CMSC 435 Introductory Computer Graphics

Penny Rheingans UMBC

Announcements

Rendering Process

- Two basic stages
 - sampling
 - Reconstruction
- Sampling in rasterization
 - Ray locations in ray tracing
 - Evaluation points in barycentric formulation
 - Implicit evaluation locations in scanline rasterization
- Assuming discrete sampling

What went wrong?

Aliasing

- Visual artifacts
 - jagged lines and edges
 - high frequencies appearing as low
 - small objects missed
 - texture distortions
 - strobing and popping
 - backward movement

Sampling Theory

- Shannon's sampling theory (1D):
 - A band limited signal f(t) with cut off frequency w_F may be perfectly reconstructed from its samples f(nT₀) if $2\pi/T_0 \ge 2w_F$
 - $w_F == Nyquist limit$
- Alternatively:
 - a signal can be reconstructed exactly from samples only if the highest frequency is less than half the sampling rate

$$(a*b)[i] = \sum_{j} a[j][b[i-j]]$$

- Finite support: some r such that a[j]=0 whenever |j| >= r
- Alternatively, convolution as sum of shifted filters – Filter gives weights

Example: Moving average as convolution with box

Convolution with continuous filters

$$(f * g)(x) = \int_{-\infty}^{+\infty} f(t)g(x-t)dt$$

• Area under curve of product after shifting

Example: convolution of 2 boxes

 $f(x) = \begin{cases} 1: -1/2 \le x \le 1/2 \\ 0: otherwise \end{cases}$

Fourier Transforms

- Basis Functions
 - orthogonal: projection of any onto another is 0
 - complex exponentials as foundations for Fourier Series
- Concepts
 - image space
 - frequency space

Fourier Transforms (cont.)

• Fourier Transform

$$X(\omega) = \frac{1}{\sqrt{2\pi}} \int x(t) e^{-j\omega t} dt$$

• Inverse Fourier Transform

$$x(t) = \frac{1}{\sqrt{2\pi}} \int X(\omega) e^{j\omega t} d\omega$$

Properties of Filters

- Interpolating vs approximating
 - Through sample points vs near
- Degree of continuity
 - Degree of differentiability
- Separable
 - Different dimensions do not interact

Sampling Schemes

- Regular supersampling
- Jittered supersampling
- Adaptive supersampling
- Stochastic sampling

Reconstruction

- Two basic stages
 - Sampling : continuous to discrete
 - Reconstruction : discrete to continuous
- Tasks of reconstruction filter
 - remove extraneous replicas of signal spectrum
 - pass the original signal base unchanged
- 2D version

$$(a * b)[i, j] = \sum_{i'} \sum_{j'} a[i', j']b[i - i', j - j']$$

Reconstruction Artifacts

- Aliasing
 - prealiasing: from undersampling
 - postaliasing: from poor reconstruction
- Blurring
- Ringing
- Sample-frequency ripple
- Anisotropic effects

Preventing Aliasing

- Sufficient sampling rate/scheme
 - Determined by Nyquist limit
 - Non-regular sampling as substitute
- Appropriate reconstruction filter
 - Good lowpass filter
 - Reduce leakage of high frequencies

Other Stochastic Effects

- Motion blurring
- Depth of Field
- Gloss

