CMSC 435 Introductory Computer Graphics Math Review
 Penny Rheingans
 UMBC

Basic Trigonometry

- Angles
- degrees $=180 / \pi$ radians
- Some functions
$-\sin \theta=\mathrm{o} / \mathrm{h}$
$-\cos \theta=\mathrm{a} / \mathrm{h}$
$-\tan \theta=\mathrm{o} / \mathrm{a}$
- A few identities

$-\sin (-A)=-\sin \mathrm{A}$
$-\cos (-A)-\cos A$
$-\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=1$

Vectors

- Vector: length and direction gives offset

$$
\mathrm{a}=\left[\begin{array}{l}
x_{a} \\
y_{a} \\
z_{a}
\end{array}\right] \mathrm{a}^{\mathrm{T}}=\left[\begin{array}{lll}
x_{a} & y_{a} & z_{a}
\end{array}\right]
$$

Vectors (2)

- Operations
- Length

$$
\|a\|=\sqrt{x_{a}^{2}+y_{a}^{2}+z_{a}^{2}}
$$

- Addition

$$
\begin{aligned}
& \mathrm{a}+\mathrm{b}=\left[\begin{array}{l}
x_{a}+x_{b} \\
y_{a}+y_{b} \\
z_{a}+z_{b}
\end{array}\right] \\
& \mathrm{a}-\mathrm{b}=\left[\begin{array}{l}
x_{a}-x_{b} \\
y_{a}-y_{b} \\
z_{a}-z_{b}
\end{array}\right]
\end{aligned}
$$

Vectors (3)

- Dot Product

$$
\mathrm{a} \cdot \mathrm{~b}=x_{a} x_{b}+y_{a} y_{b}+z_{a} z_{b}
$$

- angle between

$$
\mathrm{a} \cdot \mathrm{~b}=\|\mathrm{a}\|\|\mathrm{b}\| \cos \theta
$$

- projection of one on other

$$
\mathrm{a} \rightarrow \mathrm{~b}=\|\mathrm{a}\| \cos \theta
$$

Vectors (4)

- Cross Product

$$
\mathrm{a} \times \mathrm{b}=\left(y_{a} z_{b}-z_{a} y_{b}, z_{a} x_{b}-x_{a} z_{b}, x_{a} y_{b}-y_{a} x_{b}\right)
$$

- $c=a \times b$
- orthogonal to a, b
- length=pgram area
- $b \times a=-a \times b$

Vectors (5)

- Coordinate Frames (uvw coord system)
- Orthonormal basis
- Unit length $\|\mathrm{u}\|=\|\mathrm{v}\|=\|\mathrm{w}\|=1$
- Orthogonal $u \cdot v=v \cdot w=w \cdot u=0$
- Right-handed vs left-handed
- Right-handed W = U \times V
- Coordinate frames
- Global (world) coordinate system
- Local (object) coordinate system

Orthonormal Basis

- Constructing from a vector a
- Unit vector in direction of a: $\quad w=\frac{a}{\|a\|}$
- Any perpendicular to \mathbf{w} (using noncollinear \mathbf{t}): $u=\frac{t \times w}{\|t \times w\|}$
- Unit vector perpendicular to both: $v=w \times u$
- Constructing from two vectors \mathbf{a}, \mathbf{b}
- Unit vector in direction of $\mathbf{a}: w=\frac{a}{\|a\|}$
- Perpendicular to w and b :

$$
u=\frac{b \times w}{\|b \times w\|}
$$

- Unit vector perpendicular to both: $v=w \times u$

Linear Interpolation

- Formula

$$
n=n_{1}+t\left(n_{2}-n_{1}\right)
$$

- Uses
- Points along a line (repeat for $\mathrm{x}, \mathrm{y}, \mathrm{z}$)
- Colors between sample points (repeat for $\mathrm{r}, \mathrm{g}, \mathrm{b}$)

Implicit Lines

- Function defines relationship among coords
- 2D Formula

$$
y-m x-b=0
$$

- where y is slope and b is intercept
- General form

$$
A x+B y+C=0
$$

- Orthogonal to $\left[\begin{array}{ll}A & B\end{array}\right]$
- Computing from points
$\left(y_{0}-y_{1}\right) x+\left(x_{0}-x_{1}\right) y+x_{0} y_{1}-x_{1} y_{0}=0$
- Substitute in point for signed distance

Implicit Primitives

- Function defines relationship among coords
- Implicit Plane

$$
(\mathrm{p}-\mathrm{a}) \cdot \mathrm{n}=0
$$

- Orthogonal to n, through a
- Computing from points $\mathrm{a}, \mathrm{b}, \mathrm{c}$

$$
(p-a) \cdot((b-a) \times(c-a))=0
$$

- Implicit Sphere

$$
(p-c)^{2}-r^{2}=0
$$

- Radius r , center point c

Parametric Lines

- Define line by end points
- Formula

$$
p=p_{1}+t\left(p_{2}-p_{1}\right)
$$

$$
\text { where } \mathrm{p}=\mathrm{p}_{1} \text { at } \mathrm{t}=0, \mathrm{p}=\mathrm{p}_{2} \text { at } \mathrm{t}=1
$$

- Components

$$
\begin{aligned}
& x=x_{1}+t\left(x_{2}-x_{1}\right) \\
& y=y_{1}+t\left(y_{2}-y_{1}\right) \\
& z=z_{1}+t\left(z_{2}-z_{1}\right)
\end{aligned}
$$

Triangles

- Specified by triplet of vertex positions
- a,b,c
- Counter-clockwise order

- Finding triangle normal

$$
n=(b-a) \times(c-a)
$$

Barycentric Coordinates

- Use non-orthogonal coordinates to describe position relative to vertices
$\mathrm{p}=\mathrm{a}+\beta(\mathrm{b}-\mathrm{a})+\gamma(\mathrm{c}-\mathrm{a}) \mathrm{p}(\alpha, \beta, \gamma)=\alpha \mathrm{a}+\beta \mathrm{b}+\gamma \mathrm{c}$
- Coordinates correspond to scaled signed distance from lines through pairs of vertices

Barycentric Coordinates

- Computing coordinates

$$
\begin{aligned}
& \gamma=\frac{\left(y_{a}-y_{b}\right) x+\left(x_{b}-x_{a}\right) y+x_{a} y_{b}-x_{b} y_{a}}{\left(y_{a}-y_{b}\right) x_{c}+\left(x_{b}-x_{a}\right) y_{c}+x_{a} y_{b}-x_{b} y_{a}} \\
& \beta=\frac{\left(y_{a}-y_{c}\right) x+\left(x_{c}-x_{a}\right) y+x_{a} y_{c}-x_{c} y_{a}}{\left(y_{a}-y_{c}\right) x_{b}+\left(x_{c}-x_{a}\right) y_{b}+x_{a} y_{c}-x_{c} y_{a}} \\
& \alpha=1-\beta-\gamma
\end{aligned}
$$

Matrix Multiplication

- With matrices A, B

$$
A=\left[\begin{array}{lll}
a_{00} & a_{10} & a_{20} \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22}
\end{array}\right] \quad B=\left[\begin{array}{lll}
b_{00} & b_{10} & b_{20} \\
b_{10} & b_{11} & b_{12} \\
b_{20} & b_{21} & b_{22}
\end{array}\right]
$$

- To compute $\mathrm{C}=\mathrm{AB}$

$$
c_{i j}=a_{i 0} b_{0 j}+a_{i 1} b_{1 j}+a_{i 2} b_{2 j}
$$

Matrix Multiplication

- With matrices A, B

$$
A=\left[\begin{array}{lll}
a_{00} & a_{10} & a_{20} \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22}
\end{array}\right] \quad B=\left[\begin{array}{lll}
\phi_{00} & b_{10} & b_{20} \\
\phi_{10} & b_{11} & b_{12} \\
b_{20} & b_{21} & b_{22}
\end{array}\right]
$$

- To compute $\mathrm{C}=\mathrm{AB}$

$$
c_{i j}=a_{i 0} b_{0 j}+a_{i 1} b_{1 j}+a_{i 2} b_{2 j}
$$

- For example

$$
c_{10}=a_{10} b_{00}+a_{11} b_{10}+a_{12} b_{20}
$$

