## Homework2

All questions carry equal marks - 10 marks each

|  | S |  | e 6 |  |  | PREMISE |  |  | CONCLUSION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $p$ | q | $r$ | $\sim^{\sim}$ | $\sim r$ | $p \wedge q$ | $p \wedge r->\sim r$ | $p v^{\sim} q$ | $\sim_{\text {q }}{ }^{\text {- }}$ p | $\sim_{r}$ |
| T | T | T | F | F | T | F | T | T |  |
| T | T | F | F | T | T | T | T | T | T |
| T | F | T | T | F | F | T | T | T | F |
| T | F | F | T | T | F | T | T | T | T |
| F | T | T | F | F | F | T | F | T |  |
| F | T | F | F | T | F | T | F | T |  |
| F | F | T | T | F | F | T | T | F |  |
| F | F | F | T | T | F | T | T | F |  |

This row shows that it is possible for an argument of this form to have a true premise but a false conclusion. Thus this argument form is invalid.

| Exercise Set 2.3, \#10, page 62 |  |  |  | PREMISE |  | CONCLUSION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | , |  |
| p | q | $r$ | pVq |  | q->r | $p \vee q->r$ |
| T | T | T | T | T | T | T |
| T | T | F | T | F | F |  |
| T | F | T | T | T | T | T |
| T | F | F | T | F | T |  |
| F | T | T | T | T | T | T |
| F | T | F | T | T | F |  |
| F | F | T | F | T | T |  |
| F | F | F | F | T | T |  |

We have true conclusions for all true premises. Hence, it's a valid argument.


The highlighted row shows that it is possible for an argument of this form to have a true premise but a false conclusion. Thus this argument form is invalid.

Exercise Set 2.3, \#28, page 62
Let $\mathrm{p}=$ 'There are as many rational numbers as irrational numbers'
$q=$ 'set of all irrational numbers is infinite'
$p->q$
$q=T$
Hence, $p=T$
Invalid: Converse Error

Exercise Set 2.3, \#29, page 62
Let $p=$ 'At least one of these two numbers is divisible by 6 '
$q=$ 'Product of these two numbers is divisible by $6^{\prime}$
$p->q$
$\sim p$
Hence, ~ $q$ Invalid: Inverse error
$p->q$
$q=T$

Hence, $p=T$

Invalid: Converse Error

Exercise Set 2.3, \#38bc, page 63
b). Suppose C is a knight. Hence, C tells truth and C \& D are knave. Hence, C is both Knight and knave >Contradiction. Hence, C is a knave and always lies. Therefore, D is a Knight.
c). Suppose E is a knight. Therefore, he always tells the truth. Hence, F is knave. Therefore, F lies. Hence, $E$ is not a knave. Either of the two is knight and the other is a knave.

Exercise Set 2.3, \#40, page 63
Muscles killed Sharky.

Exercise Set 2.3, \#42, page 63
1). $q->r$
$\sim_{r}$

Hence, ~ ${ }^{q}$
2). $\sim q->u \wedge s$
${ }^{\sim} q$

Hence, u $\wedge$ s
3). $u \wedge s$

Hence, s
4). $p \vee q$
${ }^{\sim} \mathrm{q}$
by premise
by premise
by Modes Tollens
by premise
from (1)
by Modus Ponens
from (2)

Specialization
premise
from (1) Hence, $p$

Elimination

| 5).p | from (4) |
| :---: | :---: |
| S | from(3) |
| $p \wedge s$ | Conjunction |
| 6). $\mathrm{p} \wedge \mathrm{s}->\mathrm{t}$ | premise |
| $\mathrm{p} \wedge \mathrm{s}$ | from (5) |
| t | Modus Ponens |
| Exercise Set 2.3, \#44, page 63 |  |
| 1). $\sim \sim \vee{ }^{\text {q }}$ | by premise |
| $\sim_{S}$ | by premise |
| Hence, ${ }^{\sim} \mathrm{q}$ | by elimination |
| 2). $p->q$ | by premise |
| $\sim_{\sim} \mathrm{q}$ | from(1) |
| Hence, $\sim$ p | by Modes Tollens |
| 3). $\mathrm{r} V \mathrm{~s}$ | by premise |
| ~s; Hence, | by elimination |
| 4). $\sim_{s->} \sim_{t}$ | by premise |
| $\sim_{S}$ | by premise |
| Hence, ${ }^{\text {ct }}$ | by Modus Ponens |
| 5). $\sim p$ | from (2) |
| $r$ | from (3) |
| Hence, $\sim p \wedge r$ | by Conjunction |
| 6). $\sim p \wedge r->u$ | by premise |
| $\sim p \wedge r$ | from (5) |
| Hence, u | by Modus Ponens |


| 7). $\mathrm{w} \vee \mathrm{t}$ | by premise |
| :---: | :--- |
| $\sim \mathrm{t}$ | from (4) |
| Hence, w | by Elimination |
| 8). u | from (6) |
| w | from (7) |
| Hence, $\mathrm{u} \wedge \mathrm{w}$ | by Conjunction |

