CMSC 435/634 Introductory Computer Graphics Overview Penny Rheingans UMBC

Course Staff

• Instructor:	Penny Rheingans (ITE 452/355)
• Office Hours:	Tues 11:15am-1pm
•	by appt
• TA:	Elizabeth Baumel
	(elizaba1@umbc.edu)
• TA OH:	Tues/Fri 3-5pm (ITE 352)
•	by appt or email

Survey

- Name (what do you wish to be called?)
- Phone
- email
- Major, year (in school), 435/634
- Classes: CS, math, this semester
- Mastery of C++; Favorite computer language
- Something interesting about you

Hold List

- I'll let in as many students as there are seats
- If on hold list:
 - fill out request
 - see me after class
- Decisions by next class

Computer Graphics

- Using computer to generate simulated scenes or worlds
- Requires tricking eye to believe 2D collection of pixels is really a continuous 3D world
- Coding-intensive application with strong basis in creativity and human perception

Five Key Problems

- What do you see?
- What does it look like?
- What shape is it?
- How does it move?
- Why does it have to look like a photograph?

What shape is it?

Modeling Approaches

• Modeling problem

- Define shape, color, and other visual properties

- Modeling solutions
 - Manual primitive creation
 - Scans from physical object
 - Functional descriptions
 - Grammar-based generation
 - Biologically-inspired simulations

<section-header><text>

What do you see?

Visibility Approaches

• Visibility problem

- Determine which objects (or parts of objects) are closest and therefore visible (a sorting problem)
- (Some) visibility solutions
 - Painter's algorithm
 - Zbuffer
 - Ray tracing

Painter's Algorithm

- Basic approach
 - Draw polygons, from farthest to closest
- First polygon:
 (6,3,10), (11, 5,10), (2,2,10)
- Second polygon:
 (1,2,8), (12,2,8), (12,6,8), (1,6,8)
- Third polygon:
 (6,5,5), (14,5,5), (14,10,5), (6,10,5)

Painter's Algorithm: Cycles

• Which to scan first?

- Split along line, then scan 1,2,3,4 (or split another polygon and scan accordingly)
- Moral: Painter's algorithm is fast and easy, except for detecting and splitting cycles and other ambiguities

Illumination Approaches

• Illumination problem

- Model how objects interact with light

- Modeling solutions
 - Simple physics/optics
 - More realistic physics
 - Surface physics
 - Surface microstructure
 - Subsurface scattering
 - Shadows
 - Light transport

How does it move?

Motion Dynamics Approaches

• Motion dynamics problem

 Define geometric movements and deformations of objections under motion

- Dynamics solutions
 - Simulate physics of simple objects
 - Model structure and constraints
 - Capture motion from reality
 - Simulate group dynamics
 - Use your imagination

Why does it have to look like a photograph?

Artistic Rendering Approaches

- Artistic rendering problem (NPR)
 - Produce images from geometric models that are more expressive or mimic alternative media
- Artistic rendering solutions
 - Mimic characteristics of media
 - Physically simulate media
 - Break rules

Objectives

- Understand the foundations of computer graphics.
- Implement key components of the rendering pipeline, understand the rest.
- Use a high-level scene description language to model and render complex, realistic scenes.
- Become acquainted with some advanced topics in computer graphics.

Expected Background

- Expecting Jr/Sr/Grad CS Majors, true?
- Data Structures (CMSC341): arrays, pointers, data structures, basic algorithms
- Programming in C/C++ (CMSC313): language, compilation (make), debugging
- Math (MATH221) vector, matrices
 Also assorted HS math, esp trig

Reading

- Texts
 - Fundamentals of Computer Graphics, 3nd edition. Peter Shirley, AK Peters, 2009. Required: fundamental graphics textbook.
 - OpenGL Programming Guide. Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner, Addison-Wesley, any modern version. Recommended: useful for assignments.
 - Effective C++, Scott Meyers, 2005. Recommended: useful for assignments.
- Read before class
- Expect quizzes: vocabulary and basic concepts

Assignments

• Types

- Programming Examples: implementing guts of rendering pipeline, in C++ with OpenGL basis
- Rendering Exercises: scene creation using Renderman, C++
- Homework Problems: concepts and exercises
- Due
 - Programming/Rendering: at midnight, submit electronically
 - Problems: in class, turn in paper
- Late assignments penalized 20% (up to a week)
 - One free late (up to a week), requested in writing on due date
- Do your own work;
 - document any help (or none) in header of program;
 - projects without statement about level of help will be returned ungraded
- START EARLY!!!

Grades

- Programming assts 50%
- Homework problems 10%
- Midterm exam & quizzes 15%
- Final exam 25%