
1

CMSC 435
Introductory Computer Graphics

Basic Ray
Penny Rheingans

UMBC

Announcements

2

Visibility Problem
• Rendering: converting a model to an image
• Visibility: deciding which objects (or parts) will

appear in the image
– Object-order
– Image-order

Raytracing
• Given

– Scene
– Viewpoint
– Viewplane

• Cast ray from
viewpoint through
pixels into scene

3

Raytracing Algorithm
Given
 List of polygons { P1, P2, ..., Pn }
 An array of intensity [x, y]
{

For each pixel (x, y) {
form a ray R in object space through the
camera position C and the pixel (x, y)

Intensity [x, y] = trace (R)
}

Display array Intensity
}

4

Projection
• Perspective

– Line AB projects to A’B’
(perspective projection)

• Parallel
– Line AB projects to A’B’

(parallel projection)
– Projectors AA’ and BB’ are

parallel

Simple Parallel Tform
View plane is normal to direction of projection

xs = xv, ys = yv, zs = 0

!

Tort =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

"

$
$
$
$

%

&

'
'
'
'

5

Simple Perspective Tform
• Assume line from center of projection

to center of view plane parallel to view
plane normal.

• Center of projection is at origin.
• Have P(xv, yv, zv)
• Want P(xs, ys)

Simple Perspective Tform
• Have P(xv, yv, zv)
• Want P(xs, ys)
• By similar triangles:

!

xs
d

=
xv
zv
, ys
d

=
yv
zv

!

" xs =
xv
zv
d
, ys =

yv
zv
d

6

Simple Perspective Tform
• Have P(xv, yv, zv), want P(xs, ys)
• By similar triangles:

• In homogeneous coords
x = xv, y=yv, z = zv, w = zv/d

• Do perspective divide to get
screen coords
xs = x/w, ys = y/w, zs = z/w = d

!

xs
d

=
xv
zv
, ys
d

=
yv
zv

!

" xs =
xv
zv
d
, ys =

yv
zv
d

!

x
y
z
w

"

$
$
$
$

%

&

'
'
'
'

=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 d 0

"

$
$
$
$

%

&

'
'
'
'

xv
yv
zv
1

"

$
$
$
$

%

&

'
'
'
'

Raytracing Algorithm
Given
 List of polygons { P1, P2, ..., Pn }
 An array of intensity [x, y]
{

For each pixel (x, y) {
form a ray R in object space through the
camera position C and the pixel (x, y)

Intensity [x, y] = trace (R)
}

Display array Intensity
}

7

Raytracing Algorithm
intensity Function trace (Ray)
{

for each polygon P in the scene
calculate the intersection of P and the ray R

if (The ray R hits no polygon)
 return (background intensity)

else {
find the polygon P with the closest
intersection

calculate intensity I at intersection point
return (I) // more to come here later

 }
}

Raytracing Algorithm
intensity Function trace (Ray)
{

calculate the intersection of nearest polygon P
and the ray R

if (The ray R hits no polygon)
 return (background intensity)

else {
find the polygon P with the closest
intersection

calculate intensity I at intersection point
return (Illuminate(I, trace(reflect),
trace(refract)))

 }
}

8

Computing Viewing Rays
• Parametric ray

– p(t) = e + t(s - e)
• Camera frame

– E: eye point
– u,v,w: basis vectors pointing right,

up, backward
• Screen position

– orthographic
• us = l + (r-l)(i+0.5)/nx

• vs = b + (u-b)(j+0.5)/ny

• s = (e + usu + vsv) - w
– Perspective

• us = l + (r-l)(i+0.5)/nx

• vs = b + (u-b)(j+0.5)/ny

• s = (e) + usu + vsv - dw

e
s

p

(l,b)

(r,u)

Calculating Intersections
• Define ray parametrically:

x = x0 + t(x1 - x0) = x0 + tΔx
y = y0 + t(y1 - y0) = y0 + tΔy
z = z0 + t(z1 - z0) = z0 + tΔz

• If (x0, y0, z0) is center of projection and (x1, y1,
z1) is center of pixel, then
0 <= t <= 1 : points between those locations
t < 0 : points behind viewer
t > 1 : points beyond view window

9

Ray-Sphere Intersection
• Sphere in vector form

– (p-c)•(p-c)-R2 =0
• Ray

– p(t) = e + td
• Intersection with implicit surface f(t) when

– f(p(t)) = 0
– (e+t(s-e)-c)•(e+t(s-e)-c)-R2 = 0
– (d•d)t2+2d• (e-c)t+(e-c) •(e-c)-R2 = 0
– t=(-d•(e-c)±sqrt((d•(e-c))2-(d•d)((e-c)•(e-c)-R2)/(d•d)

• Normal at intersection p
– n=(p-c)/R

Calculating Intersections: Pgons
• Given ray and polygon:

x = x0 + t(x1 - x0) = x0 + tΔx
y = y0 + t(y1 - y0) = y0 + tΔy
z = z0 + t(z1 - z0) = z0 + tΔz

 Plane : Ax + By + Cz + D = 0

1. What is intersection of ray and plane containing pgon?
– Substituting for x, y, z:
– A(x0 + tΔx) + B(y0 + tΔy) + C(z0 + tΔz) + D = 0
– t(AΔx + BΔy + CΔz) + (Ax0 + By0 + Cz0 + D) = 0
– t = - (Ax0 + By0 + Cz0 + D) / (AΔx + BΔy + CΔz)

2. Does ray/plane intersection point lie in polygon?
• Substitute into line equations for pgon edges: does point lie

inside all edges? (only works for convex)
• Count edge crossings of ray from point to infinity

10

Point in Polygon?
• Is P in polygon?
• Cast ray from P to

infinity
– One crossing -> inside
– Zero, Two crossings ->

outside

Point in Polygon?
• Is P in concave polygon?
• Cast ray from P to infinity

– Odd crossings -> inside
– Even crossings -> outside

11

What happens?

Ray-Triangle Intersection
• Intersection of ray with barycentric triangle

– e+td = a+β(b-a)+γ(c-a)
– In triangle if β > 0, γ > 0, β+ γ < 1

boolean raytri (ray r, vector a, vector b, vector c,
interval [t0,t1]) {
compute t
if ((t < t0) or (t > t1))

 return (false)
compute γ
if ((γ < 0) or (γ > 1))

 return (false)
compute β
if ((β < 0) or (β > 1))

 return (false)
 return true
}

12

Raytracing Characteristics
• Good

– Simple to implement
– Minimal memory required
– Easy to extend

• Bad
– Aliasing
– Computationally intensive

• Intersections expensive (75-90% of rendering time)
• Lots of rays

Basic Concepts
• Terms

– Illumination: calculating light intensity at a point
(object space; equation) based loosely on physical laws

– Shading: algorithm for calculating intensities at pixels
(image space; algorithm)

• Objects
– Light sources: light-emitting
– Other objects: light-reflecting

• Light sources
– Point (special case: at infinity)
– distributed

13

Ambient light

Ka = reflection coefficient
I = kaIa = reflected intensity

 Ia = intensity of ambient light

Lambert’s Law
• Intensity of reflected light related to orientation

14

Lambert’s Law
• Specifically: the radiant energy from any small

surface area dA in any direction θ relative to the
surface normal is proportional to cos θ

Diffuse Reflection

Idiff = kdIlcos θ
 = kdIl (N•L)

15

Combined Model
Itotal = Iamb + Idiff

 = kaIa + kdIl (N•L)
Adding color:

IR = kaIaROdR + kdIlROdR (N•L)
IG = kaIaGOdG + kdIlGOdG (N•L)
IB = kaIaBOdB + kdIlBOdB (N•L)

For any wavelength λ:
I λ = kaIa λ Od λ + kdIl λ Od λ (N•L)

Adding Attenuation
• Attenuation of light source due to distance

– Fatt = 1/dL2 or min(1/(C1+C2dL+C3dL2),1)
• where dL is distance to the light

– Behavior of 1/dL2

• Far from light: little change
• Near light: much change
• Accurate, but looks wrong

• Atmospheric attenuation of color
– Iλ’=SOIλ +(1-SO)Idcλ

• where Idcλ is the depth cue color
• SO=Sb+(ZO-Zb)(Sf-Sb)/(Zf-Zb)

16

Specular Reflection

For specific wavelength λ
Ispecλ = ksλIλcosnφ

 = ksλIλ(R•V)n

 Not dependent on surface color → white highlights

Specular Reflection

For specific wavelength λ
Ispecλ = ksλIλ Osλ cosnφ

 = ksλIλ Osλ (R•V)n

 Dependent on surface color → colored highlights

17

Specular Reflection

• Dull highlights
– Gradual falloff
– Approximated by

cos φ

Specular Reflection

• Glossy highlights
– Steeper falloff
– Approximated by

cos8φ

18

Specular Reflection

• Shiny highlights
– Steep falloff
– Approximated by

cos128φ

Calculating the Reflection Vector
• Specular:

Ispecλ = ksλIλ Osλ (R•V)n

• Have L, want R

19

Calculating the Reflection Vector
• Mirror L about N

R = N cosθ +S
 = 2N cosθ -L
 = 2N(N•L)-L

• Ispecλ = ksλIλ Osλ (R•V)n

 = ksλIλ Osλ (2N(N•L)-L •V)n

Where N, L are unit length
Projection of L on N is N cos θ
S = N cos θ -L

Calculating the Reflection Vector
• Alternatively: use

halfway vector H
– H = (L+V)/|L+V|

• Maximum highlight
when H=N (because
then R=V)
– Ispec = ksIl(H•N)n

– H•N=cos α

• Two methods can give
different results α≠ φ

20

Combined Model
Itotal = Iamb + Idiff + Ispec

 = kaIa + kdIl (N•L) + ksIl (N•H)n

Multiple lights:
 = kaIa + ∑ (kdIli (N•L) + ksIli (N•H)n)
By wavelength (white highlights):
 = kaIa Od λ + ∑ (kdIli (N•L) Od λ + ksIli (N•H)n)
By wavelength (colored highlights):
 = kaIa Od λ + ∑ (kdIli (N•L) Od λ + ksIli (N•H)n Osλ)
By wavelength (more metallic highlights):
 = kaIa Od λ + ∑ (kdIli (N•L) Od λ + ks(λ,θ)Ili (N•H)n Osλ)

Basic Raytracing Program
{

for each pixel (x, y) do {
compute viewing ray
if (ray hit an object with t>0) then {
compute n
evaluate shading model
set pixel to that color
}

else
set pixel color to background color

}

21

Effects
• Visibility
• Illumination
• Shadow

Shadow Algorithm
Function raycolor(ray e+td, real t0, real t1)
{

hit-record rec, srec
if (scene->hit(e+td, t0, t1) then {

p = e+(rec.t)d
color c = rec.ka*Ia
if (not scene->hit(p+sl, ε, ∞, srec) then {

vector h = unit(unit(l)+unit(-d))
c = c + rec.kd*I*max(0,rec.n•l) +
rec.ks*I(rec.n•h)rec.p

}
return c
}

else
return background color

}

22

Effects
• Reflection

• Calculate ray direction
– r = d-2(d•n)n
– d points from eye to surface

• Trace ray
– m = raycolor(p+sr, ε,∞)

• Composite
– c = c + kmm

Effects
• Refraction

23

How many
bounces?

