

APPROVAL SHEET

Title of Thesis: Interactive Rendering of Heterogeneous Translucent Objects

Name of Candidate: Jeremy Michael Shopf

Master of Science, 2007

Thesis and Abstract Approved:

Dr. Marc Olano

Assistant Professor

Department of Computer Science

and Electrical Engineering

Date Approved:

Jeremy Shopf
University of Maryland, Baltimore County Voice: (443) 851-1278
Department of Computer Science and Electrical Engineering Fax: (410) 455-3969
1000 Hilltop Circle E-mail: jshopf1@cs.umbc.edu
Baltimore, MD 21250 Website: http://userpages.umbc.edu/˜jshopf1/

Updated April 4th, 2007

RESEARCH INTERESTS

Computer Graphics and Visualization. Primary interests in interactive computer graphics include global
illumination, appearance modeling and volumetric rendering. Application areas of interest are surgical
simulation and games.

EDUCATION

Sept 2004 - Dec 2006 M.S. in Computer Science. University of Maryland at Baltimore County.
My research is in precomputing light transport due to subsurface scattering in materials of
varying composition.
Advisor: Dr. Marc Olano.

May 2004 B.S. Computer Science. Millersville University.
Advisor: Dr. Roger Webster.

EMPLOYMENT HISTORY

Jan 2007-Present Software Engineer
3D Application Research Group, AMD, Marlboro, MA.
Member of the Demo team, creating bleeding-edge demo applications showcasing
graphics algorithms for marketing and developer relations.

Jun 2006-Aug 2006 Research Intern
3D Application Research Group, ATI Research, Inc., Marlboro, MA.
Researching and implementing visual effects for next-generation graphics hardware
using DirectX10.

Jan 2006-June 2006 Research Assistantship
UMBC VANGOGH Lab, Dr. Marc Olano
Establishing a framework for procedurally defining haptic texture for virtual objects.

May 2005-Aug 2005 Research Assistantship
National Capital Area Simulation Center, Silver Spring, MD
Researching real-time graphics methods for surgical simulation.This includes
skin rendering and GPU-accelerated bleeding.

May 2004-Aug 2004 (Full-time) Internship in Virtual Collaborative Environments
Aug 2004-Jan 2005 (Part-time) National Capital Area Simulation Center, Silver Spring, MD.

TOUCH project

Aug 1999-May 2001 Web Developer
Expanets, Lancaster, PA.
Worked with large development teams to develop many high profile E-commerce sites in
ASP.

TEACHING EXPERIENCE

Fall 2006 Teaching Assistant, CMSC435, “Introduction to Computer Graphics,” UMBC
Spring 2006 Teaching Assistant, CMSC411, “Computer Architecture,” UMBC
Fall 2005 Teaching Assistant, CMSC421, “Operating Systems,” UMBC
Spring 2005 Teaching Assistant, CMSC202, “C++ Programming,” UMBC
Fall 2004 Teaching Assistant, CMSC201, ”C Programming,” UMBC

PROJECTS

Rendering Real-time Hetereogeneous Translucent Materials (Masters Thesis)
My thesis entails rendering materials that exhibit translucency and volumetric texture variations (such as skin, marble,
etc.). By estimating the physical behavior of light in a participating medium while taking into account the salient
perceptual features, perceptually acceptable images are generated. Objects rendered using my method are modeled
as a polygonal mesh with a scalar volume describing the spatial density of the material. The interactive performance
achieved coupled with the polygonal representation makes this algorithm wellsuited for use in real-time computer
graphics applications such as video games.

Acquisition and Relighting of Artistic Shading
Reconstructed the lighting environment of the scene by approximating the geometry of objects in the painting using
shape-from-shading methods. Using the approximation to the geometry and the estimation of the lighting, it is possible
to alter the lighting environment and also glean the artists interpretation of the objects appearance as a one dimensional
function of the angle between the light and the surface normal. Upon obtaining this function, it is possible to reassign
this function to objects in other paintings, change the shading of an object in the original painting, or change the
lighting environment in a painting by reshading the objects.

Particle Effect Engine Utilizing Geometry Shaders
Developed a particle effect engine for ATI Research’s Sushi graphics engine which demonstrates the use of geome-
try shaders and new stream-out functionality for Microsoft DirectX10. Designed probabilistic algorithms for particle
physics behavior. This engine will be utilized in demo applications released as a part of ATI’s next generation hard-
ware launch.

GPU-Accelerated Volume Raycaster
Implemented a single-pass algorithm in GLSL using Pixel Shader 3 on NVIDIA 6800 Ultra hardware. The raycaster
included a graphical transfer function editor, interactive animation of time-varying data using a playback loop and
time slider GUI and the use of non-photorealistic rendering techniques to provide spatial cues.

Efficient Collision Detection and Tissue Deformation in Surgical Simulation
I Developed a stable and efficient method for deforming closed-surface polygonal objects as part of an undergraduate
independent study. Surface deformation was calculated based on geodesic distance from actively deformed surface
vertex instead of costly/unstable mass-spring models. This research was showcased in Medicine Meets Virtual Reality
poster “Using an Approximation to the Euclidean Skeleton for Faster Collision Detection and Tissue Deformations in
Surgical Simulators”.

TOUCH: Virtual Collaborative Environment for Trauma Training
The main goal of this project was porting the TOUCH project (5̃0,000 lines of code) from Linux to Windows. I
implemented an I/O library for the Ascension Flock of Birds magnetic tracker. Porting involved intensive debug-
ging of multi-threaded applications. I wrote a time-trial application to compare user success with various locomotion
paradigm. Additionally, I added stereo viewing of the virtual environment for a head mounted display unit.

Advanced Lighting Models
Implemented Banks and Cook-Torrance anisotropic lighting models in GLSL.

Skin Rendering
I implemented real-time simulation of subsurface scattering in skin using GLSL. This was achieve using a two-pass
algorithm that precomputes lighting of surface, renders the surface to texture and applies blur to estimate light diffu-
sion in skin.

Visualization of Hurricane Katrina for UMBC Physics Department
Used ray-casting techniques to display relationships of weather data over time. The application interactively animated
large weather data volumes. In addition, I implemented wind vector visualization using line integral convolution.

Procedural Haptic Textures
Developed a framework that allows users to define the haptic properties of a surface by writing a C++ procedure.
Procedurally definining haptic texture allows dynamic control of the haptic environment through shader parameters.

Realistic bleeding using GPU-based methods
Investigated the application of fluid flow algorithms to the simulation of surgical bleeding. This was part of research
assistantship at National Capital Area Simulation Center.

Peer-to-Peer Distributed File System with Digital Rights Management
Written in JAVA using the JXTA P2P API. I chose a structured P2P approach with peers transparently negotiating file
system responsibilities.

PUBLICATIONS

Jeremy Shopf, Marc Olano, “Procedural Haptic Texture,” UIST 2006. Montreux, Switzerland.

Roger Webster, R. Haluck, R. Shenk, M. Harris, J. Blumenstock, J. Gerber, C. Billman, A. Benson, “Using an Ap-
proximation to the Euclidean Skeleton for Faster Collision Detection and Tissue Deformations in Surgical Simulator”,
Poster Presentation and Proceedings of the Annual Medicine Meets Virtual Reality Conference, (MMVR ’2005), Long
Beach, California, January 24-29, 2005, pps. 596-598. Name omitted from authors list by error, contact Roger Web-
ster for clarification.

AWARDS

“Best M.S. Research”, for “Procedural Haptic Texture”. UMBC CSEE Research Review 2006.

3rd place. Greater Baltimore Technology Council MoshPit competition. May 2006. “StreetSmart Traffic” team de-
veloped a business plan (including cost and sales projections, business model, etc.) for wifi-enabled GPS devices that
collect and utilize traffic information via vehicle-based ad-hoc networking methods.

PRESENTATIONS

Jeremy Shopf, Procedural Tools for Next and Current Generation Game Platforms , Game Developers Conference,
San Francisco, CA, 2007.

Jeremy Shopf, Procedural Haptic Texture , UMBC CSEE Research Review, 2006.

AFFILIATIONS

Association for Computing Machinery (ACM).

UMBC Visualization, Animation, Non-Photorealistic Graphics, Object-Modeling and Graphics Hardware (VAN-
GOGH) Lab.

Abstract

Subsurface scattering is a subtle and often overlooked phenomena responsible

for the translucent effects seen in many materials due to the interaction of light

with the medium. We describe an algorithm for approximating the appearance of

translucent objects with heterogeneous material properties. More specifically, object

materials that exhibit translucency and volumetric texture variations. By estimating

the physical behavior of light in a participating medium while taking into account the

salient perceptual features, we generate perceptually acceptable images. An analysis

in terms of performance and rendered images is also performed. Objects rendered

using our method are modeled as a polygonal mesh with a scalar volume describing

the spatial density of the material. The interactive performance achieved coupled

with the polygonal representation makes this algorithm well-suited for use in real-

time computer graphics applications such as video games.

Interactive Rendering of Heterogeneous

Translucent Objects

by

Jeremy Shopf

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
Master of Science

2006

TABLE OF CONTENTS

LIST OF FIGURES . iv

Chapter 1 OVERVIEW . 1

Chapter 2 BACKGROUND . 4

2.1 Subsurface Scattering . 4

2.2 Participating Media . 5

2.2.1 Light Transport Properties . 5

2.2.2 Light Scattering in Participating Media 5

2.2.3 The Phase Function . 7

2.2.4 Volume Rendering . 8

2.2.5 Hardware-Accelerated Volume Rendering 11

Chapter 3 PREVIOUS WORK . 15

3.1 Subsurface Scattering . 15

3.1.1 Interactive Subsurface Scattering Techniques 16

3.2 Accelerated Heterogeneous Subsurface Scattering Techniques 20

3.2.1 Appearance-driven methods 21

Chapter 4 APPROACH . 23

ii

4.1 Discussion of Goals . 23

4.1.1 Salient Translucent Features 23

4.2 Overview of Method . 24

4.3 Heterogeneous Translucent Shadow Maps 24

4.3.1 Rendering . 26

4.3.2 Evaluating Material Density 27

4.3.3 Approximating Chromatic Absorption 28

4.3.4 Approximating Phase . 30

4.3.5 Putting It All Together . 30

Chapter 5 RESULTS . 34

5.1 Discussion . 34

5.2 Performance . 38

5.3 Comparison . 40

5.4 Limitations . 41

Chapter 6 CONCLUSION . 43

iii

LIST OF FIGURES

1.1 Top: Homogeneous translucent material (Milk) Bottom: Heteroge-

neous translucent materials (Mineral) 2

2.1 Left: BRDF Right: BSSRDF (based on [14]) 4

2.2 Illustration of vectors involved with ray casting computation (from [16]) 9

2.3 Left: Volume in original orientation Right: Rotated orientation.

View is orthogonal to the slices (from [30]). 12

2.4 Diagram of GPU pipeline . 12

2.5 Left: Frontfacing texture coordinates Right: Backfacing texture co-

ordinates . 14

3.1 Illustration of the dipole approximation. The dipole approximation

places a positive and negative virtual light above and below the surface

to estimate subsurface scattering (from [14]). 16

3.2 Irradiance, depth and normal components of the TSM (from [5]) . . . 19

3.3 Left: the TSM stores irradiance incident on the surface. Right: Fil-

tered irradiance values are used to calculate radiance exiting at another

point . 20

4.1 Hybrid polygonal/voxel representation 25

4.2 Irradiance, texture coordinate, and normal components of HTSM.

Compare with Figure 3.2. 25

iv

4.3 Left: Side view of HTSM sampling pattern Right: HTSM sampling

pattern . 26

4.4 From Left: Projected 3D texture coordinates from the HTSM (END),

3D texture coordinates of front faces (START), DIR = END-START.

Coordinates are scaled and based to show all values. 32

4.5 The position on the surface being viewed is transformed into screenspace

and all rays are calculated from the 3D texture coordinates in the

HTSM sampling hierarchy. Ray casting is then performed to accumu-

late density in the interior of the object. 32

4.6 Photographs depicting transport color in juice and a candle. 33

5.1 Mayan head rendered with varying absorption properties 34

5.2 Oblique angle of candle wax mayan head 35

5.3 Cube rendered with different absorption properties. Note rim lighting

from scattering along surface. 35

5.4 Translucent plastic model under different lighting conditions. 36

5.5 Car rendering using varying lighting directions. Note the smooth tran-

sition between directly lit and obscured surfaces. 36

5.6 Comparison of surface radiance between homogeneous and heteroge-

neous versions of the low-poly tiger model 37

5.7 Left to Right: 1, 5, 9, 13 sample rays from the HTSM. Bottom: Close-

up of nose region. Note the gradual smoothing of the light region. . 38

v

5.8 Translucent object with an embedded cube shape, rendered with 5

sample rays. 39

5.9 Rendering frame rates for different hardware. 39

5.10 Comparison table for existing subsurface scattering algorithms. . . . 40

5.11 It appears that the back of the head is creating shadows on the ears,

but what is actually happening is that the light is being attenuated in

the space between the head and ears, as if there were material in that

space. 41

5.12 A complicated model that violates the convex object limitation of our

algorithm. Observe that the lit object suffers no perceptually unset-

tling artifacts. 42

vi

Chapter 1

OVERVIEW

A constant effort in computer graphics is to model complex processes and in-

teractions in the most efficient way possible, resulting in the best ratio of realism to

performance. Many of the difficult-to-model processes involve the simulation of light

interaction on and within objects in the scene. Complicated reflection and scatter-

ing effects produce translucency, shadowing and masking. Properties of the object’s

surface and interior typically vary across its volume and determine how the light

interacts with the material.

Subsurface scattering is the phenomena responsible for translucent materials.

When light interacts with a surface, some amount of the light is reflected and the

remaining fraction is transmitted beneath the surface. Light is then scattered and

absorbed within the object and exits the material at another location. Translucent

materials can be divided into two categories: homogeneous and heterogeneous.

Homogeneous material consists of uniform light scattering properties. This cate-

gory includes milk, wax, plastic, and rubber. Examples of heterogeneous translucent

materials are skin, minerals, marble, paper and compositions of homogeneous mate-

rial.

Previous efforts to model subsurface scattering have resulted in some trade-off

between constraints on the physical accuracy of the simulation and performance.

1

2

Fig. 1.1. Top: Homogeneous translucent material (Milk) Bottom: Heterogeneous
translucent materials (Mineral)

Several real-time algorithms for computing subsurface scattering have been described

[2, 5, 10, 19, 22]. All of these methods are restricted to homogeneous translucent

material such as wax. Full participating media simulation methods for rendering

non-homogeneous translucent materials (such as photon mapping [13]) are compu-

tationally expensive, do not produce anything close to real-time performance, but

produce stunningly accurate results. The most computationally inexpensive alter-

native to full participating media simulation techniques is the shell texture function

method described by Chen et al. [3]. This method provides an approximately 1000x

improvement in computation time over traditional photon tracing with few distin-

guishable differences in appearance. However, this method is still not interactive

and has a huge memory requirement. A few interactive techniques have attempted

to render heterogeneous translucent objects without intensive simulation techniques

3
and will be discussed in Chapter 3.

By exploiting the highly parallel nature of GPU-based (graphics processing unit)

rendering and evaluating only the perceptually significant features of subsurface light

transport, we demonstrate that objects with texture variation and subsurface scatter-

ing can be rendered at interactive frame rates with very small memory requirements.

Chapter 2

BACKGROUND

2.1 Subsurface Scattering

Traditional models for the scattering of light by a surface are described by the

BRDF (bidirectional reflectance distribution function) . Given an incident light di-

rection and a reflectance direction, the BRDF returns the fraction of light that is

reflected in the outgoing direction. The BRDF assumes that all light incident on

the surface is reflected into the hemisphere above the surface. This is acceptable for

metallic surfaces, but the majority of other types of surfaces exhibit some amount of

subsurface scattering.

Fig. 2.1. Left: BRDF Right: BSSRDF (based on [14])

4

5
2.2 Participating Media

Evaluating the accurate transport of light through a medium (such as transpar-

ent material) requires a participating media simulation. A full participating media

simulation requires an evaluation of how discrete representations of light interact with

the media. Two techniques for participating media simulations are photon mapping

[13] and Monte Carlo ray tracing. Both are extremely computationally prohibitive to

real-time applications. Understanding the computation and rendering of participat-

ing media requires a review of light transport theory. This is necessary to understand

the problem we are trying to solve.

2.2.1 Light Transport Properties

As light moves through a medium, the change in radiance it undergoes is de-

pendent on the absorption (σa) and scattering (σs) coefficients of the medium. In

representing the transport of light with a photon, σs and σa are the probability that

the photon will be scattered or absorbed, respectively. The extinction coefficient (σt)

is the amount the light is reduced through a medium, which is equal to σa + σs.

Albedo is defined as α = σs

σt
, which is the amount of light diffusely reflected . These

coefficients determine the translucent and chromatic properties of a material [26].

2.2.2 Light Scattering in Participating Media

The material properties discussed above are used to describe how light is trans-

ported through a medium. Radiance (L) along a light ray through a medium can be

changed by several factors at any location x.

First, light can be scattered out of location x in a direction other than the light

ray direction. This is referred to as out-scattering and is described by the following

equation:

6

(ω · ▽)L(x, ~ω) = σs(x)L(x, ~ω) (2.1)

Also, the reduction in radiance due to absorption by the medium is:

(ω · ▽)L(x, ~ω) = −σa(x)L(x, ~ω) (2.2)

The combination of both out-scattering and absorption describes the total loss

of radiance at one location:

(ω · ▽)L(x, ~ω) = −σt(x)L(x, ~ω), (2.3)

where σt is the probability of extinction.

In addition to loss of radiance, there will also be an addition of radiance due to

scattering from nearby locations in the medium. This is referred to as in-scattering.

The gain of radiance due to in-scattering is described by:

(ω · ▽)L(x, ~ω) = −σs(x)

∫

Ω4π

f(x, ~ω
′

, ~ω)Li(x, ~ω)d~ω, (2.4)

where the incident radiance, Li, is integrated over the sphere of incoming directions,

represented by Ω4π. f(x, ~ω
′

, ~ω) is the phase function, which describes the amount

of light that arrives from direction ~ωw and will scatter into direction ~ω. The phase

function will be described in more detail in the next section.

Another source of radiance is the emission of radiance from the medium itself

(for example, a flame or phosphorous material). This emitted radiance is denoted as

Le. Therefore, the contribution of radiance is described as:

(ω · ▽)L(x, ~ω) = σa(x)Le(x, ~ω). (2.5)

7
By adding equations 2.3, 2.4 and 2.5, the amount of change in radiance per unit

length can be calculated as:

(ω·▽)L(x, ~ω) = σa(x)Le(x, ~ω)−σt(x)L(x, ~ω)+σs(x)

∫

Ω4π

f(x, ~ω′, ω)Li(x, ~ω)d~ω′ (2.6)

Jensen integrated Equation 2.6 on both sides for a segment of length s and added

the contribution of incoming radiance from the other side of the medium to get the

volume rendering equation for participating media [13] :

L(x, ~ω) =

∫ x

x0

τ(x′, x)σa(x)Le(x, ~ω)dx
′

+

∫ x

x0

τ(x′, x)σs(x)

∫

Ω4π

f(x, ~ω′, ω)Li(x, ~ω)d~ω′dx
′

+ τ(x0, x)L(x0, ~ω),

where τ(x′, x) is the transmittance along the line segment from x′ to x,

τ(x
′

, x) = e−
R

x

x′
σt(ξ)dξ (2.7)

This equation is very complex, given that it is a five-dimensional function. For

rendering applications, this equation is usually abbreviated for performance reasons,

as discussed in the Volume Rendering section.

2.2.3 The Phase Function

The phase function defines the distribution of scattering light in the medium.

The function is unitless and must integrate to one over the sphere:

8

∫

Ω4π

f(x, ω′, ω)dω
′

= 1

Typical phase functions are parameterized by the angle θ between the incoming

ray and scattered ray. This angle is typically represented by the average cosine of θ,

g, ∈ [-1,1] , such that -1 is primarily backward scattering, 0 is isotropic (meaning out-

scattering from location x is equal for all outgoing directions ω), and 1 is primarily

forward scattering. The phase function for an isotropically scattering material is:

f(θ) = 1
4π

2.2.4 Volume Rendering

Volume rendering is a process for constructing a 2D image from a volume con-

taining a mixture of materials. In early volume rendering works, the image was

constructed by calculating the absorption of light along the ray through the material

to the eye. This simplified model of transport was described by Levoy [20]. This

model is known simply as the absorption/emission model. Using a parametric ray

equation to describe a viewing ray though the volume:

x(s) = x
′

+ s~ω

the absorption/emission model can be described as:

L(x
′

, ~ω) = τ(0, l)L(x, ~ω) +

∫ x

x
′

τ(s, l)E(x(s))ds, (2.8)

where E(x(s)) is the emission term (σa(x
′

)Le(x
′

)) from Equation 2.7. In volume

rendering applications, this term is typically calculated by using a simple surface

shading model such as Blinn-Phong. The first term in the above equation is used to

9
calculate the amount of the background color that penetrates the entire volume. The

second term calculates the amount of light from each location in the volume along

the view ray ~ω that radiates to point x
′

, accounting for attentuation through all other

locations along the ray to the eye.

Fig. 2.2. Illustration of vectors involved with ray casting computation (from [16])

A standard volume data structure consists of a 3D structured grid of volume

elements (voxels) which contain opacity values in the range of 0.0 to 1.0. These

opacity values are similar to the absorption coefficient used in the above equations.

Volumes are rendered using two categories of techniques; Direct and indirect.

Indirect methods extract information, such as isosurfaces, to be rendered using tra-

ditional computer graphics techniques, while direct methods render from the volume

itself. Indirect rendering methods are not suitable for this work so we will not discuss

them further.

Drebin et al. and Levoy concurrently provided a model for shading volumes and

approximating Equation 2.8 [6, 20]. When a ray enters a voxel the amount of light

exiting the voxel xi in that ray direction is calculated by:

10
Cout(v) = Cin(v)(1.0 − α(xi)) + c(xi) ∗ α(xi),

where c(xi) and α(xi) are the color and opacity at the sample location and v is

the viewing direction. Therefore, cumulatively applying this equation along equally

spaced steps through the volume will give you the pixel color for the final image.

Expressed as one equation:

C(v) = C(x, y) =
K

∑

k=0

[

c(x, y, zk)α(x, y, zk)
K
∏

m=k+1

(1 − α(x, y, zm)

]

Therefore, light exiting the volume towards the eye can be calculated by advanc-

ing a ray through the volume, accumulating color and opacity values until the the ray

has advanced past the boundaries of the volume. Note that in the above equation,

only the z value of the ray is increased, because a ray is cast in screen space for each

x,y value in the final image. When stated as a procedure:

while((ray has not left the volume) and

(cumulative opacity < 1.0))

{

color += (current voxel color) * (1.0 - cumulative opacity) *

current voxel opacity

cumulative opacity += current voxel opacity *

(1.0 - cumulative opacity)

advance ray by step size

}

It is important to note that the above volume rendering equation does not ac-

count for the scattering of light and also does not account for attenuation of light

through the volume when shading volume elements. While this is not physically cor-

rect, it simplifies the lighting of the volume and the compositing of the final image.

This work serves as the basis for most current direct volume rendering methods.

11
However, it is simple to add an additional term to the absorption/emission vol-

ume rendering equation to account for attenuation of the light when shading voxels.

Accounting for this attenuation when shading can also be referred to as shadowing.

L(x
′

, ~ω) = τ(0, l)L(x, ~ω) +

∫ x

x
′

τ(s, l)E(x(s))τl(s, ll)Llds, (2.9)

where ll is the distance from the current sample x(s) to the light, and ωl is the

direction to the light. τl is essentially the same as τ (Equation 2.7), except that it

is accounting for attenuation between the light and the sample instead of the sample

and the eye.

Note that this augmented absorption/emission model still does not account for

the scattering of light in the volume. This problem has been addressed by Kniss et

al. [16] and will be described in the Previous Work section.

2.2.5 Hardware-Accelerated Volume Rendering

More recent methods have worked to accelerate this volume rendering process.

Before the advent of the programmable graphics pipeline, it was advantageous to

adapt the volume rendering problem to utilize graphics texturing hardware. By ar-

ranging a series of view-aligned 2D planes with 3D texture coordinates, the 3D volume

can be sampled along the planes and composited into the image plane using simple

blend operations. Rotation of the volume is realized by rotating the 3D texture coor-

dinates assigned to the vertices of the planes in the stack (Figure 2.3). This method

was initially described by Culipp and Neumann [4] and was further advanced con-

currently by several researchers [1, 30]. Many works have been published since then,

increasing the performance and image quality possible [7, 15, 18, 21].

Rather than use a slice-based approach, other recent works have taken advantage

of the parallel nature of the GPUs (graphics processing units) in modern consumer

12

Fig. 2.3. Left: Volume in original orientation Right: Rotated orientation. View is
orthogonal to the slices (from [30]).

grade hardware to perform ray casting in real-time. Ray casting consists of sampling

a volume along a direction, starting at some origin. Typically, a ray is cast for

each pixel in a generated image in the view direction. Ray casting can be efficient

because it allows for more optimizations, such as early ray termination and empty

space skipping. Early ray termination ensures that a ray only advances through the

volume until an opacity of 1.0 is reached. Empty space skipping techniques permit

a ray to “skip over” large regions of space, reducing the number of iterations. These

techniques can not be implemented effectively using view-aligned slices.

Fig. 2.4. Diagram of GPU pipeline

13
The graphics processing unit (GPU) found in today’s commodity graphics hard-

ware provides parallel processing capabilities in the form of vertex, geometry and pixel

pipelines (Figure 2.4). Each processing stage has several parallel SIMD processors

(exact amount dependent on the hardware), dramatically increasing performance over

software processing. Each of these stages are programmable using a relatively short

procedure known as a “shader”. Vertex shaders are executed for each triangle vertex

that is streamed to the pipeline. Vertex shaders typically handle transformations,

such as transforming the lighting direction to tangent space, and the assignment of

per-vertex attributes, such as color. Geometry shaders operate per-primitive, allowing

the programmer to emit or destroy primitives and access adjacency information. The

geometry stage of the pipeline has only recently become programmable. Consumer

hardware with geometry shader capability is now available. The pixel stage, some-

times referred to as the fragment stage, calculates the resulting color of the generated

potential pixels. Pixel shaders permit the implementation of traditional rendering

algorithms, such as raytracing, to graphics hardware. There are several advantages

to using a GPU-based implementation other than just parallelization:

• Dedicated instructions for graphical tasks

• 4-float vector operations for the cost of a scalar operation

• Fast trilinear texture interpolation

• Fast memory access

We will now describe hardware raycasting, as implemented by Kruger and West-

ermann [17]. First, the dataset is stored in graphics memory using a 3D texture.

3D textures are indexed with a texture coordinate triplet (xcoord, ycoord, zcoord), where

xcoord, ycoord, zcoord ∈ [0.0, 1.0⌋. The algorithm then proceeds as follows:

14
• Pass 1 (Entry-point determination) The front facing faces of the bounding box

of the volume, with the 3D texture coordinates encoded as color, are rendered

to a texture for access in later stages. The color of each pixel in the resulting

texture contains the start position of the ray (x
′

) that will be used for raycasting,

in texture coordinate space (Figure 2.5).

• Pass 2 (Ray direction calculation) The backfacing faces of the bounding box are

rendered. Each pixel of the bounding box contains the 3D texture coordinate

of where the ray will exit (x, Figure 2.5). By accessing the texture rendered

from pass one, the 3D texture coordinate of where the ray entered (x
′

) can be

retrieved. Given both x and x
′

, the direction of the ray in texture coordinate

space can be calculated: ω = (x−x
′

)

(x−x
′)
. This resulting direction is then rendered

to texture as a color for use in the next pass.

• Pass 3 (Raycasting) Raycasting is now performed iteratively because the infor-

mation required for the parametric ray equation, x(s) = x0 +sω. By iteratively

increasing s by the stepsize ds, the volume rendering equation can be evaluated.

Fig. 2.5. Left: Frontfacing texture coordinates Right: Backfacing texture
coordinates

Chapter 3

PREVIOUS WORK

3.1 Subsurface Scattering

The first general model for subsurface scattering in graphics was presented by

Hanrahan and Krueger [1993]. The model accounted for single scattering contri-

butions to surface radiance in layered homogeneous slabs and was designed for use

in a ray tracer. Multiple scattering was calculated using Monte Carlo path tracing

techniques.

Stam introduced the diffusion approximation for multiple scattering to computer

graphics [28]. The diffusion equation was approximated using a multi-grid method

for 2D slices. This work is significant in that it provides an analytic method instead

of relying on Monte Carlo path tracing techniques.

Jensen et al. provided the first analytical model for subsurface scattering ac-

counting for both single- and multiple-scattering [14]. The dipole diffusion approxi-

mation for multiple scattering introduced in this work provides an accelerated method

for calculating subsurface scattering elements of surface lighting. The dipole diffusion

approximation is the basis for most recent subsurface scattering solutions, so we will

explore it further here.

15

16

Fig. 3.1. Illustration of the dipole approximation. The dipole approximation places a
positive and negative virtual light above and below the surface to estimate subsurface
scattering (from [14]).

The dipole diffusion approximation (Figure 3.1 and Table 3.1) relates radiance

incident at one surface location to exitance at another surface location. By integrat-

ing over the surface, one can estimate the amount of subsurface exitance at surface

position xo. While this solution provides drastic improvements over full participating

media simulations (especially in highly scattering material), it still requires expensive

integration techniques and is therefore prohibitive to interactive rendering.

Jensen and Buhler later provided a two-pass technique for rendering using the

diffusion approximation by separating the calculation of surface irradiance from the

calculation of scattering inside the material [12]. Their method offered a 100+ times

speedup in rendering time, but still was not fast enough to be used in an interactive

application.

3.1.1 Interactive Subsurface Scattering Techniques

Several techniques have been proposed for interactive rendering of homogeneous

materials using the diffusion approximation. The majority of these approaches used

17
Rd(xi, xo) = α

′

4π

[

zr(1 + σtrdr)
e−σtrdr

d3
r

+ zv(1 + σtrdv)
e−σtrdv

d3
v

]

zr = 1/σ
′

t

zv = zr + 4AD
dr = ‖ xr − xo ‖, where xr = xi − zr · Ni

dv = ‖ xv − xo ‖, where xv = xi − zv · Ni

A = 1+Fdr

1−Fdr

Fdr = −1.440
η2 + 0.710

η
+ 0.668 + 0.0636η

D = 1/3σ
′

t

σtr =
√

3σaσt′

σ
′

t = σa + σ
′

s; α
′

= σ
′

s/σ
′

t

σ
′

s = reduced scattering coefficient
σa = absorption coefficient
η = relative refraction index
xi, xo = in- and out-scattering location
ωi, ωo = in- and out- scattering direction
Ni = surface normal at xi

Table 3.1. Dipole diffusion approximation and related quantities

variations on accelerated radiosity methods.

Lensch et al. provided an interactive method by distinguishing two kinds of

subsurface scattering, local and global [19]. Local subsurface scattering, which affects

only close by surface points, is estimated by a per-texel filter kernel that is applied to

an illuminance texture. Global subsurface scattering, which is defined as light that

shines through the object, is represented by precomputed vertex-to-vertex throughput

coefficients.

Mertens et al. used a clustered hierarchical radiosity solution to interactively

solve the diffusion approximation integral [22]. By calculating form-factors in real-

time, they are able to deform translucent polygonal meshes and maintain interactive

rates.

While previous methods were CPU-based, Carr et al. adapted subsurface scat-

tering solutions to the GPU [2]. Subsurface scattering is modeled as a single radiosity

18
gathering step. Rendering is accomplished through a three-pass algorithm that uses

links between patches in a multiresolution texture atlas to calculate subsurface scat-

tering.

The method of Hao et al. precomputes the diffusion approximation per-vertex for

polygonal meshes under sampled light directions and interpolates between samples

at run-time [10]. The original method sampled 200 spherical directions, creating

substantial memory requirement. This technique was later updated [11] to use a

hybrid representation with sparsely sampled light directions combined with radiance

transfer [27].

Translucent shadows maps [5] compute local and global response separately. This

technique also computes local response by applying a filter kernel across an illumi-

nated surface and calculates global response by using a technique similar to shadow

mapping to determine the distance light has traveled through the medium. By pre-

computing the dipole approximation for all of the possibilities of incident surface

orientations and distances between incident and exitant surfaces, a reasonable ap-

proximation of physically accurate subsurface scattering can be achieved. This work

inspired our technique presented in this work so it will be further examined in the

methodology section.

The translucent shadow map consists of several reference images (Figure 3.2)

taken from the viewpoint of the light. The first is a shadow map. A shadow map is

an image rendered from the viewpoint of a light. Instead of color, the map contains

depth values. In normal shadow map uses, the position of each surface in the scene is

transformed into light space and its depth is compared with the depth value contained

in the shadow map. If the depth is greater than the depth in the shadow map, it

must be obscured by another surface; e.g. it is in shadow. However, the depth values

in the TSM are used to determine the amount of material the light travels through

19
between the current point and the light.

Fig. 3.2. Irradiance, depth and normal components of the TSM (from [5])

Also stored in the TSM are the x and y components of the surface normals visible

from the light. The z value can be reconstructed in the shader if need be. Lastly,

the irradiance that is transmitted through the surface of the object is stored. The

amount of irradiance is equal to the intensity incident on the surface multiplied by

the fraction that is transmited according to the Fresnel formula. This fraction can be

approximated using Schlick’s approximation [25].

The idea behind the TSM method is that it approximates subsurface scattering

by sampling the TSM, according to a hierarchical sampling pattern, when rendering

points on a surface. To clarify, the subsurface radiance at each point on the surface

is calculated by integrating over the surfaces visible in the TSM (Figure 3.3). This

integral is approximated by summing the amount of light scattered from each point

in the TSM to the point being rendered, using the dipole approximation. As stated

earlier, the dipole approximation is not feasibly calculated in real-time.

The TSM method gets around this by precomputing the dipole approximation

into a 3D texture for access during rendering. Because the dipole approximation

function is 5D, some reduction in dimension must be performed in order to fit it into

a 3D texture. This is achieved by quantizing the normal to one dimension. However,

20

Fig. 3.3. Left: the TSM stores irradiance incident on the surface. Right: Filtered
irradiance values are used to calculate radiance exiting at another point

we are not interested in attempting to reconstruct the dipole approximation because

it is not necessary to produce realistic images.

Clearly, there has been much work accomplished in rendering interactive homo-

geneous translucency. Not all translucent materials are homogeneous, however.

3.2 Accelerated Heterogeneous Subsurface Scattering Techniques

Shell texture functions were the first attempt to model the complex light inter-

actions that occur from not only volumetric texture variation in translucent material,

but also small surface features (mesostructures) and interreflection between them

[Chen et al. 2004].

Chen et al. observed that heterogeneities in the center of an object will have a

relatively subtle effect due to scattering in the material [2004]. Therefore, a hetero-

geneous translucent object can be modeled as a homogeneous core surrounded by a

heterogeneous shell. Complicated light interaction was precomputed in a volumetric

base volume with photon tracing. This base volume was then synthesized across the

surface of the object to create the shell. The irradiance from the core was calculated

21
using the diffusion approximation. By using these techniques, rendering efficiency

was increased by up to 1000x over full participating media simulations. The shell

texture function method is not interactive. The objects rendered in their work took

an average of ∼89 seconds to render.

3.2.1 Appearance-driven methods

Gosselin et al. presented a simple rendering trick to achieve the look of subsurface

scattering effect in skin [24]. The technique first renders a character using standard

diffuse lighting. The surface of the character’s skin is then “unwrapped” to screen-

space and blurred using a kernel defined by a poisson distribution. This blurring

simulates the subsurface diffusion of light incident on the skin. This blurred surface

texture is then reapplied to the model.

Gosselin’s model only accounts for local subsurface scattering. Global subsurface

scattering (light that passes through the entire object) is ignored. The radius of the

poisson distribution can be altered to account for varying scattering properties but

otherwise consideration of physical properties of the material is ignored.

Oat introduced a real-time, appearance-driven technique for multi-layer translu-

cent material rendering that allows for heterogeneous materials [23]. Oat’s method

represents objects using the core/shell model adopted by the Shell Texture Functions

work [3]. The shell of the object is represented by variable-width layers of albedo

textures. By utilizing several existing computer graphics techniques, namely normal

mapping, transparency masking, parallax offset mapping, and image filtering, images

of objects with a semi-transparent volumetric look are created.

This work separately calculates light transmitted into the object and the light

transmitted back out of the object. The lighting for the outermost layer of lighting is

calculated as simple diffuse lighting with bump mapping. Incoming lighting for each

22
subsequent layer is a blurred version of the previous layer’s lighting, modulated by

an opacity map. The blur kernel used is simply a poisson disc with a radius based on

the angle of the view vector, the thickness and also the amount of multiple scattering

desired in the material. The same iterative blurring function is applied in reverse for

back scattered lighting.

It is important to note that the motive of this work was to supply an artist-

controllable method for rendering layered shell objects with translucent properties.

There is no consideration given to physical properties such as phase, absorption,

scattering, or light transmission through the object. The benefit is that the method

provides excellent real-time performance (∼60 fps).

Chapter 4

APPROACH

4.1 Discussion of Goals

After reviewing previous work, it is apparent that there exists a void in in-

teractive rendering techniques for displaying objects with heterogeneous translucent

appearance features. It is the purpose of this thesis to present a technique that fills

this void and to examine its usefulness in terms of performance and visual quality.

The ultimate goal is to present a method with a balance of these two criteria.

4.1.1 Salient Translucent Features

Because we wish to generate images that are perceived as translucent but are

not necessarily accurate, it is important to understand what makes an object appear

translucent. First, objects appear most translucent when lit from behind. It may be

intuitive to the reader but it has been confirmed in a user study [9]. It is therefore

important that the object look correct when backlit; moreso than when the light is

in the same hemisphere of directions as the view direction.

Another feature is the low frequency change in irradiance over the surface of

the object. Any high frequencies generated in the rendering process will need to be

filtered out. This is due to the diffuse nature of scattering. The further a feature is

located through the object material from the viewer, the lower the frequency of the

23

24
feature should be.

The relationship between saturation and intensity of color in translucent mate-

rials was explored in a user study by Fleming et al. [9]. Objects were rated by users

as more translucent when there was a correlation between saturation and intensity,

but whether the correlation was positive or negative was of no consequence. It is

therefore our desire to maintain this relationship.

4.2 Overview of Method

In this thesis, we present a method for interactively rendering heterogeneous

translucent materials. This method represents an object in a rendered scene with a

polygonal surface representation and a scalar volume representing the spatial density

of material in the object (Figure 4.1). The extent of the volume is the bounding box

of the polygonal representation. We have chosen this hybrid representation for several

reasons. First, polygonal mesh representation is standard for real-time applications

such as games. Having a discrete boundary representation is essential for collision

detection, allows a high resolution surface for shading and bumpmapping, reduces

memory requirements by using a low resolution volume for spatial density inside of

the surface, and can also accelerate volume rendering techniques.

4.3 Heterogeneous Translucent Shadow Maps

We have designed a two-pass algorithm for the approximation of light transport

in a heterogeneous translucent object. In the first pass, we compute illumination

incident on all surfaces on the object. In the second pass, we approximate how this

illumination scatters through the object to visible surfaces. To maintain information

about surfaces that are receiving light, we store several reference images from the

viewpoint of the light source. To compute subsurface scattering, we sample these

25

Fig. 4.1. Hybrid polygonal/voxel representation

reference images in a hierarchical sampling pattern. This reference image sampling

technique is similar to that presented to the translucent shadow map method [5].

In our method, we do not store depth information in the reference images. For

our ray casting method that we use in conjuction with the TSM method, we require

3D texture coordinates to acquire ray directions in texture coordinate space. We

are able to acquire the same depth information available in a shadow map from the

texture coordinates. The reasoning for the use of texture coordinates instead of scalar

depth values will become more clear once the ray casting method is discussed.

Fig. 4.2. Irradiance, texture coordinate, and normal components of HTSM.
Compare with Figure 3.2.

26
Our method supports both distant and point light sources. When using distant

light sources, the reference images can be rendered from a minimum distance along

the light direction that captures all lit surfaces. In this manner, it is ensured that the

object maintains the maximum amount of resolution in the HTSM. For point sources,

the reference images must be rendered from the position of the light. Therefore the

object will achieve less accurate results as the light moves away from the object. This

problem is common in shadow map algorithms and there are methods to improve

upon the naive approach [8, 29], but we do not implement them. We mask this issue

by attenuating the intensity of the point light illumination so that no light is reaching

the object when the source reaches a problematic distance.

4.3.1 Rendering

Rendering using the HTSM method consists of evaluating the sampling pattern

in Figure 4.3 for each point that is rendered on the surface. For each sample, the

orientation of the surface and distance between the sample and the point on the

surface being evaluated is used to estimate the amount of radiance that the sample

contributes to the point being rendered.

Fig. 4.3. Left: Side view of HTSM sampling pattern Right: HTSM sampling
pattern

27
The hierarchical sampling method is used because it is infeasible to access the

3D texture for every pixel in the HTSM map. In turn, the HTSM method uses

samples representing increasing areas as the radius increases. This is achieved by

using lower mipmap levels of the HTSM. A mipmap is a stack of increasingly lower

resolution versions of the original image. Each level has half of the resolution of the

level before it. Therefore each texel in a mipmap level is the average of four texels

in the level above it. By using lower levels in the mipmap chain, the HTSM method

can approximate larger areas of the object surface.

4.3.2 Evaluating Material Density

Simply evaluating the samples from the HTSM assumes that the material be-

tween the samples and the point being rendered is homogeneous. Instead, our algo-

rithm defines a base material and the scalar density volume defines the amount of

material in each voxel. Any radiance entering a voxel with the absorption coefficient

σa and density value αd ∈ [0, 1] will be subject an adjusted absorption coefficient

σat = σa + αd. In order to account for this additional extinction of radiance, the

extinction integration function (Equation 4.1) must be adjusted:

τ(x
′

, x) = e−
R

x

x′
σat(ξ)dξ (4.1)

The ray casting method we use to integrate the extinction between the point

being rendered and each sample in the hierarchy is a GPU-based method based on a

previous algorithm [17]. To summarize, the algorithm renders the 3D texture coor-

dinates of the front and back faces of the bounding box and subtracts corresponding

pixels in both images to get a final image that is the direction texture. This texture

contains the direction of each view ray in texture coordinate space.

We alter this ray casting algorithm. Because we are interested in how far light

28
has traveled from where it entered the object to where it exits, we first render the

texture coordinates of the polygonal object from the view of the light (this is stored

in the HTSM, as described earlier). Then, the texture coordinates of the front faces

of the object from the viewpoint of the camera are rendered. To find the sample

ray directions for a pixel, the pixel’s position is transformed into light space and

the 3D texture coordinates of all of the samples are retrieved from the HTSM. The

3D texture coordinate of the current point is subtracted from each of the sample 3D

texture coordinates to get the ray directions used for raycasting. Figure 4.5 illustrates

this operation for the first sample ray.

We have chosen a fixed number of iterative steps for the sampling rays. Because

of the SIMD nature of GPUs, it is inefficient to adapt the number of steps per ray.

Recent GPUs process pixels in blocks of between 16 and 1024, depending on the card

and manufacturer. As a result, if one sample ray in a block takes fifteen steps and

the rest all take ten, all of the rays in the block have to perform the amount of work

for fifteen steps.

Because our algorithm uses a small number of steps, aliasing can be issue. Care

must be taken when selecting a density volume size and the frequency of features

contained within. This would be less of an issue if graphics hardware could support

mipmap filtering for 3D textures.

4.3.3 Approximating Chromatic Absorption

Traditional volume rendering techniques rely on two parameters, attenuation

and material color. Participating media simulation requires different parameters:

absorption, scattering and phase. While attenuation is similar to absorption in that

they account for the reduction in irradiance through material, they are proportional

not equal. Attenuation has a value between 0.0 and 1.0 but absorption can have a

29
value between 0.0 and infinity. Note that it is impossible for a material to exhibit no

absorption properties, therefore it is impossible for a material to have an absorption

coefficent of exactly zero. Attenuation is usually specified by an alpha value:

α = 1 − e−τ(x) (4.2)

Attenuation is typically specified as an achromatic value, meaning that all wave-

lengths of the incoming radiance are absorbed equally. This is contrary to how

radiance is handled in participating media simulations. Absorption and scattering

coefficients are specified separately for red, green and blue wavelengths. It is possible

to specify a separate alpha for each wavelength i:

αi = 1 − e−τi(x) (4.3)

where i ∈ r, g, b.

Consider a material that has an α = (0.02, 0.02, 1.0). As light bounces through

the material, the blue wavelength will become completely reduced, leaving mostly red

and green wavelengths (yellow). This yellow color can be thought of as the transport

color [16]. It is the color produced as a result of chromatic absorption. This transport

color is equal to (1.0, 1.0, 1.0) − αi.

In our algorithm, the user specifies the transport color Ct and the distance

through the base material light travels before it exhibits this color. In this man-

ner, we can estimate the radiance transmitted through the object between two points

on the surface, accounting for absorption.

30
4.3.4 Approximating Phase

The phase function f(x, ω′, ω), when given an incoming light direction ω′ at

location x, describes the fraction that out-scatters in direction ω. This can be taken

into account when integrating radiance through the object. Each sample ray can be

weighted by an appropriate fraction considering its direction.

Phase functions can be parameterized by the angle between ω and ω′. In our

algorithm, we consider ω′ as the sample ray direction and ω as the negated normal

of the surface at x on the surface.

Rather than evaluate the phase function during execution, we precompute the

phase function as a 1D texture. During run-time, we compute the angle between ω

and ω′ using the dot product to index this texture. Because the range of values of

the dot product between these two directions is [-1,1] and the texture coordinates for

a 1D texture are [0,1⌋, we scale the dot product result by .5 and bias by .5. This

value can then be used for each ray to calculate the appropriate weighting for the

final irradiance at location x.

Our translucent rendering algorithm calculates the transport through the object

in a strictly forward fashion. Unfortunately this makes it impossible for the algorithm

to model objects that exhibit some visual effects that result from back scattering.

4.3.5 Putting It All Together

Table 4.3.5 contains the final equation and all related variables for calculating

radiance at the surface in pixel position x,y. Note that the diffuse and specular

terms should be zero when the dot product of the light and Nx,y and when the

surfaces are occluded.

To summarize our algorithm:

-Render the HTSM reference images from the light

31
L(x, y) = Tc ∗ 1

n

∑n

i (2Td−(Di+αi)
Td

∗ f(θi)) + Diffuse + Specular
Tc = Transport color
Td = Transport distance
Di = Length of sample ray i
α = Accumulated absorption along ray i θi = Angle between sample ray i and −Nx,y

Nx,y = Normal at x,y
f(θi) = Phase function evaluated for θi

n = Number of sample rays

Table 4.1. Our light transport approximation and related variables.

For each visible surface:

-Find the surface position in light space

For each sample in the hierarchical sampling pattern:

-Fetch the lit surface from the HTSM with the same

x,y position in light space

-Fetch the irradiance for the lit surface

-Store the distance between these two surfaces

-Construct a ray from the visible surface to this surface

-Ray cast using the constructed ray to accumulate density

-Based on the distance between the surface, the amount of

density, and the phase, add the amount of irradiance

from this ray direction

Set the color of the visible surface equal to the radiance from all rays

Add surface shading (if the surface is lit)

32

Fig. 4.4. From Left: Projected 3D texture coordinates from the HTSM (END), 3D
texture coordinates of front faces (START), DIR = END-START. Coordinates are
scaled and based to show all values.

Fig. 4.5. The position on the surface being viewed is transformed into screenspace
and all rays are calculated from the 3D texture coordinates in the HTSM sampling
hierarchy. Ray casting is then performed to accumulate density in the interior of the
object.

33

Fig. 4.6. Photographs depicting transport color in juice and a candle.

Chapter 5

RESULTS

Our method provides a real-time approximation to the complex subsurface scat-

tering problem. In this chapter, we analyze images created using our approximation

and their strengths and weaknesses. We also discuss the performance of our algorithm

on consumer-level graphics hardware.

5.1 Discussion

Fig. 5.1. Mayan head rendered with varying absorption properties

34

35
As depicted in Figure 5.1, varying the absorption properties of the material

drastically changes the appearance of the object. When absorption is increased, the

heterogeneous interior of the object becomes much more pronounced. This effect is

expected in real materials. When absorption is low, the effects of multiple scattering

become much more pronounced. The diffuse nature of multiple scattering blurs out

detail of the interior.

Fig. 5.2. Oblique angle of candle wax mayan head

Fig. 5.3. Cube rendered with different absorption properties. Note rim lighting
from scattering along surface.

36
Figures 5.2 and 5.3 further explore the use of the wax transport color for different

meshes and varying absorption properties.

Fig. 5.4. Translucent plastic model under different lighting conditions.

Figure 5.4 depicts a model with a translucent purple plastic material. Note

that the achieved effect here is that the scattering in the material is mostly single

scattering because it appears “harder” and less diffuse. This is because we have not

saturated the high intensity colors on the lit surface. This reinforces the relationship

of translucency and the correlation between intensity and saturation discussed earlier.

Fig. 5.5. Car rendering using varying lighting directions. Note the smooth
transition between directly lit and obscured surfaces.

In Figure 5.5, we demonstrate another purple translucent material. It is im-

portant to notice that there are no noticable artifacts between directly lit surfaces

37
and surfaces that are illuminated solely by subsurface scattering. Other subsurface

scattering algorithms such as the Translucent Shadow Maps method [5] separate the

calculation of local and global subsurface scattering and then combine them in the

final image. This can cause surfaces with orientations nearly orthogonal to the light

direction to appear darker than surfaces that are completely obscured, which is visu-

ally distracting.

Fig. 5.6. Comparison of surface radiance between homogeneous and heterogeneous
versions of the low-poly tiger model

Figure 5.6 we illustrate the stark difference in the surface radiance when account-

ing for heterogeneous material. When ignoring the volumetric texture variation, the

radiance is merely a function of the width of the object that the scattered light travels

through.

In Figure 5.7, we provide the visual result of increasing the number of samples

used for each pixel. The zoomed images focus on a particular high-frequency feature

that is present on the nose of the model. This feature is not desired because it

would not be present on an object with significant multiple scattering. The feature

would only be this stark if the only light reaching this point through the object had

come directly through the entire object without scattering. By using more rays,

absorption by the material in a larger cone of directions can be accounted for. It

38

Fig. 5.7. Left to Right: 1, 5, 9, 13 sample rays from the HTSM. Bottom: Close-up
of nose region. Note the gradual smoothing of the light region.

may be possible to get more of a blurring effect with fewer rays by using a higher

mip level for density volume accesses that are for locations that are further from the

viewer. Unfortunately, none of the graphics hardware available to the author support

mipmapped three-dimensional textures.

Figure 5.8 shows a translucent object with a more familiar internal structure.

The banding artifacts are a result of too few sample rays. The shape would appear

much smoother with an increased number of sample rays.

5.2 Performance

We have implemented this work on an ATI Radeon X1600, a previous generation

graphics card. The algorithm is essentially performed in two-passes: Render the 3D

texture coordinate and irradiance reference images of the object from the light view

and then use these reference images to ray cast the density volume to produce the

39

Fig. 5.8. Translucent object with an embedded cube shape, rendered with 5 sample
rays.

final image.

Considering that each pixel on the surface of the object must ray cast n rays,

where n is the number of samples in the HTSM sampling hierarchy, and each ray

must access the 3D density texture for each step it is advanced, it becomes apparent

that this algorithm is texture-access bound. This is a common problem in graphics

hardware. A texture access in a shader delays all computation based on the result

of that texture data fetch. The current magic number in graphics hardware is about

eight math instructions can be per texture access. The problem is compounded when

one texture-fetch is dependent on another. Consider a sample hierachy of nine sam-

ples. Then consider that each sample ray takes five steps through the density volume.

That is forty-five texture accesses for each pixel on the surface.

Graphics card n=1 n=5 n=9 n=13
NVIDIA 7900GTX SLI 300fps 105fps 41fps 26fps
ATI Radeon X1900XT 132fps 55fps 30fps 15fps
ATI Radeon X1600 120fps 42fps 23fps 12fps

Fig. 5.9. Rendering frame rates for different hardware.

40
Memory requirements for our method are very modest. To store all reference

images and also a 3D texture (64x64x64) containing density information requires

only ∼3MB. Compared with the Shell Texture Functions method (≥159MB) the

requirement is quite reasonable [3].

5.3 Comparison

Method Image/Geo. Based Homo Hetero Precomp. / Runtime Deform.
Lensch G Yes No Runtime No
Mertens G Yes No Runtime Yes
Carr G Yes No Runtime No
TSM I Yes No Runtime No
Hao G Yes Yes (in shell) Pre No
Sloan G Yes Yes Pre Partial
HTSM I Yes Yes Runtime Partial

Fig. 5.10. Comparison table for existing subsurface scattering algorithms.

It is difficult to perform a quantitative comparison between existing methods

and our method. Older methods were performed on obselete hardware and are also

sufficient difficult to implement. We therefore provide a qualitative comparison.

First, our method is image-based. This is a benefit because the complexity of

the algorithm is not affected by the polygon count in the meshes used. We also

support both homogeneous and heterogeneous translucent material. In addition, we

evaluate all light transport at run-time, which distinguishes us from the other two

heterogeneous subsurface scattering methods. This is a benefit because it permits the

run-time adjustment of material properties, eliminates the need for lengthy precom-

putation time and allows certain deformations.

When examined qualitatively, it is apparent that our technique has significant

advantages over all existing methods.

41
5.4 Limitations

Fig. 5.11. It appears that the back of the head is creating shadows on the ears, but
what is actually happening is that the light is being attenuated in the space between
the head and ears, as if there were material in that space.

There are some assumptions that have been made regarding the geometry of the

objects rendered and also the behavior of light. Because all light transport is modeled

as transfer between surfaces visible from the light and surfaces visible from the eye,

it is assumed that all space between these surfaces are inside the object. Therefore

the algorithm assumes a convex object. Some artifacts may arise (as in Figure 5.12)

but typically they are not very distracting or displeasing in objects that are mostly

convex.

Also, because all reference images are rendered from the light’s viewpoint, the

algorithm only supports point and distant lights, not environment lighting. As men-

tioned earlier, this algorithm only computes scattering as forward-scattering process.

42

Fig. 5.12. A complicated model that violates the convex object limitation of our
algorithm. Observe that the lit object suffers no perceptually unsettling artifacts.

Chapter 6

CONCLUSION

Our algorithm is essentially a two-pass method. We first obtain information

about the surfaces which are receiving illumination. This includes the amount of

irradiance transmitted and 3D texture coordinates. As a second pass, we query this

information to estimate how the incident illumination on the lit surfaces is scattering

to surfaces that are visible from the user’s viewpoint.

To produce the perceptually-correct effects from the subsurface scattering, we al-

low the user to define an intuitive transport color which defines the color the scattered

light becomes as it is absorbed. The user also defines a distance through the material

that the light travels before exhibiting the transport color, assuming the material is

homogeneous. This distance in combination with the transport color describes the

absorbent properties of the material.

To account for the density changes in the interior of the object, we perform a

coarse ray casting of a scalar volume texture. Rather than simply ray casting through

the object as is done in standard volume rendering techniques, several rays are cast

from points on visible surfaces to lit surfaces. This algorithm is implemented on the

GPU to accelerate the rendering process.

In summary, we have presented a method for rendering heterogeneous translu-

cent objects in real-time. This is the first method to account for heterogeneities

43

44
in the interior of an object when calculating surface irradiance due to subsurface

scattering. This is important because until now an entire class of materials have

been excluded from the real-time rendering arena. By considering the physical im-

plications of light transport and also the characteristics we expect from translucent

materials, we produce convincing images at very reasonable real-time rates. Con-

sidering the performant frame rates achieved, low memory requirement and hybrid

polygonal/volumetric representation, our work represents a significant step forward

in real-time rendering of translucent objects.

45

Bibliography

[1] Cabral, B., Cam, N., and Foran, J. Accelerated volume rendering and

tomographic reconstruction using texture mapping hardware. In VVS ’94: Pro-

ceedings of the 1994 symposium on Volume visualization (1994), pp. 91–98.

[2] Carr, N. A., Hall, J. D., and Hart, J. C. GPU algorithms for ra-

diosity and subsurface scattering. In HWWS ’03: Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS conference on Graphics hardware (2003), Eu-

rographics Association, pp. 51–59.

[3] Chen, Y., Tong, X., Wang, J., Lin, S., Guo, B., and Shum, H. Shell

texture functions. In ACM Transactions on Graphics (2003), vol. 23, pp. 343–

353.

[4] Culipp, T., and Neumann, U. Accelerating volume reconstruction with 3D

texture hardware. Tech Report TR93-027, University of North Carolina, Chapel

Hill, 1993.

[5] Dachsbacher, C., and Stamminger, M. Translucent shadow maps. In

EGRW ’03: Proceedings of the 14th Eurographics workshop on Rendering (2003),

Eurographics Association, pp. 197–201.

46
[6] Drebin, R. A., Carpenter, L., and Hanrahan, P. Volume rendering.

In SIGGRAPH ’88: Proceedings of the 15th annual conference on Computer

graphics and interactive techniques (1988), pp. 65–74.

[7] Engel, K., Kraus, M., and Ertl, T. High-quality pre-integrated volume

rendering using hardware-accelerated pixel shading. In HWWS ’01: Proceedings

of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware

(2001), pp. 9–16.

[8] Fernando, R., Fernandez, S., Bala, K., and Greenberg, D. P. Adap-

tive shadow maps. In SIGGRAPH 2001, Computer Graphics Proceedings (2001),

ACM Press, pp. 387–390.

[9] Fleming, R. W., Jensen, H. W., and Bulthoff, H. H. Perceiving translu-

cent materials. In APGV ’04: Proceedings of the 1st Symposium on Applied per-

ception in graphics and visualization (New York, NY, USA, 2004), ACM Press,

pp. 127–134.

[10] Hao, X., Baby, T., and Varshney, A. Interactive subsurface scattering for

translucent meshes. ACM Symposium on Interactive 3D Graphics, 2003.

[11] Hao, X., and Varshney, A. Real-time rendering of translucent meshes. ACM

Trans. Graph. 23, 2 (2004), 120–142.

[12] Jensen, H. W., and Buhler, J. A rapid hierarchical rendering technique for

translucent materials. ACM Transactions on Graphics 21 (2002), 576–581.

[13] Jensen, H. W., and Christensen, P. Efficient simulation of light transport

in scenes with participating media using photonmaps. In Proceedings of ACM

SIGGRAPH 1998 (1998), pp. 311–320.

47
[14] Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P.

A practical model for subsurface light transport. In Proceedings of ACM

SIGGRAPH 2001 (New York, 2001), Computer Graphics Proceedings, ACM

Press/Addison-Wesley Publishing Co., pp. 511–518.

[15] Kniss, J., Kindlmann, G., and Hansen, C. Multidimensional transfer func-

tions for interactive volume rendering. IEEE Transactions on Visualization and

Computer Graphics 8, 3 (2002), 270–285.

[16] Kniss, J., Premoze, S., Hansen, C., Shirley, P., and McPherson, A.

A model for volume lighting and modeling. IEEE Transactions on Visualization

and Computer Graphics 9, 2 (2003), 150–162.

[17] Kruger, J., and Westermann, R. Acceleration techniques for GPU-based

volume rendering. In Proceedings of the 14th IEEE Visualization 2003 (2003),

vol. 38.

[18] LaMar, E., Hamann, B., and Joy, K. I. Multiresolution techniques for

interactive texture-based volume visualization. In VIS ’99: Proceedings of the

conference on Visualization ’99 (1999), pp. 355–361.

[19] Lensch, H., Goselle, M., Bekaert, P., Kautz, J., Magnor, M., Lang,

J., and Seidel, H.-P. Interactive rendering of translucent objects. In Proceed-

ings of IEEE Pracific Graphics (2002), pp. 214–224.

[20] Levoy, M. Display of surfaces from volume data. IEEE Comput. Graph. Appl.

8, 3 (1988), 29–37.

[21] Meissner, M., Hoffmann, U., and Strasser, W. Enabling classification

and shading for 3D texture mapping based volume rendering using OpenGL

48
and extensions. In VIS ’99: Proceedings of the conference on Visualization ’99

(1999), pp. 207–214.

[22] Mertens, T., Kautz, J., Bekart, P., and Reeth, F. V. Interactive ren-

dering of translucent deformable objects. In Proceedings of the 14th Eurographics

Workshop on Rendering (2003), pp. 130–140.

[23] Oat, C. Rendering gooey materials with multiple layers. In Proceedings of

SIGGRAPH 2006 course notes, course 26, Advanced Real-Time Rendering in

3D graphics and Games (2006), pp. 71–79.

[24] Sander, P. V., Gosselin, D., and Mitchell, J. L. Real-time skin render-

ing on graphics hardware. In Proceedings of ACM SIGGRAPH 2004 Sketches

(2004).

[25] Schlick, C. A customizable reflectance model for everyday rendering. Euro-

graphics Workshop on Rendering (1993), 73–84.

[26] Siegel, R., and Howell, J. R. Thermal Radiation Heat Transfer, 3rd Edi-

tion. Hemisphere Publishing Corporation, New York, 1992.

[27] Sloan, P.-P., Kautz, J., and Snyder, J. Precomputed radiance transfer

for real-time rendering in dynamic, low-frequency lighting environments. In SIG-

GRAPH ’02: Proceedings of the 29th annual conference on Computer graphics

and interactive techniques (New York, NY, USA, 2002), ACM Press, pp. 527–

536.

[28] Stam, J. Multiple scattering as a diffusion process. In Rendering Techniques ’95

(Proceedings of the Sixth Eurographics Workshop on Rendering) (New York, NY,

1995), P. M. Hanrahan and W. Purgathofer, Eds., Springer-Verlag, pp. 41–50.

49
[29] Stamminger, M., and Drettakis, G. Perspective shadow maps. In SIG-

GRAPH ’02: Proceedings of the 29th annual conference on Computer graphics

and interactive techniques (2002), pp. 557–562.

[30] Wilson, O., Gelder, A. V., and Wilhelms, J. Direct volume rendering via

3D textures. Tech Report UCSC-CRL-94-19, University of California at Santa

Cruz, 1994.

