa-P0|/|P1-P0|N1 + |P1-Pa|/|P1-P0|N0

Phong Algorithm
• For each visible polygon

– For each scanline
• Calculate normals at edge intersections
(span extrema) by linear interpolation

• For each pixel on scanline
– Calculate normal by interpolation of
normals at span extrema

– Evaluate illumination model with that
normal

49

Barycentric Rasterization
xmin = floor(xi)
xmax = ceiling(xi)
ymin = floor(yi)
ymax = ceiling(yi)
for y = ymin to ymax do

for x = xmin to xmax do
α = f12(x,y)/f12(x0,y0)
β = f20(x,y)/f20(x1,y1)
γ = f01(x,y)/f01(x2,y2)
If (α ∈ [0,1] and β ∈ [0,1] and γ ∈ [0,1] then

n = αn0 + βn1 + γn2
Normalize (n)
c = evaluate_illumination(x,y,n)
Draw pixel (x,y) with color c

Artistic Illumination
• Concept: intentionally mimic artistic effects which

may not match photorealism (NPR)
• Examples

– Line drawing
– Shading effects

• Cool-warm (tone shading)
• Toon

– Media Emulation

50

Silhouette Drawing
• Want to draw silhouette edge to emphasize shape
• Silhouette defined by points where surface normal is

orthogonal to view vector
V•N = 0

• Implementation for polygonal meshes: draw edge when
pgons change from forward to back
if (V•N0)(V•N1) ≤ 0

Draw silhouette (edge between pgons)

• Add sharp creases
if (N0•N1) ≤ threshold

Draw silhouette (edge between pgons)

Diffuse
Only

Kd = 1, ka=0

Gooch ‘98

51

Highlights and Edges

Gooch 98

Phong Shading and Edges

Kd=.5
Ka = .1

Gooch 98

52

Tone Shading Model

with

Mixing Tone and Color

53

Constant Luminance Tone

Gooch 98

Luminance/Tone Rendering

B=0.4, y=0.4
α=.2, β = .6

Gooch 98

54

Luminance/Tone Rendering

B=0.55, y=0.8
α = .25, β=.5

Gooch 98

Hue/Tone Interactions

• Gooch 98

55

Tone/Metal

Gooch 98

Tone/Color

Gooch 98

