CMSC 435
Introductory Computer Graphics
Basic Ray

Penny Rheingans
[8)\%1:]@

Announcements

Visibility Problem

* Rendering: converting a model to an image
 Visibility: deciding which objects (or parts) will
appear in the image
— Object-order
— Image-order

Raytracing

* Given
— Scene

virtual

— Viewpoint vowpetnt
— Viewplane
 Cast ray from
viewpoint through
pixels into scene

virtual
viewpoint

Raytracing Algorithm

Given
List of polygons { P, P2, ..., P, }
An array of intensity [x, y]

For each pixel (x, y) {

form a ray R in object space through the
camera position C and the pixel (x, y)

Intensity [x, y] = trace (R)

}
Display array Intensity

Projection

* Perspective
— Line AB projects to A’B’

(perspective projection)
Projectors

\

Projection

Center of
plane

projection
* Parallel
— Line AB projects to A’B’ Projectors
(parallel projection)
— Projectors AA’ and BB’ are
parallel
Projection

o lane
projection P

at infinity

Simple Parallel Tform

View plane is normal to direction of projection

Xs = Xv, ¥Ys = Vv, Zs = 0]

Simple Perspective Tform

Assume line from center of projection
to center of view plane parallel to view
plane normal.

Center of projection is at origin.
Have
Want

Looking
along y axis

- -

Looking
along x axis

View plane

Have
Want
By similar triangles:

" view plane

Looking
along y axis

P(Xv-yv- 2

P,

/

View plane

Looking
along » axis

Simple Perspective Tform

Have , want

By similar triangles:

In homogeneous coords

X=Xy, Y7V, 2= Zy, W= Zv/d View plane

Looking
along y axis

Do perspective divide to get 4

Looking
along » axis

screen coords View plane

Xs = X/W, Vs = Y/W, zs = z/w =d

Raytracing Algorithm

Given
List of polygons { P, P2, ..., P, }
An array of intensity [x, y]

For each pixel (x, y) {
form a ray R in object space through the
camera position C and the pixel (x, y)
Intensity [x, y] = trace (R)
}
Display array Intensity

Raytracing Algorithm

intensity Function trace (Ray)
{
for each polygon P in the scene
calculate the intersection of P and the ray R
if (The ray R hits no polygon)
return (background intensity)
else {

find the polygon P with the closest
intersection

calculate intensity I at intersection point
return (I) // more to come here later

Raytracing Algorithm

intensity Function trace (Ray)

{

calculate the intersection of nearest polygon P
and the ray R

if (The ray R hits no polygon)
return (background intensity)
else {

find the polygon P with the closest
intersection

calculate intensity I at intersection point

return (Illuminate(I, trace(reflect),
trace(refract)))

Computing Viewing Rays

Parametric ray (r,u)
- pH=ett(s-e)
Camera frame
— E: eye point
— u,v,w: basis vectors pointing right,
up, backward
Screen position
— orthographic
o Uy =1+ (r1)(i+0.5)/n, (1,b)
* vg=b+ (u-b)(§j+0.5)/n,
e s=(etuu+tvyw)-w
— Perspective
e u, =1+ (r-1)(i+0.5)/n,
* vg=b+ (u-b)(§j+0.5)/n,
* s=(e)tuu+vyy-dw

Calculating Intersections

Define ray parametrically:

X =Xo * t(X1 - X0) = Xo+ tAX

y =Yyo + t(y1 - Yo) = yo + tAy

z=1270+t(z1 - 20) = 0 + tAz
If (x0, y0, z0) is center of projection and (x1, y1,
z1) is center of pixel, then

0 <=t <=1 : points between those locations

t <0 : points behind viewer

t> 1 : points beyond view window

Ray-Sphere Intersection

Sphere in vector form
— (p-0)+(p-¢)-R2 =
Ray
—p(t)=e+td
Intersection with implicit surface f(t) when
— f(p(t)) =0
— (e+t(s-e)-c)(e+t(s-e)-c)-R2 =
— (ded)t2+2de (e-c)t+(e-c) *(e-c)-R2=0
— t=(-d*(e-c)*sqrt((d+(e-c))2-(d+d)((e-c)*(e-c)-R2)/(d-d)
Normal at intersection p
— n=(p-c)/R

Calculating Intersections: Pgons

* Given ray and polygon:
X =Xo t t(X] - X0) = Xo*+ tAX
y = Yo T t(y1 - yo) = yo + tAy
z=12y+ (21 - 20) = 2o + tAz

Plane : Ax + By +Cz+ D=0

1. What is intersection of ray and plane containing pgon?
— Substituting for x, y, z:
- A(xo + tAX) + B(yo + tAy) + C(zo + tAz) + D=0
- t(AAx + BAy + CAz) + (Axo + Byo + Czp+ D) =0
- t=- (Axo + Byo + Cz + D) / (AAx + BAy + CAz)
2. Does ray/plane intersection point lie in polygon?

» Substitute into line equations for pgon edges: does point lie
inside all edges? (only works for convex)

* Count edge crossings of ray from point to infinity

Point in Polygon?

* Is P in polygon?

* Castray from P to
infinity
— One crossing -> inside

— Zero, Two crossings ->
outside

Point in Polygon?

* Is P in concave polygon?

 Cast ray from P to infinity
— Odd crossings -> inside
— Even crossings -> outside

10

What happens?

Ray-Triangle Intersection

* Intersection of ray with barycentric triangle
— ettd = at+p(b-a)+y(c-a)
— Intriangle if >0,y >0, p+y <1

boolean raytri (ray r, vector a, vector b, vector c,
interval [t,,t;]) {

compute t

if ((t <t,) or (t>t;))
return (false)

compute Yy

if ((y <0) or (y > 1))
return (false)

compute f3

if ((B<0) or (fp>1))
return (false)

return true

11

Raytracing Characteristics
* Good

— Simple to implement
— Minimal memory required

— Easy to extend

* Bad
— Aliasing
— Computationally intensive

* Intersections expensive (75-90% of rendering time)
* Lots of rays

Basic Concepts

e Terms

— Illumination: calculating light intensity at a point
(object space; equation) based loosely on physical laws

— Shading: algorithm for calculating intensities at pixels
(image space; algorithm)
* Objects
— Light sources: light-emitting
— Other objects: light-reflecting
* Light sources
— Point (special case: at infinity)
— distributed

12

Ambient light

[, = intensity of ambient light

K, = reflection coefficient
I =k,I, = reflected intensity

Lambert’s Law

* Intensity of reflected light related to orientation

13

Lambert’s Law

* Specifically: the radiant energy from any small
surface area dA in any direction 0 relative to the
surface normal is proportional to cos 6

-

L

0 = angle of incidence

Diffuse Reflection

Idiff — kdIICOS 0
= kqgl; (NL)

14

Combined Model

Liotal = Lamb + lLaitr
= Kkala + kgl; (N°L)
Adding color:
Ir = kalarOgdr + kgl ;gOgr (N°L)
I = kalagOdg + kaljgGOac (N°L)
Ig = kalagOgg + kgl ;gOgs (N°L)
For any wavelength A:
I = Kalan Ogan + kalj2 Oqs (NL)

Adding Attenuation

 Attenuation of light source due to distance
— Fu = 1/d .2 or min(1/(C+C,d; +C3d; 2),1)
» where dy is distance to the light
— Behavior of 1/d; 2

 Far from light: little change
 Near light: much change
» Accurate, but looks wrong

« Atmospheric attenuation of color
— 1,’=Sol), +(1-So)lc
» where Iy, is the depth cue color
* S():Sb+(z()‘zb)(st‘Sb)/(Zt‘Zb)

i

i
zbl depth zfl

15

Specular Reflection

For specific wavelength A
Lipecr. = ko Incos™
=kolL(ReV)
Not dependent on surface color — white highlights

Specular Reflection

For specific wavelength A
Lipecr, = koI Og cos™
= ko Iy Og (ReV)"
Dependent on surface color — colored highlights

16

Specular Reflection

 Dull highlights
— Gradual falloff

— Approximated by
cos ¢

* Glossy highlights
— Steeper falloff

— Approximated by
cos®d

17

Specular Reflection

 Shiny highlights
— Steep falloff

— Approximated by
cos!'Z¢

* Specular:
Ispeck = ksklk Osk (R.V)n
 Have L, want R

18

Calculating the Reflection Vector

e Mirror L about N
R =N cosO +S
= 2N cos6 -L
= 2N(N-L)-L

Where N, L are unit length
Projection of L on N is N cos 0

¢ Ispeck = kol Og, (R.V)n S=Ncos0 -L
= kskl}» Os}» (2N(N'L)-L .V)n

Calculating the Reflection Vector

* Alternatively: use
halfway vector H
~ H=(L+V)/|[L+V]

¢ Maximum highlight
when H=N (because
then R=V)
— Tgpee = keI (HoN)?
— HeN=cos a

* Two methods can give
different results o= ¢

19

Combined Model

st = sz = e e
= koI, + kql; (N°L) + kI, (N-H)"
Multiple lights:
=kul, + Y (kql; (N°L) + kiI;, (N*H)")
By wavelength (white highlights):
=kal, Ogp + X (kal;; (N°L) Og 5. + kil;; (N-H)")
By wavelength (colored highlights):
= kala Ogs + 3 (kal;; (N-L) Og + kl;; (NH)" O,)
By wavelength (more metallic highlights):
=kaly Ogy + 3 (kalj (N°L) Og, + ky(A,0)I; (NH)" O,)

Basic Raytracing Program

for each pixel (x, y) do {

compute viewing ray

if (ray hit an object with t>0) then {
compute n
evaluate shading model
set pixel to that color
}

else
set pixel color to background color

20

Effects
* Visibility
e [llumination
e Shadow

tolight
source

Shadow Algorithm

Function raycolor(ray e+td, real t,, real t,)

{

hit-record rec, srec
if (scene->hit(e+td, t,, t;) then {
p = et(rec.t)d
color ¢ = rec.k,*I,
if (not scene->hit(p+sl, ¢, ®, srec) then {
vector h = unit(unit(l)+unit(-d))

c = c + rec.ky*I*max(0,rec.nel) +
rec.k *I(rec.neh)rec-p

}

return c

}
else

return background color

Effects

Reflection

Calculate ray direction
— r=d-2(d*n)n
— d points from eye to surface
Trace ray

— m = raycolor(p+sr, €, ®)

Composite

- c=ct+k,m

Effects

e Refraction

22

How many
bounces?

23

