
Comments on Duprat and Muller’s Branching CORDIC
Paper [1]

Dhananjay S. Phatak
Electrical Engineering Department

State University of New York, Binghamton, NY 13902-6000

(IEEE Transactions on Computers, vol 47, No. 9, Sep. 1998, pp 1037–1040)

ABSTRACT
In [1], Duprat and Muller introduced the ingenious “Branching CORDIC” algorithm. It enables a

fast implementation of CORDIC algorithm using signed digits and requires a constant normalization
factor. This correspondence corrects some errors in the original paper. All the page numbers quoted are
from [1].

Index Terms: Branching CORDIC, Constant Scale Factor, Signed–Digit representation, Corrections,
Errata.



The CIRCULAR ROTATION mode of CORDIC algorithm is used to evaluate
Sine/Cosine/Tangent. It is based on the iteration [1]

Xi+1 = Xi �si Yi2
�i (1)

Yi+1 = Yi +si Xi2
�i (2)

Zi+1 = Zi �si arctan2�i where si 2 f�1;0;+1g (3)

To compute sinθ0 and cosθ0, upton bits of accuracy,m= (n+2) iterations of the above cross-coupled
equations are carried out with the the initial conditions

X0 =
1
K

(4)
Y0 = 0 (5)
Z0 = θ0 (6)
At each (sayith) step,si; i = 0; � � � ;m�1, are selected so that

Zi+1 �! 0 or (7)
m�1

∑
i=0

arctan(si 2�i) �! θ0 (8)

Correspondingly, the value ofK is

K =
m�1

∏
i=0

Ki =
m�1

∏
i=0

q
1+(si2�i)2 (9)

In general, the coefficientssi at each step of the CORDIC iteration can take any of the three values
f�1, 0, +1g. If si = 0 is allowed, then the scaling factorK is not a constant, but depends on the actual
sequence ofsi values. On the other hand, ifsi can be restricted to�1, thenK is a constant (since the
number of iterationsm that are to be executed for a given precision are known ahead of time). For
this method to work, the initial angle must satisfy

jZ0j �
∞

∑
k=0

arctan2�k = 1:74328662 (10)

This range covers all angles of practical interest sinceπ
2 � 1:5708< ∑∞

k=0 arctan2�k.

With the introduction of (Redundant) Signed-Digit representations [2, 3, 4] the addition becomes
carry-free, (i.e., the addition takes a small fixed amount of time, irrespective of the wordlength) thus
offering a potential for significant speedup. To fully exploit the speed advantage gained by using
signed digits, the sign detection of the residual angle also must be done in a constant (and small) time
delay (note that the next action depends on whether the current residual angle is positive or negative).
This in turn implies that only a fixed number of leading digits can be looked at to determine the sign
of the residual angle. In most methods (for example, those in [1, 5]) a window of 3 (leading) digits
turns out to be sufficient to determine the sign. At each iteration, the window shifts right by one digit
position. If at least one of the digits in the window of interest is non-zero, the sign of the residual
angle can be determined to be�1. If the sign is +1, the next elementary angle (arctan2�i at step
i) should be subtracted, if the sign is�1, the next elementary angle should be added. The problem
occurs when all the digits in the window of interest are zero or in other words the residual angle has
many leading zeroes, so that just by looking at the window of 3 (leading) digits, it is not possible to
tell whether its sign is +1 or�1. Ideally, in this case, one should selectsi = 0 and neither add nor
subtract the elemental angle for that step. However, the coefficientssi must be restricted tof�1;+1g
to render the scaling factorK to be a constant.

Duprat and Muller’s Branching CORDIC algorithm [1] circumvents this difficulty by initiating
two separate CORDIC rotations in parallel: one assumingsi =+1 and one assumingsi =�1. It might
appear that this branching could in turn lead to further branchings down the line. The ingenuity of their

2



method essentially lies in realizing that further branchings are not possible and that a branching either
terminates eventually, or if it does not terminate till the end, thenboth the modules have the correct
result (within the tolerance specified). In summary, their method employs two separate modules to
implement the iteration in the zeroing part (i.e., equation (3)). Whenever the sign of the residual
angle canZi can be unambiguously determined, both modules do identical operations. Otherwise the
algorithm enters a branching.

We have recently shown that this algorithm can be enhanced to performtwo rotationsin a single
step (i.e., use two elementary angles in each module at every step) [6]. In our “Double Step Branch-
ing CORDIC” algorithm, every module performs distinct operations in each step (irrespective of
whether a branching is on-going), leading to better hardware utilization. The double stepping method
could also lead to speed enhancement (relative to Duprat and Muller’s original Branching CORDIC)
depending on the actual VLSI implementation. During the analytical proof and independent experi-
mental verification (via extensive simulations) of the Double Step Branching CORDIC method, some
errors were found in Duprat and Muller’s original paper [1]. This correspondence corrects those
errors.

In [1] the two modules used to implement the “zeroing iteration” (equation (3)) are called “+”

and “�” modules. Variables (input and output residual angles, etc.) associated with the two modules

are designated by superscripts “+” and “�” respectively. In the notation of their paper, at stepi, the

modules generate

Module + :z+i+1 = z+i �d+i arctan2�i where d+i =�1 (11)

Module� : z�i+1 = z�i �d�i arctan2�i where d�i =�1 (12)

Prior to stepi, elementary anglesfarctan2�0; : : :arctan2�(i�1)g have already been used, and at stepi,

the modules perform appropriate operation (addition or subtraction) using the next elementary angle

(arctan2�i) to further reduce the magnitude of the next residuesz+i+1 andz�i+1. Both modules then

detect the sign of the residual anglesz+i+1 andz�i+1 in parallel, by looking at a window of 3 digits.

The output of the sign detection operation performed on a residual anglezi is denoted by “eval(zi)”

in their paper. eval(zi) can assume any of the 3 valuesf�1;0;+1g. When all the 3 digits in the

window of interest are 0, the “eval” function returns a 0, otherwise eval returns�1. If eval(zi)=1,

thenzi > 0. Similarly, if eval(zi)= �1, thenzi < 0. If eval(zi)=0, there is insufficient information to

determine whetherzi is positive or negative and their algorithm enters a “branching”.

When the Branching CORDIC algorithm described in [1] is followed, it turns out that at the

beginning of stepi, (i.e., having used elementary angles upto and including arctan2�(i�1) and prior to

using the elementary angle arctan2�i), the residuesz+i andz�i satisfy both of the following bounds:

the“tighter” bound : at least one of jz+i j and jz�i j is � ∑∞
k=i arctan2�k (13)

the“coarser” bound : both jz+i j and jz�i j are � 3 �2�(i�1) (14)

The two bounds above are labeled “tighter” and “coarser” in this correspondence because
∞

∑
k=i

arctan2�k
< 2�(i�1)

< 3 �2�(i�1) (15)

The statement of Theorem 1 on page 171 in [1] states the above“tighter” bound and“coarser”

bound which the residual angles must satisfy at each step.

3



It can be verified that the“coarser” bound implies that 3 digits of weight [2�(i�3)
;2�(i�2)

;2�(i�1)]

must be examined to evaluate the sign ofzi , prior to using arctan2�i .

However, in the body of the proof of Theorem 1 in [1] and in the following section (in particular in

Table III on page 173 in [1]), the text suggests that a window of 3 digits spanning positions of weight

[2�(i�1);2�i ;2�(i+1)] is to be used when determining the sign ofzi, which is incorrect. The correct

and incorrect windows are pictorially illustrated in Figure 1.

�� �� ��

Weight of position in
powers of radix 2

Window of 3 digits for sign evaluation of residual angleZi

that is implied by Table III on page 173 in [1] (incorrect)
at stepi�1, prior to using arctan2�i in the next step

Correct window for sign evaluation ofZi
at stepi�1, prior to using arctan2�i in the next step

�(i�2)

�(i�1)

�i �(i+2)

�(i+1)
�(i�3)

Figure 1: The window of 3 leading digits implied in [1] which is used to evaluate sign of residual

anglezi prior to using arctan2�i in the next step (incorrect). The correct window position is shifted

by two positions to the left as shown.

That the correct window spans digit positions [2�(i�3);2�(i�2);2�(i�1)] has been verified through

analytical derivations as well as via simulations. Duprat and Muller’s algorithm was simulated with

4 different windows (for sign evaluation prior to using arctan2�i)

(W1) [2�(i�4)
;2�(i�3)

;2�(i�2)]

(W2) [2�(i�3)
;2�(i�2)

;2�(i�1)]

(W3) [2�(i�2);2�(i�1);2�i ]

(W4) [2�(i�1);2�i ;2�(i+1)]

Only window (W2) yields correct results as required by the“coarser” bound . All other win-

dow positions lead to residual angles that violate the“coarser” bound and hence to incorrect

results.

Given the correct window above,

if eval(zi) = 0 then jzi j< 2�(i�1) since all leading digits up to position 2�(i�1) are 0 (16)

The original paper [1] erroneously assumes that

if eval(zi) = 0 then jzi j< 2�(i+1)

because of the incorrect window position. Consequently, some parts of the original proof need to be

modified.

4



In particular, the proof of the case labeled

“ 2) If s+ = 0 then (the cases� = 0 is symmetrical)� � � ”

(on page 172 in [1] near the bottom of the first column) and some of the following material needs to

be modified as indicated below.

Without loss of generality, assume that the current branching starts at stepi, i.e.,

eval(zi) = 0, so that the modules perform

Module + :z+i+1 = zi �arctan2�i (17)

Module� : z�i+1 = zi +arctan2�i so that (18)

z�i+1�z+i+1 = 2arctan2�i (19)

If the branching continues at stepi+1 then

eval(z+i+1) =�1 and eval(z�i+1) = +1 which implies thatz+i+1 < 0 and z�i+1 > 0, or (20)

jz�i+1j+ jz
+
i+1j= 2arctan2�i (21)

The last equation in turn implies that at least one ofjz�i+1j andjz+i+1j is less than or equal to arctan2�i �

∑∞
k=i+1arctan2�k, or in other words, at least one ofjz�i+1j andjz+i+1j satisfies the“tighter” bound as

required. From this step onwards, if the branching continues till stepp then the “+” module keeps

subtracting while the “�” module keeps adding the subsequent angles. As a result, it is easy to show

that [6] whichever module returns a residue sign value different from that of the previous residue has

the correct output, i.e., it’s output satisfies the“tighter” bound .

The problem occurs when the branching which started at stepi stops at stepi+1 with one of the

modules returning a “0” sign. For example, if eval(z+i+1) = 0, thenz+i+1 is deemed to be the correct

output. Hence we must show thatz+i+1 satisfies the“tighter” bound .

Let LZ(y) denote the leading zeroes in a signed digit numbery. Then

eval(zi) = 0 implies LZ(zi) = i�1 and vice versa. (22)

With this notation, we use the following result:

Lemma 1 : If eval(zi) = 0, i.e., LZ(zi) = i�1 andz+i+1 andz�i+1 are generated as per equations (17)

and (18), then

(i) if eval(z+i+1) = 0, i.e., ifLZ(z+i+1) = i thenzi > 0

(ii) if eval(z�i+1) = 0, i.e., ifLZ(z�i+1) = i thenzi < 0

Proof : We show the proof of part (i) only since the other part can be proved identically. Note that

arctan2�i has zeroes in all digit positions up to 2�(i�1) for all values ofi. The leading “1” of then bit

number that is closest to arctan2�i is in position 2�(i+1) for i < n
3 and in position 2�i for i � n

3 where

n is the target precision. Correspondingly the digits of arctan2�i in positions [2�i ;2�(i+1);2�(i+2)]

are [0 1 1] or [1 0 0], respectively. We illustrate the proof assuming only the former (the other case

can be proved identically). For this case the digit patterns for residuezi , arctan2�i and the next

residuez+i+1 are as shown in Figure 2.

5



digit positions of interest! 2�(i�2) 2�(i�1) 2�i 2�(i+1) 2�(i+2)

digit pattern ofzi �! 0 0 di di+1 di+2

dk 2 f�1;0;+1g;k� i

leading digits of(�arctan2�i) �! 0 �1 �1

leading digits ofz+i+1 �! 0 0 si = 0 si+1 si+2

sk 2 f�1;0;+1g;k� i+1 | {z }

window used to determine eval(z+i+1)

Figure 2: Illustration of digit patterns forzi , arctan2�i and the next residue
z+i+1 = zi �arctan2�i .

The operands are signed digits and hence rules for adding radix-2 signed digits are used to perform

the addition (these can be found in [2], [4] and [7]). For our purpose, it suffices to know that the

sum is carried out in two steps. In the first step, an intermediate sum and an intermediate carry-out are

generated at all digit positions (in parallel). In the next step, the intermediate sum and the intermediate

carry-in (from adjacent lower significant digit position) are added to generate the final sum output.

The intermediate carry is selected depending only on the digit sums in the current and adjacent lower

significant positions in such a way that the final summation in the second step does not generate a

carry. In essence, redundancy available in the signed digit representation is exploited to stop carry

propagation.

In the above figure we need to show thatzi > 0, i.e,

(i) at least one of the digitsfdi ;di+1;di+2g is non-zero and

(ii) the first nonzero digit is a +1

which is proved as follows:

If di = 1 thenzi > 0 and the proof is complete. Ifdi = �1 then the digit sum (of the two operand

digits) at position 2�i is �1. Since the digit sum in the adjacent position 2�(i+1) is (di+1�1) � 0,

the carry from position 2�(i+1) can have only one of the two valuesf�1, 0g. Consequently, the

intermediate carry-out of position 2i must be�1. This would imply that the digit in 2�(i�1)th position

of z+i+1 would be�1, which contradicts the given condition, viz.,LZ(z+i+1) = i. Hencedi 6=�1. That

leaves the possibilitydi = 0. In this case, examine the adjacent digitdi+1. If this digit is +1, then

zi > 0 and the proof is done. Ifdi+1 =�1 (along withdi = 0) then the intermediate carry-out of digit

position 2�(i+1) must be�1 (since the digit sum at that position is�2). This implies a final sum digit

si = �1 which contradicts the conditionLZ(z+i+1) = i and consequentlydi+1 6= �1. That leaves the

possibility thatdi+1 = 0 (along withdi = 0). In this case, examinedi+2. If it is +1, then we are done.

If it is 0 or �1 then the digit sums at positions 2�(i+1) as well as 2�(i+2) are strictly negative. Hence,

the carry-out of position 2�(i+1) is �1 which implies a final sum digitsi = �1 which contradicts

the conditionLZ(z+i+1) = i and consequentlydi+2 cannot be 0 or�1. Thus, we have proved that the

leading digit ofzi must be a +1 which implies thatzi > 0, completing the proof of Lemma 1.

6



With the help of Lemma 1; the proof for the case when branching starts at stepi and stops at

stepi+1 with one of the modules returning a zero value for the evaluated sign, can be completed as

follows.

Condition (i) of Lemma 1, along with equation (17) implies that

z+i+1 = zi � arctan2�i > �arctan2�i. Since zi satisfied the“tighter” bound , it follows that

�arctan2�i < z+i+1 � ∑∞
k=i+1arctan2�k, i.e. jz+i+1j satisfies the“tighter” bound as required.

Similarly, condition (ii) of Lemma 1, along with equation (18) implies that

z�i+1 = zi + arctan2�i < arctan2�i . Since zi satisfied the“tighter” bound , it follows that

�∑∞
k=i+1arctan2�k � z�i+1 < arctan2�i , i.e. jz�i+1j satisfies the“tighter” bound as required.

This completes the corrections to the proofs in [1].

Acknowledgment
The author would like to thank Dr. Jean-Michel Muller for a quick and thorough review of this

manuscript. He corrected some errors in this correspondence and his constructive comments helped
improve the quality of this submission. The corrected version of the algorithm appears in his exhaus-
tive new book on elementary function evaluations [8] (along with all kinds of improvements on and
variations of the basic CORDIC algorithm).

References
[1] J. Duprat and J. Muller, “The CORDIC algorithm: new results for fast VLSI implementation,”IEEE Trans.

on Computers, vol. TC–42, pp. 168–178, Feb. 1993.

[2] I. Koren, Computer Arithmetic Algorithms. Prentice-Hall Inc., Englewood Cliffs, NJ, 1993.

[3] B. Parhami, “Generalized signed-digit number systems: a unifying framework for redundant number rep-
resentations,”IEEE Transactions on Computers, vol. C-39, pp. 89–98, Jan. 1990.

[4] D. S. Phatak and I. Koren, “Hybrid Signed–Digit Number Systems: A Unified Framework for Redundant
Number Representations with Bounded Carry Propagation Chains,”IEEE Trans. on Computers, Special
issue on Computer Arithmetic, vol. TC–43, pp. 880–891, Aug. 1994. (An unabridged version is available
on the web via the URL
http://www.ee.binghamton.edu/faculty/phatak).

[5] N. Takagi, T. Asada, and S. Yajima, “Redundant CORDIC methods with a constant scale factor for Sine
and Cosine computation,”IEEE Trans. on Computers, vol. 40, pp. 989–999, Sep. 1991.

[6] D. S. Phatak, “Double Step Branching CORDIC: A New Algorithm for Fast Sine and Cosine Generation,”
IEEE Transactions on Computers, vol. TC–47, pp. 587–602, May 1998.

[7] Y. Harata, Y. Nakamura, H. Nagase, M. Takigawa, and N. Takagi, “A high-Speed multiplier using a redun-
dant binary adder tree,”IEEE Journal of Solid-State Circuits, vol. SC-22, pp. 28–34, Feb. 1987.

[8] J. Muller, Elementary Functions, Algorithms and Implementation. Birkhauser Publishers, Boston, 1997.

7


