> CMSC 435
> Introductory Computer Graphics Pipeline
> Penny Rheingans
> UMBC

Announcements

- Wed-Sat on travel
- Limited email access
- Guest lecture Thurs by Wes Griffin on OpenGL
- Project 2
- Status/issues

Graphics Pipeline

- Object-order approach to rendering
- Sequence of operations
- Vertex processing
- Transforms
- Viewing
- Vertex components of shading/texture
- Rasterization
- Break primitives into fragments/pixels
- Clipping
- Fragment processing
- Fragment components of shading/texture
- Blending

Line Drawing

- Given endpoints of line, which pixels to draw?

Line Drawing

- Given endpoints of line, which pixels to draw?

Line Drawing

- Given endpoints of line, which pixels to draw?

- Assume one pixel per column (x index), which row (y index)?
- Choose based on relation of line to midpoint between candidate pixels

Line Drawing

- Implicit representation
$-\mathrm{f}(\mathrm{x}, \mathrm{y})=\left(\mathrm{y}_{0}-\mathrm{y}_{1}\right) \mathrm{x}+\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right) \mathrm{y}+\mathrm{x}_{0} \mathrm{y}_{1}-\mathrm{x}_{1} \mathrm{y}_{0}=0$
- Slope $\mathrm{m}=\left(\mathrm{y}_{1}-\mathrm{y}_{0}\right) /\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)($ assume $0 \leq \mathrm{m} \leq 1)$
- Midpoint algorithm

```
y=y0
d = f( }\mp@subsup{\textrm{X}}{0}{}+1,\mp@subsup{y}{0}{}+0.5
for }\textrm{x}=\mp@subsup{\textrm{x}}{0}{}\mathrm{ to }\mp@subsup{\textrm{x}}{1}{}\mathrm{ do
    draw (x,y)
    if (d < 0) then
        y = y+1
        d = d + (x ( 
        else
            d = d + ( }\mp@subsup{y}{0}{}-\mp@subsup{y}{1}{}
```


Scan conversion

- Problem
- How to generate filled polygons (by determining which pixel positions are inside the polygon)
- Conversion from continuous to discrete domain
- Concepts
- Spatial coherence
- Span coherence
- Edge coherence

Scanning Rectangles


```
for ( y from y0 to yn )
    for ( x from x0 to xn )
        Write Pixel (x, y, val)
```


Scanning Rectangles (2)

for (y from $y 0$ to $y n$)
for (x from $x 0$ to $x n$)
Write Pixel (x, y, val)

Scanning Rectangles (3)

for (y from $y 0$ to $y n$)
for (x from $x 0$ to $x n$)
Write Pixel (x, y, val)

Scanning Arbitrary Polygons

- vertices:
$(4,1),(7,13),(11,2)$

Scanning Arbitrary Polygons (2)

- vertices:
$(4,1),(7,13),(11,2)$

- Intersect scanline w/pgon edges $=>$ span extrema

Scanning Arbitrary Polygons (3)

- vertices:
$(4,1),(7,13),(11,2)$

- Intersect scanline w/pgon edges $=>$ span extrema
- Fill between pairs of span extrema

Scanning Arbitrary Polygons (4)

- vertices:
$(4,1),(7,13),(11,2)$

For each nonempty scanline
Intersect scanline w/pgon edges => span extrema Fill between pairs of span extrema

Example Cases (2)

4 intersections w/ scanline 6 at $x=1,6,6,121 / 7$

Example Cases (3)

- 3 intersections w/scanline 5 at $x=1,1,115 / 7$

Example Cases (4)

3 intersections w/scanline 5 at $\mathrm{x}=1,1,115 / 7$
=>
Count continuing edges once (shorten lower edge) now $x=1,11$ 5/7

Example Cases (5)

4 intersections w/ scanline 1at $x=5,5,10,10$

Example Cases (6)

4 intersections w/ scanline 1 at $x=5,5,10,10$
=>
Don't count vertices of horizontal edges.
Now $\mathrm{x}=5,10$

Scanline Data Structures

Sorted edge table:
all edges
sorted by min y
holds:
$\max y$
init x
inverse slope

```
Active edge table:
    edges intersecting current
    scanline
holds:
    max y
    current x
    inverse slope
```


Scanline Algorithm

1. Bucket sort edges into sorted edge table
2. Initialize y \& active edge table
$\mathrm{y}=$ first non- empty scanline
AET = SET [y]
3. Repeat until AET and SET are empty

Fill pixels between pairs of x intercepts in AET
Remove exhausted edges
Y++
Update x intercepts
Resort table (AET)
Add entering edges

Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

Example: vertices $(4,1),(1,11),(9,5),(12,8),(12,1)$

bucket sort edges into sorted edge table
sort on minY: 1
store:
$\max \mathrm{Y}: 11$
$\min \mathrm{X}: 4$
$1 / m:(X \max -X \min) /(Y \max -Y \min)=(1-4) /(11-1)=-3 / 10$

Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

bucket sort edges into sorted edge table
initialize active edge list to first non empty scanline

Example: vertices $(4,1),(1,11),(9,5),(12,8),(12,1)$

bucket sort edges into sorted edge table
initialize active edge list to first non empty scanline
for each non empty scanline
fill between pairs $(x=4,12)$

Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

bucket sort edges into sorted edge table
initialize active edge list to first non empty scanline
for each non empty scanline
fill between pairs $(x=4,12)$
remove exhausted edges
update intersection points
resort table
add entering edges

Example: vertices $(4,1),(1,11),(9,5),(12,8),(12,1)$

bucket sort edges into sorted edge table
initialize active edge list to first non empty scanline
for each non empty scanline
fill between pairs $(x=31 / 10,12)$
remove exhausted edges
update intersection points

Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

bucket sort edges into sorted edge table
initialize active edge list to first non empty scanline
for each non empty scanline
fill between pairs $(x=31 / 10,12)$
remove exhausted edges
update intersection points
resort table
add entering edges

Example: vertices $(4,1),(1,11),(9,5),(12,8),(12,1)$

bucket sort edges into sorted edge table
initialize active edge list to first non empty scanline
for each non empty scanline
fill between pairs $(x=28 / 10,9 ; 9,12)$
remove exhausted edges
update intersection points
resort table
add entering edges

Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

bucket sort edges into sorted edge table
initialize active edge list to first non empty scanline
for each non empty scanline
fill between pairs ($x=25 / 10,72 / 3 ; 10,12$)
remove exhausted edges
update intersection points
resort table
add entering edges

Fill Variants

Fill between pairs:

```
for ( x = x1; x < x2; x++ )
    framebuffer [ x, y ] = c
```


Fill Variants (2)

- Pattern Fill

Fill between pairs:

for ($\mathrm{x}=\mathrm{x} 1$; $\mathrm{x}<\mathrm{x} 2$; $\mathrm{x}++$)
if (($\mathrm{x}+\mathrm{y}$) \% 2)
framebuffer [x, y] = c1
else
framebuffer [x, y] = c2

Fill Variants (3)

- Colorwash

Red to blue

Fill between pairs:

```
for ( x = x1; x < x2; x++ )
    framebuffer [ x, y ] = c0 + dC * ( x1 - x )
```

For efficiency carry C and dC in AETand calculate color incrementally

Fill Variants (4)

- Vertex colors

Red, green, blue

Fill between pairs:

```
for ( x = x1; x < x2; x++ )
    framebuffer [ x, y ] =
    Cy1x1 + [(x - x1)/(x2 - x1)*(Cy1x2 - Cy1x1)]/dCx
```

For efficiency carry Cy and dCy in AET calculate dCx at beginning of scanline

Barycentric Coordinates

- Use non-orthogonal coordinates to describe position relative to vertices

$$
\mathrm{p}=\mathrm{a}+\beta(\mathrm{b}-\mathrm{a})+\gamma(\mathrm{c}-\mathrm{a}) \mathrm{p}(\alpha, \beta, \gamma)=\alpha \mathrm{a}+\beta \mathrm{b}+\gamma \mathrm{c}
$$

- Coordinates correspond to scaled signed distance from lines through pairs of vertices

Barycentric Example

Barycentric Coordinates

- Computing coordinates

$$
\begin{aligned}
& \gamma=\frac{\left(y_{a}-y_{b}\right) x+\left(x_{b}-x_{a}\right) y+x_{a} y_{b}-x_{b} y_{a}}{\left(y_{a}-y_{b}\right) x_{c}+\left(x_{b}-x_{a}\right) y_{c}+x_{a} y_{b}-x_{b} y_{a}} \\
& \beta=\frac{\left(y_{a}-y_{c}\right) x+\left(x_{c}-x_{a}\right) y+x_{a} y_{c}-x_{c} y_{a}}{\left(y_{a}-y_{c}\right) x_{b}+\left(x_{c}-x_{a}\right) y_{b}+x_{a} y_{c}-x_{c} y_{a}} \\
& \alpha=1-\beta-\gamma
\end{aligned}
$$

Alternative Computation

Barycentric Rasterization

```
For all x do
    For all y do
        Compute ( }\alpha,\beta,\gamma)\mathrm{ for (x,y)
        If (\alpha\in[0,1] and \beta}\in[0,1] and \gamma\in[0,1] the
            c = \alphac
            Draw pixel (x,y) with color c
```


Barycentric Rasterization

```
xmin}= floor( (xi)
\mp@subsup{x}{max}{}}=\operatorname{ceiling(}\mp@subsup{\textrm{x}}{\textrm{i}}{}
ymin}= floor(yi
Ymax = ceiling( }\mp@subsup{\textrm{X}}{\textrm{i}}{
for }\textrm{y}=\mp@subsup{\textrm{y}}{\mathrm{ min }}{}\mathrm{ to }\mp@subsup{\textrm{y}}{\mathrm{ max }}{}\mathrm{ do
    for }\textrm{x}=\mp@subsup{\textrm{x}}{\mathrm{ min }}{}\mathrm{ to }\mp@subsup{\textrm{x}}{\mathrm{ max }}{}\mathrm{ do
        \alpha = fith(x,y)/f
        \beta= fin(x,y)/f}\mp@subsup{f}{20}{}(\mp@subsup{\textrm{x}}{1}{},\mp@subsup{\textrm{y}}{1}{}
        \gamma= fol (x,y)/ f01 ( }\mp@subsup{\textrm{X}}{2}{},\mp@subsup{\textrm{Y}}{2}{}
        If (\alpha\in[0,1] and }\beta\in[0,1] and \gamma\in[0,1] then
            c = \alphac
        Draw pixel (x,y) with color c
```


Barycentric Rasterization

- Computing coordinates
$\gamma=\frac{f_{01}(x, y)}{f_{01}\left(x_{2}, y_{2}\right)}=\frac{\left(y_{0}-y_{1}\right) x+\left(x_{1}-x_{0}\right) y+x_{0} y_{1}-x_{1} y_{0}}{\left(y_{0}-y_{1}\right) x_{2}+\left(x_{1}-x_{0}\right) y_{2}+x_{0} y_{1}-x_{1} y_{0}}$
$\beta=\frac{f_{20}(x, y)}{f_{20}\left(x_{1}, y_{1}\right)}=\frac{\left(y_{2}-y_{0}\right) x+\left(x_{0}-x_{2}\right) y+x_{2} y_{0}-x_{0} y_{2}}{\left(y_{2}-y_{0}\right) x_{1}+\left(x_{0}-x_{2}\right) y_{1}+x_{2} y_{0}-x_{0} y_{2}}$
$\alpha=\frac{f_{12}(x, y)}{f_{12}\left(x_{0}, y_{0}\right)}=\frac{\left(y_{1}-y_{2}\right) x+\left(x_{2}-x_{1}\right) y+x_{1} y_{2}-x_{2} y_{1}}{\left(y_{1}-y_{2}\right) x_{0}+\left(x_{2}-x_{1}\right) y_{0}+x_{1} y_{2}-x_{2} y_{1}}$

Visibility

- We can convert simple primitives to pixels/fragments
- How do we know which primitives (or which parts of primitives) should be visible?

Back-face Culling

- Polygon is back-facing if
$-\mathrm{V} \cdot \mathrm{N}>0$

- Assuming view is along $Z(\mathrm{~V}=0,0,1)$
$-\mathrm{V} \bullet \mathrm{N}+\left(0+0+\mathrm{Z}_{\mathrm{n}}\right)$
- Simplifying further
- If $\mathrm{z}_{\mathrm{n}}>0$, then cull
- Works for non-overlapping convex polyhedra

- With concave polyhedra, some hidden surfaces will not be culled

Painter's Algorithm

- First polygon:
$-(6,3,10),(11,5,10),(2,2,10)$
- Second polygon:
- (1,2,8), (12,2,8), (12,6,8), (1,6,8)
- Third polygon:
$-(6,5,5),(14,5,5),(14,10,5),(6,10,5)$

Painter's Algorithm

- Given

List of polygons $\left\{\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots . \mathrm{P}_{\mathrm{n}}\right.$)
An array of Intensity [x,y]

- Begin

Sort polygon list on minimum Z (largest zvalue comes first in sorted list)
For each polygon P in selected list do
For each pixel (x, y) that intersects P do
Intensity[x,y] = intensity of P at (x, y) Display Intensity array

Painter's Algorithm: Cycles

- Which order to scan?

- Split along line, then scan 1,2,3

Painter's Algorithm: Cycles

- Which to scan first?

- Split along line, then scan 1,2,3,4 (or split another polygon and scan accordingly)
- Moral: Painter's algorithm is fast and easy, except for detecting and splitting cycles and other ambiguities

Depth-sort: Overlapping Surfaces

- Assume you have sorted by maximum Z
- Then if $Z_{\text {min }}>Z^{\prime}{ }_{\text {max }}$, the surfaces do not overlap each other (minimax test)
- Correct order of overlapping
 surfaces may be ambiguous. Check it.

Depth-sort: Overlapping Surfaces

- No problem: paint S, then S'

- Problem: painting in either order gives incorrect result

- Problem? Naïve order S S' S"; correct order S' S" S

Depth-sort: Order Ambiguity

1. Bounding rectangles in $x y$ plane do not overlap

- Check overlap in x $\mathrm{X}^{\prime}{ }_{\text {min }}>\mathrm{X}_{\text {max }}$ or $\mathrm{X}_{\text {min }}>\mathrm{X}^{\prime}{ }_{\text {max }}->$ no overlap
- Check overlap in y
y^{\prime} min $^{\prime}>y_{\text {max }}$ or $y_{\text {min }}>y^{\prime}$ max $->$ no overlap

2. Surface S is completely behind S^{\prime} relative to viewing direction.

- Substitute all vertices of S into plane
 equation for S ", if all are "inside" (<0), then there is no ambiguity

Depth-sort: Order Ambiguity

3. Surface S^{\prime} is completely in front S relative to viewing direction.

- Substitute all vertices of S' into plane equation for S, if all are "outside" (>0),
 then there is no ambiguity

Depth-sort: Order Ambiguity

4. Projection of the two surfaces onto the viewing plane do not overlap

- Test edges for intersection
- Rule out some pairs with minimax tests
 (can eliminate 3-4 intersection, but not 1-2)
- Check slopes -- parallel lines do not intersect
- Compute intersection points:
- $s=\left[\left(x^{\prime} 1-x^{\prime} 2\right)\left(y_{1}-y^{\prime}{ }_{1}\right)-\left(x_{1}-x^{\prime}\right)\left(y^{\prime} 1-y^{\prime}{ }_{2}\right)\right] / D$
- $t=\left[\left(x_{1}-x_{2}\right)\left(y_{1}-y_{1}^{\prime}\right)-\left(x_{1}-x_{1}^{\prime}\right)\left(y_{1}-y_{2}\right)\right] / D$
- $D=\left(x^{\prime} 1-x_{2}^{\prime}\right)\left(y_{1}-y_{2}\right)-\left(x_{1}-x_{2}\right)\left(y_{1}^{\prime}-y_{2}^{\prime}\right)$

Z-Buffer

- First polygon
- (1, 1, 5), (7, 7, 5), (1, 7, 5)
- scan it in with depth
- Second polygon
$-(3,5,9),(10,5,9),(10,9,9),(3,9,9)$
- Third polygon
$-(2,6,3),(2,3,8),(7,3,3)$

Z-Buffer Algorithm

- Originally Cook, Carpenter, Catmull
- Given

List of polygons $\left\{P_{1}, P_{2}, \ldots ., P_{n}\right\}$
An array x-buffer $[x, y]$ initialized to +infinity
An array Intensity[x,y]

- Begin

For each polygon P in selected list do
For each pixel (x, y) that intersects P do
Caluclate z-depth of P at (x, y)
If z-depth $<~ z-b u f f e r[x, y]$ then
Intensity $[x, y]=$ intensity of P at (x, y)
Z-buffer $[\mathrm{x}, \mathrm{y}]=\mathrm{z}$-depth
Display Intensity array

Z-Buffer: Calculating Z-depth

- From plane equation, depth at position (x, y):

$$
\mathrm{z}=(-\mathrm{Ax}-\mathrm{By}-\mathrm{D}) / \mathrm{C}
$$

- Incrementally across scanline ($\mathrm{x}+1, \mathrm{y}$)

$$
\begin{aligned}
\mathrm{z}^{\prime} & =(-\mathrm{A}(\mathrm{x}+1)-\mathrm{By}-\mathrm{D}) / \mathrm{C} \\
& =(-\mathrm{Ax}-\mathrm{By}-\mathrm{D}) / \mathrm{C}-\mathrm{A} / \mathrm{C} \\
& =\mathrm{z}-\mathrm{A} / \mathrm{C}
\end{aligned}
$$

- Incrementally between scanlines ($\mathrm{x}^{\prime}, \mathrm{y}+1$)

$$
\begin{aligned}
\mathrm{z}^{\prime} & =\left(-\mathrm{A}\left(\mathrm{x}^{\prime}\right)-\mathrm{B}(\mathrm{y}+1)-\mathrm{D}\right) / \mathrm{C} \\
& =\mathrm{z}-(\mathrm{A} / \mathrm{m}+\mathrm{B}) / \mathrm{C}
\end{aligned}
$$

Z-Buffer Characteristics

- Good
- Easy to implement
- Requires no sortng of surfaces
- Easy to put in hardware
- Bad
- Requires lots of memory (about 9MB for 1280x1024 display)
- Can alias badly (only one sample per pixel)
- Cannot handle transparent surfaces

A-Buffer Method

- Basically z-buffer with additional memory to consider contribution of multiple surfaces to a pixel
- Need to store
- Color (rgb triple)
- Opacity
- Depth

- Percent area covered
- Surface ID
- Misc rendering parameters
- Pointer to next

Taxonomy of Visibility Algorithms

- Ivan Sutherland -- A Characterization of Ten Hidden Surface Algorithms
- Basic design choices
- Space for operations
- Object
- Image

- Object space
- Loop over objects
- Decide the visibility of each
- Timing of object sort

- Sort-first
- Sort-last

Taxonomy of Visibility Algorithms

- Image space
- Loop over pixels
- Decide what's visible at each
- Timing of sort at pixel
- Sort first
- Sort last
- Subdivide to simplify

Scanline Algorithm

- Simply problem by considering only one scanline at a time
- intersection of 3D scene with plane through scanline

Scanline Algorithm

- Consider xz slice

- Calculate where visibility can change

- Decide visibility in each span

Scanline Algorithm

1. Sort polygons into sorted surface table (SST) based on Y
2. Initialize y and active surface table (AST)
$\mathrm{Y}=$ first nonempty scanline
$\mathrm{AST}=\operatorname{SST}[\mathrm{y}]$
3. Repeat until AST and SST are empty

Identify spans for this scanline (sorted on x)
For each span
determine visible element (based on z)
fill pixel intensities with values from element Update AST
remove exhausted polygons
Y++
update x intercepts
resort AST on x
add entering polygons
4. Display Intensity array

Scanline Visibility Algorithm

- Scanline α
- AST: AB
- Spans
- 0 -> x_{1}
background
- $\mathrm{x}_{1}->\mathrm{x}_{2}$
- $\mathrm{x}_{2}->\max$
background

Scanline Visibility Algorithm

- Scanline β
- AST: AB
- Spans
- 0 -> x_{1}
- $\mathrm{X}_{1}->\mathrm{x}_{2}$
- $\mathrm{X}_{2}->\mathrm{X}_{3}$
background

- $\mathrm{X}_{3}->\mathrm{X}_{4}$
- $\mathrm{X}_{4}->$ max background

Scanline Visibility Algorithm

- Scanline γ
- AST: AB
- Spans
- 0 -> x_{1}
background
- $\mathrm{x}_{1}->\mathrm{x}_{2}$

ABC

- $\mathrm{X}_{2}->\mathrm{x}_{3}$

- $\mathrm{X}_{3}->\mathrm{X}_{4}$
- $\mathrm{X}_{4}->$ max background

Scanline Visibility Algorithm

- Scanline $\gamma+1$
- Spans
- 0 -> X_{1}
background
- $\mathrm{x}_{1}->\mathrm{x}_{2}$
- $\mathrm{x}_{2}->\mathrm{x}_{3}$
- $x_{3}->x_{4}$
- $\mathrm{x}_{4}->\max ^{2}$
background

- Scanline $\gamma+2$
- Spans
- 0 -> x_{1}
background
- $\mathrm{X}_{1}->\mathrm{X}_{2}$ ABC
- $\mathrm{x}_{2}->\mathrm{x}_{3}$
background
- $\mathrm{X}_{3}->\mathrm{x}_{4}$
- $\mathrm{X}_{4}->\max$
background

Characteristics of Scanline Algorithm

- Good
- Little memory required
- Can generate scanlines as required
- Can antialias within scanline
- Fast
- Simplification of problem simplifies geometry
- Can exploit coherence
- Bad
- Fairly complicated to implement
- Difficult to antialias between scanlines

Taxonomy Revisted

- Another dimension
- Point-sampling
- continuous

BSP Tree: Building the Tree

```
BSPTree MakeBSP ( Polygon list ) {
    if ( list is empty ) return null
    else {
        root = some polygon ; remove it from the list
        backlist = frontlist = null
        for ( each remaining polygon in the list ) {
            if ( p in front of root )
                addToList ( p, frontlist )
            else if ( p in back of root )
                addToList ( p, backlist )
            else {
                splitPolygon (p,root,frontpart,backpart)
                addToList ( frontpart, frontlist )
                addToList ( backpart, backlist )
                }
        }
    return (combineTree(MakeBSP(frontlist),root,
                                    MakeBSP(backlist)))
    }
}
```


Building a BSP Tree

Building a BSP Tree

- Use pgon 3 as root, split on its plane
- Pgon 5 split into 5a and 5b

Building a BSP Tree

- Split left subtree at pgon 2

Building a BSP Tree

- Split right subtree at pgon 4

Building a BSP Tree

- Alternate tree if splits are made at $5,4,3,1$

BSP Tree: Displaying the Tree

```
DisplayBSP ( tree )
{
    if ( tree not empty ) {
        if ( viewer in front of root ) {
            DisplayBSP ( tree -> back )
    DisplayPolygon ( tree -> root )
    DisplayBSP ( tree -> front )
        }
            else {
                DisplayBSP ( tree -> front )
    DisplayPolygon ( tree -> root )
    DisplayBSP ( tree -> back )
        }
    }
}
```


BSP Tree Display

- Built BSP tree structure

BSP Tree Display

For view point at C
at 3 : viewpoint on front -> display back first
at 4 : viewpoint on back -> display front first

BSP Tree Display

For view point at C

at 3 : viewpoint on front $->$ display back first
at 4 : viewpoint on back -> display front first (none)
display self
display back

BSP Tree

 DisplayFor view point at C

at 3 : viewpoint on front $->$ display back first
at 4 : viewpoint on back -> display front first (none)
display self
display back
at 5 b : viewpoint on back -> display front
display self
display back (none)
display self

BSP Tree Display

For view point at C

at 3 : viewpoint on front $->$ display back first
at 4 : viewpoint on back -> display front first (none)
display self
display back
at 5b: viewpoint on back -> display front
display self
display back (none)
display self
display front

BSP Tree Display

For view point at C

at 3 : viewpoint on front $->$ display back first
at 4 : viewpoint on back -> display front first (none)
display self
display back
at 5 b : viewpoint on back -> display front
display self
display back (none)
display self
display front
at 2 : viewpoint on back -> display front first

BSP Tree Display

For view point at C

at 3 : viewpoint on front $->$ display back first
at 4 : viewpoint on back -> display front first (none)
display self
display back
at 5b: viewpoint on back -> display front
display self
display back (none)
display self
display front
at 2 : viewpoint on back -> display front first
at 5a: viewpoint on back -> display front (none)
display self
display back (none)

BSP Tree Display

For view point at C
at 3 : viewpoint on front -> display back first
at 4 : viewpoint on back -> display front first (none)
display self
display back
at 5 b : viewpoint on back -> display front
display self
display back (none)
display self display front
at 2 : viewpoint on back -> display front first
at 5 a : viewpoint on back -> display front (none)
display self
display back (none)
display self
at 1 : viewpoint on back -> display front (none)
display self
display back (none)

Shading Revisited

- Illumination models compute appearance at a location
- How do you efficiently fill areas?

Diffuse Shading Models

Flat shading

Gouraud shading

Flat Shading Algorithm

```
For each visible polygon
```

 Evaluate illumination with polygon
 normal
 For each scanline
 For each pixel on scanline
 Fill with calculated intensity

Interpolated Shading Algorithm

```
For each visible polygon
```

 For each vertex
 Evaluate illumination with vertex
 normals
 For each scanline
 Interpolate intensity along edges
 (for span extrema)
 For each pixel on scanline
 Interpolate intensity from
 extrema

Vertex Normals

- The normal vector at vertex V is calculated as the average of the surface normals for each polygon sharing that vertex

Gouraud Calculations

1. Calculate intensity at vertices $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}\right)$
2. Interpolate vertex intensities along edges $\left(\mathrm{I}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}}\right)$
3. Interpolate intensities at span extrema to pixels $\left(\mathrm{I}_{\mathrm{p}}\right)$

Barycentric Rasterization

```
xmin}=\textrm{floor}(\mp@subsup{\textrm{X}}{\textrm{i}}{}
x max }=\operatorname{ceiling( }\mp@subsup{\textrm{X}}{\textrm{i}}{}
Ymin = floor(yi)
Ymax = ceiling(yi)
for }\textrm{y}=\mp@subsup{y}{\mathrm{ min to }}{\mathrm{ max }
    for }\textrm{x}=\mp@subsup{\textrm{X}}{\mathrm{ min }}{}\mathrm{ to }\mp@subsup{\textrm{X}}{\mathrm{ max }}{}d
        \alpha= fin(x,y)/f
        \beta= fin
        \gamma= fol (x,Y)/ fol ( }\mp@subsup{\textrm{X}}{2}{},\mp@subsup{Y}{2}{}
        If (\alpha\in[0,1] and }\beta\in[0,1] and \gamma\in[0,1] then
            C
        c
        c}\mp@subsup{2}{2}{}= evaluate_illumination( (x , y y , zz )
        c}=\alpha\mp@subsup{c}{0}{}+\beta\mp@subsup{c}{1}{}+\gamma\mp@subsup{c}{2}{
        Draw pixel (x,y) with color c
```


Problems with Interpolated Shading

- Polygon silhouette
- Perspective distortion
- Orientation dependence
- Problems at shared vertices
- Unrepresentative vertex normals

Phong Shading

- Ideally: shade from normals of curved surface
- Approximate with normals interpolated between vertex normals
$\mathrm{N}_{\mathrm{a}}=\left|\mathrm{P}_{\mathrm{a}}-\mathrm{P}_{0}\right| / / \mathrm{P}_{1}-\mathrm{P}_{0}\left|\mathrm{~N}_{1}+\left|\mathrm{P}_{1}-\mathrm{P}_{\mathrm{a}}\right| /\left|\mathrm{P}_{1}-\mathrm{P}_{0}\right| \mathrm{N}_{0}\right.$

Phong Algorithm

- For each visible polygon
- For each scanline
- Calculate normals at edge intersections (span extrema) by linear interpolation
- For each pixel on scanline
- Calculate normal by interpolation of normals at span extrema
- Evaluate illumination model with that normal

Barycentric Rasterization

```
x min = floor( }\mp@subsup{\textrm{x}}{\textrm{i}}{}
\mp@subsup{x}{max}{}}=\operatorname{ceiling(}\mp@subsup{\textrm{x}}{\textrm{i}}{}
ymin = floor(yi)
Y max }=\mathrm{ ceiling( }\mp@subsup{\textrm{y}}{\textrm{i}}{
for y = y min to }\mp@subsup{y}{\mathrm{ max }}{}\mathrm{ do
    for }\textrm{x}=\mp@subsup{\textrm{x}}{\mathrm{ min }}{}\mathrm{ to }\mp@subsup{\textrm{x}}{\mathrm{ max }}{}\mathrm{ do
```



```
        \beta= fin(x,y)/f
        \gamma= fol (x,y)/fol (x ( 
        If (\alpha\in[0,1] and }\beta\in[0,1] and \gamma\in[0,1] then
            n = \alphan
            Normalize (n)
            c = evaluate_illumination(x,y,n)
            Draw pixel (x,y) with color c
```


Artistic Illumination

- Concept: intentionally mimic artistic effects which may not match photorealism (NPR)
- Examples
- Line drawing
- Shading effects
- Cool-warm (tone shading)
- Toon
- Media Emulation

Silhouette Drawing

- Want to draw silhouette edge to emphasize shape
- Silhouette defined by points where surface normal is orthogonal to view vector

$$
\mathrm{V} \cdot \mathrm{~N}=0
$$

- Implementation for polygonal meshes: draw edge when pgons change from forward to back

```
if (V\bulletN N})(\textrm{V}\bullet\mp@subsup{N}{1}{})\leq
        Draw silhouette (edge between pgons)
```

- Add sharp creases
if $\left(\mathrm{N}_{0} \bullet \mathrm{~N}_{1}\right) \leq$ threshold Draw silhouette (edge between pgons)

Diffuse

Only

$\mathrm{Kd}=1, \mathrm{ka}=0$

Gooch '98

Highlights and Edges

Gooch 98

Phong Shading and Edges
$\mathrm{Kd}=.5$
$\mathrm{Ka}=.1$

Gooch 98

Tone Shading Model

$$
I=\left(\frac{1+\hat{\mathbf{1}} \cdot \hat{\mathbf{n}}}{2}\right) k_{\text {cool }}+\left(1-\frac{1+\hat{\mathbf{1}} \cdot \hat{\mathbf{n}}}{2}\right) k_{\text {warm }}
$$

with

$$
\begin{aligned}
k_{\text {cool }} & =k_{\text {blue }}+\alpha k_{d} \\
k_{\text {warm }} & =k_{\text {yellow }}+\beta k_{d}
\end{aligned}
$$

Mixing Tone and Color

Constant Luminance Tone

Gooch 98

Luminance/Tone Rendering

$\mathrm{B}=0.4, \mathrm{y}=0.4$
$\alpha=.2, \beta=.6$

Gooch 98

Luminance/Tone Rendering

$\mathrm{B}=0.55, \mathrm{y}=0.8$
$\alpha=.25, \beta=.5$

Gooch 98

Hue/Tone Interactions

- Gooch 98

Tone/Metal

Gooch 98

> Tone/Color

Gooch 98

