APPROVAL SHEET

Title of Thesis: HYBRID 3D-MODEL REPRESENTATION THROUGH QUADRIC
METRICS AND HARDWARE ACCELERATED POINT-BASED RENDERING

Name of Candidate: Hanli Ni
Master of Science, 2005

Thesis and Abstract Approved:

Dr. Marc Olano

Assistant Professor

Department of Computer Science and
Electrical Engineering

Date Approved:

CURRICULUM VITAE

Name: Hanli Ni.

Degree and date to be conferred: Master of Science, August 2005.
Date of Birth: January 11, 1977.

Place of Birth: Nanjing, P. R. China.

Collegiate institutions attended:
University of Maryland, Baltimore County, M.S. Computer Scien2005.
Mississippi State University, M.S. Organic Chemistry, 2002
Nanjing University, Nanjing, B.S. Polymer Chemistry, 1999.

Major: Computer Science.

ABSTRACT

Title of Thesis: HYBRID 3D-MODEL REPRESENTATION THROUGH QUADRIC MET-
RICS AND HARDWARE ACCELERATED POINT-BASED RENDERING
Hanli Ni, Master of Science, 2005

Thesis directed by:Dr. Marc Olano

The expectation for highly realistic 3D images has resuitedD models with mil-
lions of triangles. Traditional algorithms acceleratedeting speed by taking advantage of
coherence within a triangle if the screen projection of tiengle covers multiple pixels.
However, as the triangle count increases and the trianggedgicreases, screen projections
of triangles cover fewer pixels. In some cases, projectayeseven sub-pixel size, which
makes these acceleration algorithms ineffective. Altiéraly, points have the advantage
of no explicit connectivity and the rendering pipeline canitmplemented using the lat-
est 3D hardware functionalities. But sufficient densitied proper sampling patterns are
required for points to be effective. Previous research ssiggthat neither triangles nor
points are the ultimate solution in terms of hardware reingerin this study, we build a
hybrid rendering system that takes advantage of both pviesit Our system is composed
of two components, preprocessing and rendering. Duringrpoessing, the system builds
a hierarchical hybrid model taking a 3D polygonal model gmitn The system breaks the
input polygonal model into patches by applying clusterilggpethms on the model. Planar

patches are rendered using triangles, while patches wgtivariations are rendered with

points. The clustering algorithm is based on quadric erretrics, which is a good measure
of the planarity of surfaces. Other metrics, such as shagenal and size are used. The
point representation of a patch is obtained through regaerpling of the triangle patch.
The system uses traditional polygonal hardware renderpgjipe for polygonal patch ren-
dering. We implement point rendering pipeline using hamwaertex and pixel shaders.
The final system combines the advantages of both polygoulgbaimt rendering pipelines

and achieves relatively high image quality while maintagninteractive rendering speed.

HYBRID 3D-MODEL REPRESENTATION THROUGH
QUADRIC METRICS AND HARDWARE

ACCELERATED POINT-BASED RENDERING

by
Hanli Ni

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment
of the requirements for the degree of
Master of Science
2005

Contents

1 Introduction

2 Related Works
2.1 Point-basedRendering L.
2.2 Hardware Accelerated Point-Based Rendering
2.3 Hybrid RenderingSystems L.

2.4 3D Surface Simplification and Clustering Techniques

3 Methodology
3.1 Research Goal and Contribution
3.2 Surface Clustering Algorithms
3.2.1 Quadric Error Metrics and Surface Simplification

3.2.2 Surface Clustering Using Quadric Metric

3.2.3 Two-phaseClustering

3.2.4 Level of Detail (LOD) Control within Clusters
3.3 Point Sampling Algorithms oL

3.3.1 Point Sample Definition o o0

12

12

14

15

22

3.3.2 SurfaceSampling o 25

3.4 Point-based Rendering Algorithms 29
3.4.1 EWA Splatting Framework 29
3.4.2 Hardware Implementation 33

Results and Discussion 39

4.1 SurfaceClustering 39

4.2 SurfaceSampling e 44

4.3 Hybrid Rendering Pipeline 46
4.3.1 Hardware EWARendering 46
4.3.2 Hybrid ModelRendering 51

Conclusion and Future Work 63

5.1 Summary of Contributions 36

5.2 FutureDirections46

List of Figures

2.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.1

The programmable graphics pipeline. 8
Schematical overview of the hybrid renderer and rendealgorithm. . . . 14
Edge contractionexample [9]. L. 15

A tipical face hierarchy of a patch with 4 triangles. iallyy each triangle is

a cluster. Then red triangles form a cluster and green tiearigrm another
cluster. Finally the two clusters are combined into the chaster. 19
Surfel definition. 52
Concept view of the sampling algorithm. This figure onlgwh sampling

rays from one face of the boundingbox. 26

Defining a texture function on the surface of a point sah@BID model [35]. 30

Calculating the Jacobian [27]. 34
Camera space ray casting for per-pixel depth correction.. 36
Blending effects of the EWA filtering pass of four surfedld. 38

Phase one clustering result of the cow model (5804 tieshgvith different
cost thresholds. (a) 0.033, (b) -0.19, (c) -0.96. Each etustrepresented

byonecolor.. 40

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Wire frame of the phase one clustering result of the cowdeho Cost

threshold is -0.19. e 42

Phase two clustering result of the cow model (5804 ties)gvith different

cost thresholds. (a) -0.07, (b) -0.16, (c) -0.42. (The dosighold used in

phase one of this example is -0.19, see Figure 4.1(b))

A rendering of partial point samples of a fully sampleddelo

Rendering results from different passes (a) visibilfpjatting, (b) EWA

filtering, (c) Normalization. 48

Applying the depth offset during visibility splatting.

Checker board rendering using (a) without EWA filtering), With EWA

filtering. e

Checkboard rendering with different sampling rate (a)riate, (b) medium

rate, (c) highrate. 52

Missing surfel samples at the corner of a surfel cloud l@aye holes dur-

ing rendering. The red lines are part of surrounding trianggtches. The

two blue dots indicate the sampling grid position at the lolaup, which

miss the surfel cloud patch. This leaves empty space at thaptof the

COMNEL. o e e e s, 53

4.10 Global sampling rate. The grid distance is 0.01. Theééuffer resolu-

tionis512x 512.

4.11 Rendering results of the cow hybrid model on a NVdia Ged-&iX 5950

Ultra. The frame buffer resolution is 512 512.

4.12 Running times for preprocessing of different models.

\

4.13 Rendering performances of different triangle models.. 58
4.14 Rendering performances of different hybrid models. @éréormances are

plotted with respect to surfel counts. Overlap indicatesaberage number

of surfels contributing to each pixel in the framebuffer. 58
4.15 Visualization of the number of surfels contributingeach pixel in the

framebuffer. The higher the red color the larger the numibsudels con-

tributing. 59
4.16 Rendering results of the bone model on a NVdia GeForced=X blltra.

The frame buffer resolutionis 512512, 60
4.17 Rendering results of the cow model on a NVdia GeForce F50 %4tra.

The frame buffer resolutionis 512 512. 60
4.18 Rendering results of the dragon model on a NVdia GeFoXc&9B0 Ultra.

The frame buffer resolutionis 512512, 61
4.19 Rendering results of the bunny model on a NVdia GeForcBd50 Ultra.

The frame buffer resolutionis 512512, 61
4.20 Rendering results of the terrain model on a NVdia GeHexcB950 Ultra.

The frame buffer resolutionis 512512. 62

Vi

List of Tables

4.1

4.2

4.3

4.4

Number of instructions needed foreachpass. 47
Rendering performance of texture mapped checker boavdrasystem on
a NVdia GeForce FX 5950 Ultra. The frame buffer resolutiofli2 x 512. 51
Preprocessing time and Rendering performance of hybodieia on our

system on a NVdia GeForce FX 5950 Ultra. The frame bufferlutiem is

512x 512, . . . 57
Rendering performance of triangle models on our systeaitwdia GeForce
FX 5950 Ultra. The frame buffer resolution is 5%¥2512. 57

vii

Chapter 1

Introduction

Triangles have been ttie factoprimitives for 3D surface representations for many years,
especially in the realm of real time rendering. Huge amoohtesearch has been done
in polygon surface modeling, simplification, level of détarnagement and texture map-
ping. Polygon rendering algorithm development has beearapanied by the support of
graphics hardware. The traditional graphics hardwareeeng pipeline has a relatively
efficient data representation and is able to take full acagenbf coherence within triangle

screen projections during scan-line rasterization.

However the expectation for highly realistic 3D images hashed the complexity of tri-
angle models to increase continuously. Currently, realiams millions of triangles. As
the triangle count increases and the triangle size de@gesseen projections of triangles
cover fewer pixels. In some cases, projections are evempsabsize, which makes clas-

sic acceleration algorithms less appealing. On the othed harogress in 3D acquisition

technology has also increased the complexity of availableBjects. Modern laser 3D
scanning devices are able to acquire huge volumes of poiat[ii&]. To avoid the time
consuming triangulation process, an alternative surfaggeling and rendering primitive

is needed.

One of the alternatives is point-based rendering. The idassiog points as rendering
primitives was briefly investigated by Levoy and Whitted fioe special case of continuous,
differentiable surfaces [17]. Recently, point-based reindehas attracted a lot of research
attention and algorithms for point data acquisition, pssogg, rendering and hardware
pipeline acceleration were developed [3, 4, 13, 14, 22, Z338] . Points have some
advantages over triangles as representation and rengermgives. First, point data has
no connectivity overhead, this overhead is especially &lpro at high triangle counts.
Second, point data has the highest degree of freedom, tineyefiore flexible modeling al-
gorithms can be developed. Third, the advances of featattée ilatest graphics hardware,
especially the emergence of vertex and fragment prograraderthe efficient hardware

point-based rendering possible.

Although point-based rendering has demonstrated its pat@pplication in real-time ren-
dering, it has its limitations. Previous research showeadt $hfficient densities and proper
sampling patterns are required for points to be effectivis. dlso true that as the most ma-
ture and widely used 3D rendering primitive, triangles wdhtinue to be an important part
of real-time graphics. It is of great interest to build a hghenderer to exploit advantages
of both triangles and points. Some rendering systems hauerexl this area [6, 8]. In this

study, the concept of hybrid model representation, a 3D mnomlaposed of both triangle

3

and point patches, is presented. A rendering system isajeelto build the hybrid model
by assigning different representation primitives to dif& patches through certain metrics.

During rendering, patches are rendered using point or polygpelines as appropriate.

Some important problems are addressed in this study. Paimple and its data structure
are formally defined. Surface clustering algorithms andricetre discussed in detail.
Our major contribution is to apply the quadric error metniogmsed by [9] to do surface
clustering and build hybrid models. The quadric error neatras initially used for surface

simplification. The thesis discusses the point samplingrtegie and sampling rate. It also
talks about the spatial data structure used to represemiytbvédd model. Furthermore, it

discusses the boundary conditions between patches, wlagheave holes during render-
ing. Hardware point-based rendering pipeline is implerérind the rendering efficiency

results are presented.

The thesis is organized as follows. Chapter 2 talks about setated works on point-
based rendering, hybrid rendering systems, hardware imgi&ations and some surface
clustering methods. A system overview is first given in Chaptelt then talks about the
methodology used in this study. Chapter 4 is the results ssaligsions. We conclude this

study in Chapter 5.

Chapter 2

Related Works

2.1 Point-based Rendering

Points have often been used historically to model certainrabphenomenons such as
smoke, clouds, dust, fire, water and ‘soft’ objects as tr@és 26, 30]. This modeling
technique is well known as particle systems. Particles igeee by the rendering system
have a limited lifetime. During their lifetime, particle bhaviors are defined through certain
physical models. Particles may change position, speedctthn, color and size. This
technique has been successfully used as special effectstiompictures and also in 3D
games. In Pixar’s recent animation ‘Finding Nemo’, paetisystem was used to model and

render ocean water [24].

A technical report by Levoy and Whitted [17] first discusseel fiasibility of using points

as rendering primitives. Their work touched many areas tWwacesearch on point-based

4

5

3D graphics today. These areas include point data acquisaind preprocessing, point-
based data structures and representation, point-baséeriemalgorithms, texture filtering

and shading.

There exist two types of methods to acquire point data, Sagpkisting geometry and us-
ing laser scan devices. Levoy and Whitted pointed out thastiniace must be continuous
and differentiable in a small neighborhood around eachtgoirproper sampling. Gross-
man and Dally proved that the surface is adequately samplbe iside length of every
triangle resulted from the triangulation of the sampledis less than the side length of
a pixel [13]. Adequately sampled means no holes will appeand rendering from any
angle. Pfister et al. obtained point samples from three éayéepth images at orthographic
views and guaranteed that the maximum distance betweeceadjpoint samples is less

than the pixel reconstruction filter [23].

Scanned real objects are becoming popular due to advan8&ssnanning technologies.
Models with millions of points can be easily collected wittaaning devices [16]. Due to
a variety of physical effects and limitations of the modedj@sition procedure, raw data
sets are prone to noise and distortions. Some preproceasthgesampling of the raw
data are usually needed. Pauly and Gross applied specailgsanto filter and resample
point patches [22]. Alexa et al. developed tools to repregeimt set surfaces with varying

sampling density based on differential geometry [2].

Because of the huge number of samples within a single modglepdata structures must

be applied to organize point samples. A common strategyusedierarchical data struc-

tures, for example a tree structure. Rusinkiewicz and Leyaptied a bounding sphere
hierarchy to represent a point cloud [28]. Their algorithmilds up the tree by recursively
splitting the node along the longest axis of the bounding Adrey quantized point proper-
ties such as position and normal to compress the model. Réiste used an octree based
representation of point samples [23]. Each octree nodeastsd with a layered depth
cube (LDC) with increasing sampling rate as traveling fromotto leaves. Each LDC is
composed of three orthogonal layered depth images (LDl)@&jbbetti and Marton used
binary trees to represent point sampled models by reomgienml clustering points [11].
The tree traveseral picks the right point sampling derssaecording to the projected size

in the image.

After collecting and preprocessing point samples and 8etpthe proper data structures,
the final stage is to develop efficient point-based rendeaiggrithms. The major chal-
lenge from point-based representations is that we neechtereontinuous surfaces (hole
free) from discrete samplings of the underline surfaceigitriangle models). One pop-
ular technique is called splatting. It was originally sealby Levoy and Whitted in their
early technical report and was also mentioned in the confexdlume rendering [33]. The
basic idea of splatting is that a single point is mapped tdipialpixels on the screen and
the color of a pixel is the weighted average of the colors efdantributing points. Pfis-
ter et al. proposed a novel technique called visibility #plg to determine visible points
and holes [23]. In their technique, points are represensedisks and during rendering,
these disks are projected from object space to screen sgadéer in order to perform the

visibility test. Zwicker et al. formally defined the framevkoof surface splatting using

rigorous mathematical analysis [35]. In their work, thed®erng process is a concatena-
tion of sampling, warping and filtering. All these steps apresented as a reconstruction
kernel function to improve efficiency. This is actually aniension of the well known tex-
ture filtering framework using the anisotropic ellipticaéighted average (EWA) filtering
proposed by Heckbert [15]. Later Zwicker et al. introducedspective accurate splatting

using homogeneous coordinates to obtain the correct spre@tction shape [36].

Grossman and Dally avoided using splatting by ignoring idiering rendering and filling
gaps at an image reconstruction stage [13]. Each pixel igrees a weight between 0 to 1
indicating the confidence of whether or not it is a hole (0 nsaars a hole). Then a two
phase “pull-push” algorithm is applied to fill the gaps [1Zis is essentially to generate
a succession of lower resolution approximations of a imajeeir work assumes ortho-
graphic views and predefined target resolution and magtditaMax and Ohsaki used a
similar method to render trees [21]. To overcome the linuteg of viewing parameters,
techniques that are able to dynamically adjust the sampditegon a frame by frame basis

have also been developed [1, 31, 32].

2.2 Hardware Accelerated Point-Based Rendering

Surface splatting techniques achieve superior visualityuabwever, the high computa-
tion cost has limited its application in real-time graphit¢s recent years, the increasing
efficiency and programmability of modern graphic cards P@, has triggered the devel-

opment of hardware-based splatting methods. A diagram adgenmm graphics pipeline is

8

shown in Figure 2.1. Todays graphics chips, such as the NV IGéForce and the ATI
Radeon replace the fixed function vertex and fragment (imegutbxture) stages with pro-
grammable stages. These programmable vertex and fragmgines execute user-defined
programs and allow fine control over shading and texturingutations. A vertex program
is run on each incoming vertex from the application and themated results are passed
on to the rasterization stage. Typical computations irehgrtex transformation, normal
transformation and normalization, texture coordinateegation, lighting and etc. A frag-
ment program is run on each incoming pixel from the reatédnastage and the computed
results are passed on to display. Typical computationsidecbperations on interpolated

values, texture access, texture application, fog and etc.

Application

v
Vertex Program

A 4

Rasterization

v
Fragment Program

A 4

Display

Figure 2.1: The programmable graphics pipeline.

The difficulty of surface splatting is when to blend two spldttwo splats are projected

to the same pixel. Only closely overlapping splats shouldleeded when they locally

belong to the same surface; while in other cases when thstande between the splats is
above a certain threshold, the front-most splat shouldvavierthe splats behind. To solve
this problem, a two pass rendering algorithm is used [3, T4, Zhe visibility splatting
pass only renders the z-buffer with all objects shifted aiayn the viewer bys. The
second pass renders all splats with filter blending turnedbanit does not alter the z-

buffer, thereby blending only those splats that differ kgsléhare in depth.

Using the pixel shaders of current graphics hardware allbvgasterization of elliptical
splats by rendering just one vertex per splat. Computing tbhggted size in a vertex
shader triggers the rasterization of an image space sqéafeagment shader processes
each of its pixels and constructs the elliptical shape byadding pixels outside the ellipse.
Extensions of this framework includes perspective acewsplatting [36], using a different
affine approximation to the projection; and phong splatfdhlg by computing per-pixel

lighting.

2.3 Hybrid Rendering Systems

Points and triangles have significant differences in terhmaaxlel representation and ren-
dering. Both have their own advantages and disadvantagem $creen projections cover
multiple pixels, algorithms that utilize coherence areyveificient for triangle rendering.

If the screen projections are sub pixel sizes, point-basedaring has less overhead and is
more flexible. Some work has been done on developing hybnidenéeng systems, which

are able to build point and triangle hybrid models and havk point and triangle rendering

10

capabilities. POP is an early system developed to visuldige data sets [6]. The system
builds tree model structures by having triangle represiemat leaf nodes and point repre-
sentation at intermediate nodes. The design of the systggested that triangles at leaves
are to ensure the quality of the rendering while points arspted up the rendering. POP
chooses a different number of points and triangles basedewing location. The closer
the model is to the eye, the higher percentage of triangledered. The whole system
treats points as secondary rendering primitive, mainlhpferviewing purposes. The most
detailed level is still rendered with triangles, which ist wery efficient at high triangle
counts. It fits the need for visualization applications, isutot suitable for 3D real-time
applications. A similar system developed by Coconu and Hegédlie to switch between
points and triangle rendering based on sampling density PNIR is a system that also
uses a hierarchy both in points and triangles [8]. The difiee between PMR and POP
is that the hierarchy in PMR is built according to the featyeemetry in the object space
rather than its projection in the screen space. Therefbeerendering is not affected by
viewing parameters. The system chooses a surface repaeardgccording to the surface
curvature information. For example, flat surfaces are sspred by triangles while highly
curved surfaces are represented by points. PMR takes asammint cloud and does the
triangulation using Voronoi regions. This system does a&etpolygonal models. The
design philosophy of our rendering system is very close &b ofi PMR. The idea is that
more planar surfaces are more efficiently rendered withgtes. Points are best used for
surface areas with high variations. Certain metrics baseplamarity measures need to
be applied to cluster surfaces for proper representatidnamdering. More details on the

clustering metric and algorithm are provided in Chapter 3.

11

2.4 3D Surface Simplification and Clustering Techniques

In this study, we are interested in clustering 3D model swdainto patches for either
point or triangle representation. Although surface sifigation is not the focus of this
study, it is in some aspect related to surface clusteringa8e simplification is the process
of generating simpler versions of detailed geometric sarfanodels. In this study, one
surface simplification and clustering technique is of oderest. A quadric error metric
was proposed for surface simplification by Garland and Hekl9]. Their algorithm is
based on pair contraction, which iteratively contractsspaf adjacent vertices to a single
new vertex according to a cost function. The cost functiobased on a 44 symmetric
matrix associated with each vertex. The matrix is relatetthéosum of distances from the
vertex to the planes associated with it. Initially, the embeach vertex is O because the
planes associated with each vertex pass through it. Thegmows as vertex are combined
together. This metric is used later on by Garland for surfdastering [10]. The only
difference is that no actual contraction is performed irdstering algorithm. The method
is fast and general. Because the metric is a measure of theatated distance of planes
to a vertex, itis a indication of the planarity of the clugtgr which is the criteria this study

uses to decide on the patch representation (point or teqxng|

Chapter 3

Methodology

3.1 Research Goal and Contribution

The goal of this study is to build a hybrid real-time rendgraystem. The system is com-
posed of two parts, the preprocessor and the renderer (eaths ghown within dashed

lines in Figure 3.1). Shaded blocks represent key algosthmthis study. Given a 3D

triangle model as input, our system is able to cluster theahsarfaces into patches. The
clustering is based on the planarity of the surf&&2). Either points or triangles are se-
lected as the representation for each individual patclchPaimpling algorithms are used
to obtain point data. Then, the system organizes thesegmitcto an octree. The rendering
of the model is a tree traversal process. A traditional patygendering pipeline is used for
triangle patch rendering. A point-based rendering pigetipplying splatting techniques is

used for point patch rendering. A hardware acceleratedemehtation is provided for the

12

13

point-based rendering pipeline, utilizing hardware wedad fragment shaders in modern

graphics boards, to achieve interactive frame rates.

The contributions of this study are two-fold. First, a twaaph clustering algorithm based
on Garland’s quadric error metrics [10] is used to genematiase patches and build hybrid
models. Patch representation is independent of the viepangmeters because patches are
generated based on the object space surface geometrimatfon. Our method success-
fully identifies highly varied areas (point representafion a 3D model from those planar
areas (triangle representation). Second, unlike previgbsid renderers, our rendering
system treats points and triangles as equivalent primsi{ieost previous hybrid rendering
systems treat points as the previewing primitive). The eeadis able to choose the best
representation to ensure both rendering quality and sp@ed.extension of this renderer
could be level of detail (LOD) management. There could be aridel hierarchy com-
posed of a tree with different LODs associated with each nthaesystem could pick the
appropriate set of nodes (a cut through the tree) for rengexicording to a cost function.
The cost function could have input as viewing parameteroémer related parameters. We
implement the complete point-based rendering pipelinenfpmint sampling to hardware
point-based acceleration, which parallels the tradilitnangle rendering pipeline. Our
rendering system gives the user great flexibility to chobsedesired primitive to render

parts of a 3D model.

14

| 3D Polygona ' N View frustum culling
: Model ! i !
! e | |
: Y L Triangles Points !
1 (™\ \ ! 1
i | Two-phase | | | : i
! surface Vol Y Y :
E | clustering)] Traditio'nal p_olygor Visibility splatting|
! + | 1+ | rendering pipeline (vertex and :
| vl fragment shader)
\ \(: 1 1
: Point L :
| samplin - :
| PANg - Y |
E - ~ ! EWA filtering !
i o (vertex and E
: Y o fragment shader) |
. | Hybrid octree| | S
E representation N e -

Figure 3.1: Schematical overview of the hybrid rendererr@mdiering algorithm.

3.2 Surface Clustering Algorithms

In this section, we lay out the foundation of Garland’s scefaimplification and clustering
algorithm. First, we define the quadric error metrics usdubitihh surface simplification and

clustering. Then we describe our two phase clustering elkgor

15

3.2.1 Quadric Error Metrics and Surface Simplification

One common strategy of surface simplification is caltedative edge contraction The
basic idea is that during each iteration, an edge is selentddhe incident vertices are
replaced by a new vertex with proper updating of the edgescagsd with the old ver-
tices (Figure 3.2). The position of the new vertex is decidiler by picking one of the
old vertices or by finding the optimal position that représenminimum modification of
the surface. Both need a cost function to evaluate the effebieacontraction operation.
Therefore, picking the right cost function is the key to theess of this type of simplifica-
tion algorithm. Naturally, we want to contract verticesttage similar. To do that, we need
a measure to quantify similarity. One heuristic is the ptapaf the local environment of

the vertex. A quadric error metric [9] is an efficient way toasare planarity.

Figure 3.2: Edge contraction example [9].

First, a set of planes are associated with each vertex in ttemThe initial selection of

planes are the incident triangles of the vertex. Each pkdefined by

nv+d=0 (3.1)

16

.
wheren = { ab c } is a unit normal (i.e.a® +b? + ¢ = 1) andd is a scalar constant.

T
The square distance of a vertex { Xy z} to the plane is given by

D?(v) = (nTv+d)? = (ax+ by+cz+d)? (3.2)

The error at each vertexis defined as the sum of squared distances of the set of ghanes

associated with the vertex

Err(v):z Z (nfv+4d)? (3.3)

Itis noted that initially the error at each vertex is zeroduese each vertex is the intersection
of the associated planes. For any contractonv,) — v, a new error needs to be derived.
Ideally, the union of the planes from each vertex needs twbgated and the error needs
to be re-calculated by Equation 3.3. To do this, we need tp kexking a list of planes
for each vertex (new or original). This has two disadvargagérst, the amount of storage
increases as the simplification goes. Second, the computedist is proportional to the
number of planes associated with each vertex. It would be tachave both constant
storage and computation for each iteration. Garland [9ppsed to use the summation of
the error calculated by Equation 3.3 for each vertex to segrethe error of the new vertex.

To see how this is practical, we can rewrite Equation 3.1 bews:

D?(v) = (nTv+4d)?

17
= (vin+d)(nTv+d)
= (v nnTv+2dnTv+d?)

= (VI(nnT)v+2(dn)Tv+d?) (3.4)

We can define guadric Qas a triplet

Q= (A,b,c) (3.5)

whereA is a 3x 3 matrix,b is a vector ana is a scalar. The quadric assigns a va(@)

to every vertex by the equation

Q(v)=Vv'Av+2bTv+c (3.6)

Comparing Equation 3.6 to Equation 3.4, we have

D?(v) = Q(v) (3.7)

a® ab ac ad
ab B bc bd

ac bc & cd

ad bd cd @&

18

This is calledfundamental error quadri¢9]. Therefore, the error defined in Equation 3.3

can be rewritten as

Ermq(v) =Y D2(v) = Y Qi(v) =Q(v) (3.8)

| |
Each vertex is associated with a quadric matrix and the qu&ifor any new vertex
v from a contraction of an edgei,v;) is Q = Qi+ Q;. And the cost of contraction is
Q(v) = Qi(V) + Qj(v). By doing this, the cost of storage and computation for eactexe
at every iteration is constant. We can findy solvingv = —A b, which gives the optimal

solution if A is not singular. The simplification algorithm is summarizedlgorithm 3.1.

Require: Initialize the quadri€; for each input vertekand a heajpl for sorting contrac
tion cost
1: for each vertex paifvi,v;) do
2: ComputeQ = Q; + Q;j
3: Computev
4: Compute the contraction co®(v) = Q;(V) + Q;j(V)
5. Place pair irH keyed on cosQ(v)
6: end for
7: repeat
8: Remove the paifvj,vj) from the top of the heap.
9: Perform contractionvj,vj) — v
10: Setthe new quadriQ = Q; + Q;, update the remaining pairs and the heap
11: until the desired approximation is reached

Algorithm 3.1: Simple surface simplification using quadric metric

3.2.2 Surface Clustering Using Quadric Metric

Garland [10] also applied the quadric error metric in swefalustering. Rather than doing
the actual contraction, the modified algorithm groups sinsurfaces together. The output
of the algorithm is a hierarchy of surfaces (Figure 3.3).tidlly, each triangle face is

represented as a leaf node in the hierarchy. For each d@erdtie algorithm combines two

19

Figure 3.3: A tipical face hierarchy of a patch with 4 triaggl Initially each triangle is a
cluster. Then red triangles form a cluster and green treanfgirm another cluster. Finally
the two clusters are combined into the root cluster.

nodes and forms a new node based on the error metrics. Thete@differences from
Algorithm 3.1. First,Q is calculated as the distances from different vertices ¢ohtist
fitting plane of the vertices. Second, the final result is aged. Assuming each node has a
set of faceq f1, ..., fn}, a set of verticegvi, ..., vk} and a least square best fit plane to this

set of vertices, the fit error of a given plane' +d =01s
Efit = E (n'v-+d)2 (3.9)
fit =1 i [.

wheren is the normal of the plane amtlis the offset. Similar to Equation 3.4, the equation

above can be rewritten as

(nNTv+d)? =nT(vjv!)n+2dvn+d? (3.10)

20

If we define a quadric

R = (Aj,bj,c) = (ViViT,Vi,l) (3.11)

then Equation 3.10 can be represente® as d). The total error is then

Efit = %zﬂm,d) = % (z P.) (n.d) (3.12)

Therefore, we can represent the cost of combining two nogésdosum of the quadrics of

each nodgR + P;) (n,d).

One challenge of the modified algorithm is to find the bestfitplane of the vertices. The
technique used in Garland’s paper is based on principal oo analysis (PCA). The

basic idea is to find the plane by first using the covarianceimat
z- L S m-nm-9" (3.13)
T k- 1; ' ' '

wherev = (zvi) /k. The eigenvector with the least eigenvalue is the normdleptane.

|
It can be proved that the average of all the positions of thiéces is a point on the plane.
In practice, Garland adds two more metrics to do the clusgefThe first i€y, a measure

of the deviation of the plane normalfrom surface normals:
Eair = = 3 wi(1—n"np)? (3.14)
W |

wherew; is the area of facd; andw = ¥ w; is the total area of the face cluster. This metric
|

avoids surface folding back within a cluster. It can also besented as a quadric. The

21

second isEshape This error metric is to control the shape of the cluster,ohiakes the
cluster as circular as possible by taking into account teavaand perimetep relationship

of the cluster. The clustering algorithm is shown in Algionit 3.2.

Require: Initialize the quadrid for each input faceand a heapl for sorting contractiot
cost
1: for each node paifnodg, node;) do

=]

Remove the paifnode,node;) from the top of the heap.
Create a new node in the hierarchy

9: Setthe new quadrie, update the remaining pairs and the heap
10: until the desired level of clustering is reached

2: Compute the best fit plane" 4+d = 0 for the vertex S&¥node U'Vhodg
3. Compute the cost of mergin@® + P;) (n,d)

4: Place pair irH keyed on cost

5. end for

6: repeat

7:

8:

Algorithm 3.2: Simple surface clustering using quadric metric

We assume the input mod# initially having n valid node pairs. The goal is to produce

a cluster hierarchy having cluster trees. Each iteration combines two nodes and forms
a new node. We also assume that the maximum node degree iddabbyg a constant

k, this gives an upper bound on updating the neibouring node ger pair contraction.
Constructing all the initial quadrics tak€gn) time. Placing all the resulting candidates in

a heap require®(nlogn) time. Thus, the total complexity of initialization @(nlogn).

For each iteratiom of the clustering, we need to select the minimum cost panirect it,
and update the local neighborhood. Selecting the minimwhmair take(log(n— 2i)).
Contracing the pair and updating the neighborhood reqDiidog(n— 2i)). The total

complexity for each iteration is therefo@{log(n— 2i)). Summing over all iterations, the

22

total cost for the clustering is

logn+log(n—2) +log(n—4) +...+logm

<logn+log(n—1)+log(n—2)+...+logm

which is simply

!
Iog% =logn! —logm! = O(nlogn— mlogm)

Thus, the overall complexity of the clustering algorithn©iglogn).

3.2.3 Two-phase Clustering

Based on Algorithm 3.2, we use a modified algorithm to find tret bepresentations of the
input model. The heuristic is that the higher the variatibtihe surface, the more efficient it
is to represent and render the surface using points. A quador metric is a good measure
of the planarity of the surfac€3.2.1), which is an indication of the surface variation. The
algorithm goes in two phases. The first phase is exactly time s Algorithm 3.2. The
algorithm clusters surfaces based on a predefined plamardy threshold. The maximum
size of a cluster is also set in phase one. All three erroriase(Erit, Eqir and Eshapd
are turned on in phase one. Before the second phase, thellatgonarks all the clusters
resulted in phase one. Because the error measure is set imsthehtase, the clusters at
the highly varied areas of the model tend to be smaller thasettat the planar areas of
the model. The second phase tries to combine these smakduand outputs clusters

in similar shapes and sizes. Therefore, in this phBEggyeis turned onEyiy andEgjr are

23

turned off. We add a new error measliig,. This is a measure of the size of the patch,
which applies more penalty on merging larger patches. Thdyrfermed clusters will be
unmarked. The output of the two-phase clustering algoriihso a surface hierarchy.
The marked clusters will be represented using triangledewimmarked clusters will be

represented using points. The algorithm is summarized godthm 3.3.

Require: Set the planarity error threshold, set the maximum size dister
1: turn onEyit, Egir andEshape{Start phase onje

Run Algorithm 3.2

Mark all the resulting clusters

Turn off Efy andEyj,, addEg;jze {Start phase twp

Run Algorithm 3.2

Unmark all the newly created clusters

Algorithm 3.3: Two-phase surface clustering

3.2.4 Level of Detail (LOD) Control within Clusters

The two-phase clustering algorithr§3(2.3) does not change the geometry of the input
model. The cluster hierarchy is at the highest LOD. Duringdeging, it is not always
necessary to render the cluster using the highest leveltail dEor example, if the screen
projection of the cluster is relatively small, it is enoughrender the cluster at a lower
LOD. It will be nice to have some sort of LOD control within skers. In this section, we
concentrate on LOD on triangle clusters. we talk about LODpoint clusters in Section

3.3.

For each triangle cluster, we could build a series of sunfetehes with decreasing LODs.
For simplification purposes, we could use Algorithm 3.1 clise However, Algorithm 3.1

does not preserve boundaries during the simplificationge®clt could be possible to leave

24

holes between clusters if the boundary edges are contrdatedy simplification. Garland

[9] provides a solution to preserve boundaries of modelk asderrain height fields, which
could be used here. First, we will need to mark all the bounddges during clustering.
For each boundary edge, we could generate a perpendicalae giirough this edge. This
plane can be easily converted into a quadric. Then Algori8ibcould be applied on this
cluster. Because the high penalty imposed by the added plaoesdary edges will avoid

being the target of edge contraction. This technique is tespreserve color discontinuities

of a surface patch by Garland [9].

3.3 Point Sampling Algorithms

In this section, we describe the point sampling algorithmuaeto sample the patches from
the two phase clustering algorithm in the previous sectid.first define point samples,

and then talk about the algorithm and the sampling pattedrsampling density.

3.3.1 Point Sample Definition

To represent a 3D surface with points, each point is actaallgriented disk (Figure 3.4).

First, we need three scalars to represent the spatial cadedi of a point and three scalars
to represent the color of the point (one scalar for alphasfrarency can also be added).
A normal vector is also needed. We need a radj® represent the size of the disk. To

perform anisotropic EWA filtering, two tangential vectd$T) are needed. The normal

25

and the two tangential vectors form a local coordinate systethe point. Tangent vectors
can be calculated on the fly during renderif8.4.1), therefore, we don’t have to save these
two vectors. The complete data representation of a poinpEawith the above informa-
tion is called a surface element or a surfel [23]. Therefarsurfel is a multidimensional
representation. Other information can also be incorpdragach as texture coordinates.
Further more the most accurate representation of a poirpleasnot by symmetric disk,

but by an ellipse, whose axis correspond to the two tangenorse

Color __—Normal

Position

Radius

Figure 3.4: Surfel definition.

3.3.2 Surface Sampling

The output of the two-phase clustering algorith§8.2.3) is a set of triangle patches. Our
heuristic is that patches generated during phase two emrégyhly varied areas on the
surface, therefore, it is more efficient to render them bys0iThe goal of this section is

to find a surfel representation of the triangle geometry bgglsampling. Surface sampling

26

needs to meet two requirements. First, the sampling rat¢ohas high enough to record
the details of the model. Second, we need to choose the rafiibe surfel disk carefully

to ensure a waterproof surface reconstruction.

Figure 3.5: Concept view of the sampling algorithm. This feganly shows sampling rays
from one face of the bounding box.

We use a method similar to the one used by Pfister et al. [234.bHSIic idea is to sample
the patch from three faces of the bounding box of a patch gireay casting (Figure 3.5).
At each intersection point between a ray and the patch, alsarfreated with its position
and normal. Because triangle patches are used, we take ageaoftbarycentric coordi-
nates of each triangle to do normal interpolation. If neaggsave also do the barycentric
coordinates interpolation to calculate texture coordisatnd color values of each surfel.
Perturbation of the surface normal or of the geometry for ppamd displacement mapping
can be performed on the geometry before sampling or duripgaating using procedu-

ral shaders. To simplify the sampling process, we use the aigned bounding box to

27

generate the sampling grid. The detailed sampling algarighlisted below

Require: Initialize the Surfel Cloud (a list of surfels) of the patch
1: Generate the axis aligned bounding box of the patch
2: Compute the sampling distand® of the patch
3: for each face of the bounding bobo
4: Generate the sampling grid
5. for each ray on the grido
6: for each triangle in the patdo
7 Compute the intersection of the ray and the triangle
8 if intersection is in the triangléden
9 Generate a surfel with the intersection as the position

10: Compute normal, texture coordinate, color and etc throutgrpolation
11: Set the radius of the surfel

12: Add the surfel into the Surfel Cloud

13: end if

14: end for

15: end for

16: end for

Algorithm 3.4: Surface sampling through ray casting

Line 3 of Algorithm 3.4 only needs to be executed three tinexsalnse parallel faces of the
bounding box produce the same sampling grid. If we assumbdbeding box is a cube
and there ar@? (n is the number of rays per side of the grid) rays per samplii gfso
we assume the number of triangles in a patch,ighen the complexity of the sampling
algorithm isO(mr?). One way to improve the efficiency of this algorithm is to buén
octree for each triangle patch. This saves some cost omieagle intersection calculation.
Because the sampling is a preprocessing step, it does not #feerendering speed. For
simplicity, we do not use the octree for each patch. We calrésulting sampled patches

surfel clouds.

Line 2 of Algorithm 3.4 computes the sampling distanteof the patch. This value is used

to set the sampling grid distance. As was observed by Lis&khand Rappoport [19], the

28

imaginary triangle mesh generated by this sampling probassa maximum side length
Smax Of v/3h. The minimum side lengthmin is 0 when two or three sampling rays intersect
at the same surface position.siax is less than the radius of the surfel (surface reconstruc-
tion filter, see Section 3.4.1), we can guarantee a watefrp@aot sampled surface [13].
Originally, we choose a global sampling distankgthat is the same across all the triangle
patches. The problem with this is that some patches are sadgsled, with a resulting loss
of surface detail. Therefore, we let the algorithm adjustsampling distance per patch.
The sampling algorithm calculates the average side lehptt {riangles in a patch and set
the sampling distance ds= l—: wherec is a constant scaling factor. A typical choiceof

is 4. The geometric interpretation is that we make sure taereanore than one surfels per

triangle after sampling (see detailed results in Chapter 4).

Another issue we consider when applying the sampling dlgoris the boundaries be-
tween surfel cloud patches and triangle patches. The comedne possibility of leaving
holes at the boundary area. The actual rendering resulbigxlinis situation very rarely
(We explain the reason in Chapter 4). Therefore, we do notase the sampling rate along

the boundary areas between triangle patches and surfel pktahes.

In section 3.2.4, we discussed the LOD control for trianglé&cpes. It is also possible to
do LOD control for surfel cloud patches. Our sampling gridegular and we assume the
number of sampling rays for each side of the grid is a power. && ully sampled patch
(highest LOD) has rays per side and grid distanbeTo get a patch that is one level less
detail, we could havé rays by picking every second ray in the first sampling grid and

double the grid distanck. By doing this recursively, a series of LOD patches could be

29

generated until one of the three sampling grids has only ape r

3.4 Point-based Rendering Algorithms

As discussed in Section 3.1, the rendering system orgapaehes into an octree rep-
resentation. The rendering of the model is a tree traversalegs. Traditional polygon
rendering pipeline is used for triangle patch renderingntPlmased rendering pipeline ap-
plying a splatting technique is used for surfel cloud pathdering. In this section, we
first give a brief introduction to EWA and then discuss in ddte hardware accelerated

multi-pass point-based rendering algorithm.

3.4.1 EWA Splatting Framework

Elliptical weighted average (EWA) filtering was first proposby Heckbert [15] for appli-
cation in texture mapping. Zwicker et al. formalized theriework in the application of
point-based rendering [35]. It is essentially an anisatr@ifiering technique that in theory

avoids aliasing.

Let B be a set of points which defines a 3D surface. Each point hasitigpoand a normal.
As discussed in Section 3.3.1, the point set is essentiaigt af surfels. We assign a color
coefficientwy for each point. We need to define a continuous texture fumdijaon the
surface represented B}. To do this, each point is associated with a radial functjpat

the center of the point. We call these basis functions at paictt reconstruction filters, due

30

to the fact that they form a continuous surface from the discpoint sef;. If there is a
point on the surface with local coordinateshen the continuous functiofz(u) is defined

as the weighted sum:

fe(u) = 5 widrie(u—u) (3.15)
keN

whereuy is the local coordinates of poifk.

This is illustrated in Figure 3.6. Poir is a point anywhere on the surface. A local
parameterization of the surface in a small neighborhodg cdin be constructed. The color
value ofQ is the sum of the contributions of its local neighbors. Beeahs basis function
of each point has a cut off radial range, pdiylies in a small number of basis functions.

local parameterization
3D object space » 2D parameterization

““small neighborhood
around Q basis function ri(u-uy)

Figure 3.6: Defining a texture function on the surface of apsampled 3D model [35].

During rendering, each basis functignis warped from object space to screen space. Itis
possible that some of the screen projection of the basigimscwill be sub-pixel sizes,
creating aliasing artifacts. Therefore, we need to bamit-the warping of by convolving

it with a prefilterh. his related to the Nyquist limit of the screen pixel grid. Udypéa is the

31

identity matrix for unit-spaced pixels. This output furmctican be written as a weighted

sum of screen space resampling filtg(x):

9e(X) = > Wiok(X) (3.16)
keN
where
Pr(X) = (rig@ h) (x— m(uk)) (3.17)

wheremy is the local affine approximation of the projective mappirrg m(u) for the point

Ux. This approximation is given by the Taylor expansionot uy:
M (u) = m(u) + (U —) (3.18)

whereJy is the Jacobiad = 42 (uy).

We choose elliptical Gaussians as the basis functionsristaction filters) and prefilters.
Gaussians are closed under affine mappings and convolutioch means the resampling

filter is also a Gaussian. If the 2D elliptical Gaussian isrofias:

1 xv—1x
Gy(X) = e 7 (3.19)
2m|V|2

whereV e 02, the object space resampling fillef(x) can be represented as:

Gvererfl(Jk—l)T (u—u) (3.20)

32

whereVj is:

R 0
0 R?

(3.21)

andRis the maximum distance between surfels, which is relatetitface sampling rate.
In our caseR is the same as the grid sampling distamcg3.3.2). The screen space

resampling filtep) (u) can be represented as:

1
|Jk_l} GJle{J,IJrI (x = mi(U)) (3.22)

Now we need to evaluate the Jacobianlf we assume that the transformation from object
space to camera space only contains uniform scaling, oatatid translation, a pointin

camera space can be represented as:
P°(u)=O+us-S+ur-T (3.23)

whereO = (Oy, Oy, O;,) is the point’s position in camera spa@®s= (S, S,,S,) andT =
(Tx, Ty, T) are the tangent vectors in camera space [27]. Next, we mapdinés from
camera space to screen space. This includes the projeotittre image plane by per-
spective division, followed by a scaling with a factgrto screen coordinates (viewport
transformation). The scaling factgris determined by the view frustum and computed as
follows:

(3.24)

hy
n=-—%°
n

33

wherehy is viewport heightt andn are the standard parameters of the viewing frustum.
Hence, screen space coordinatesx;) of the projected point are computed ag &ndc;

are given translation constants):

_ n . OxtusStur-Tx
Xo=n Oz+Us S+ur-Tz +Co

— _ .9 usStur-Ty
X1=-n- Oz+usSHur-T; +C

(3.25)

We approximate the Jacobian at the center of the point,ftvexét is the partial derivative

of Equation. 3.25 evaluated @is, ut) = (0,0):

= (0,0) (3.26)

which is:

1 SO; - S0 TxO; — TOx
n-— (3.27)

S0,- S0y T,0,—T,0,

Figure 3.7 shows the process.

3.4.2 Hardware Implementation

Due to the recent development of graphics hardware, thewaaedimplementation of
point-based splatting algorithms based on EWA filteringasgible. To achieve this, we
employ hardware vertex and fragment shaders. The impletients a multi-pass render-

ing process, namely, visibility splatting, EWA filteringénormalization. Our implemen-

34

xxxxxxxx

xxxxxxxx /.»-" . .
o localsurface parameterization
xxxxxx]
X K O® 5,.’7("-"* X x
x_/,:v'”';’ X % x X X
| i ’,,.,-/" screen space object space

camera space

Figure 3.7: Calculating the Jacobian [27].

tation is mostly based on the hardware point-based pipplioposed by Guennebaud and

Paulin [14].

Visibility Splatting

To render water-proof surfaces with point samples, we neeiarantee the overlapping
between surfel projections. Because there is ho connectformation about point sam-
ples, we can only assume that neighboring surfels form tbal Ipart of a 3D surface.
For each pixel on the screen, we need to blend contributimms heighboring surfels. It
should be noted that blending does not happen just becagipedjection of two surfel on
the screen overlap. We assume that it is only possible fot afsirfels to form a local
surface if the depth values of these surfels differ by no nioae a threshold and blend-
ing only happens if the condition is true. Therefore, the faa@ss is to render the correct

depth buffer for blending and avoiding artifacts. To enstogect blending, the depth im-

35

age should be translated away from the viewpoint by a smisébfFirst we calculate the
screen projection size of each surfel and render a squate@tieen. The vertex program
calculates the point size according to the surfel normahaaa parameters. The equation

for point size is defined as:

) h
size— 2R. 1. Vo

= 1B (3.28)

wheren, t andb are the standard parameters of the viewing frustumhgpds the height
of the viewport. z- is the depth value in camera coordinatésis related to the surface
sampling rate. In this implementatidRjs the maximum distance between two neighboring

surfel centers§3.4.1).

The rasterization resultssizex sizeimage-space square. The fragment program does the
per-pixel depth correction. We use the approach by Bostdl gt] to find the object space
coordinates of the pixel and each pixel's actual depth. Athagugh the eye and the pixel
on the near plane intersects with the surfel and yields thesponding point on the surfel
(Figure 3.8). The actual depth can be easily calculated. igecthe fragment position is
in window coordinates, a 2D transformation of the coordisas applied to each fragment

position before doing ray casting. The transformationvegiby:

Q=] QPxZA_— (3.29)

whereQc is the pixel position in camera coordinateédy, is the window position of the

pixel. wyp is the width of the viewport. Because we have the intersegimnt, we can

36

calculate the true depth of each pixel and normalize thehdeptween—1,1]. The final
step is to add a small offsetalong the ray for proper blending of surfels. We also compute

the minimum and maximum depth value and kill all fragments #re not in this range.

normal

y’ intersecting
..................... e

Figure 3.8: Camera space ray casting for per-pixel deptiecton.

EWA filtering

The EWA filtering pass is very similar to the previous sectidfe need to calculate the
color value for each surfel. During rendering, blendinguisied on. The blending factor
for both color RGB and alpha are one. Therefore, the resuitarge buffer pixel value is
calculated as:

Colord&ga= ColorRSs .+ Colorspa (3.30)

prev . i i@ in ut
whereColorgsgais the previous frame buffer value for a pix€lplorg;gandColoREga
are the incoming and resulting color values respectiveptb comparison is also turned

on. Any incoming fragments with depth values greater thasehin the depth buffer are

37

discarded. In this pass, we don’t update the depth buffeasecthe previous pass already
produces the correct depth buffer. In the vertex programcaleulate the screen space
resampling filter (Equation. 3.22). The vertex program alglgculates the lighting infor-
mation. Because the Gaussian resampling kernel is compuotedon a limited range, we
choose a cutoff radius, such that’%‘ < ¢ (typically c = 1). Therefore, the point size

calculation of each surfel becomes:

h
size— 2v/2cR. . 1P
Zc t—Db

(3.31)

In the fragment program, we test the membership per surfgigel using% < cand
kill any pixel that is outside the surfel ellipse screen potion. The final color is calculated
after texture lookup. The color value of each pixel is atsad by the weight calculated by
the Gaussian resampling filter. Therefore, the final franfiebis the accumulation of the
blending of surfels. To avoid color clamping, a scaling éacteeds to be applied to each
pixel. The scaling factor is chosen to be proportiona&;owhereR is the radius of the
reconstruction filter. Figure 3.9 is a rendering result otifed disks. The blending effect

is clearly shown.

Normalization

Due to the irregular sampling of point models and the trunoatf the filtering kernel
(when the radius is larger than a threshalthe contribution of a surfel to a pixel is zero).

We can not guarantee that the summation of the weight of aaehipthe same. Therefore,

38

Figure 3.9: Blending effects of the EWA filtering pass of fourfel disks.

each pixel color is normalized by dividing by the sum of thewamulated contributions,
which is stored in the alpha channel of the resulting coltueran the second EWA filtering
pass. The final result can be rendered as a texture mappedlgijadhe frame buffer is
first copied into a texture. A simple four-sided polygon {eegle) aligned with the near
plane of the viewing frustum is then rendered with the textlihe rectangle is supplied to

the hardware by GIQUADS in OpenGL.

Chapter 4

Results and Discussion

4.1 Surface Clustering

Figure 4.1 shows the result of the Garland’s surface clugelgorithm applied on a cow
model with 5804 faces. This is actually the phase one of oargghase surface clustering
algorithm. Each triangle in the input model is initializeslaacluster. Each neighboring pair
of triangles form an edge. The cost of contraction for eaafeed calculateds@.2) and
inserted into a heap. Before clustering, the user needseraipecify the cost threshold or
the number of clusters needed. In our system, the user ne@dsvide the cost threshold
because this is an indication of the planarity of the surfatlee cost threshold may be
negative. Figure 4.1 shows that the higher the thresholthtiger the number of clusters.
Therefore, higher cost value of an edge implies the two etgstonnected by the edge is

less planar.

39

40

(@) (b)

Figure 4.1: Phase one clustering result of the cow model4388ngles) with different
cost thresholds. (a) 0.033, (b) -0.19, (c) -0.96. Each efustrepresented by one color.

41

Figure 4.2 is the wire frame result of the phase one cluggaalgorithm. High variation
areas in the model, such as the head of the cow, need lots btsamayles to define in order
to avoid detail loss. Some of these triangles are close &l pixe. These are the areas that
we want to represent using surfel clouds. In phase two, welsl@gatch size as the new
measure for the cost of edge contraction into the total codtramove the planarity and
direction measuresB8.2.3). Before continuing the clustering, the cost of eadeateeds
to be recalculated and the heap updated. The user also megdwide the cost threshold
for phase two. In this phase, the cost threshold is an indicatf the size and shape of the
resulting clusters in the model. It should be noted that éone patches, there is no clear
choice of triangle rendering pipeline or point renderinggbine. The cost threshold can be
used to control whether or not the user wants more triangighpa or more surfel cloud
patches. Higher cost threshold produces more triangldeatehile lower cost threshold
produces more surfel cloud patches. If the cost threshaldlsdo the maximum value in
the heap, the output is the same triangle model from phasdfdhe cost threshold equals
to a minimum possible value, the output is a completely $eté@id model. Therefore, by
changing the cost threshold, our system provides the ulexfuirol of how the model is
to be constructed. The result of the phase two clusterimgy pftase one is shown in Figure
4.3. After this phase, small patches in high variation aressch as legs and head, are
combined together. After the two phase clustering, we hatehes of comparable sizes

and ready to do the patch sampling and build the octree badeaimodel.

42

Figure 4.2: Wire frame of the phase one clustering resubh@itow model. Cost threshold
is -0.19.

43

(@) (b)

Figure 4.3: Phase two clustering result of the cow model 458@ngles) with different
cost thresholds. (a) -0.07, (b) -0.16, (c) -0.42. (The dustshold used in phase one of this
example is -0.19, see Figure 4.1(b))

44

4.2 Surface Sampling

We calculate the axis aligned bounding box for each triapgkeh and the average edge
lengthl of the patch §3.3.2). 1 is used to evaluate the sampling grid distancé,iwhere

c is a scale factor. Larger values oproduce more samples in a patch. Wiwaa greater
than 1, the triangles in a patch have at least one surfel gsaompaverage. In practice, the
value of 4 forc produces nice sampling result. Sometimes the valugeccﬂn be too big
(reduce sampling quality) or too small (increase samplimg}. To avoid either situations,
we apply a maximum and minimum sampling grid distance. lushde noted that the
sampling grid distance is related to the side length of thendang box. It makes no sense
to just provid the grid distance without mentioning the sst¢he bounding box. All our
sampling is done on models that are bounded by a boundingikexo$§[1,1,1]. Any
models that are bigger or smaller are scaled accordinglyreefampling and scaled back
for rendering. Figure 4.4 is a rendering of a small percentafgsurfel samples of a fully
sampled model. Because the body of the cow is aligned with btfeeaaxes, the pattern
of regular grid is clearly shown in the figure. It can also beiceal that some surfels
have positions close to each other and almost overlap coatyplduring rendering, this
redudnant overlap is the major cause for frame rate dectiaabat fragment shader is

doing redundant calculation for the same pixels.

The ideal sampling is to have the least overlapping amorfglsamples while guarantee-
ing that there are no holes between surfels. This is a hatalgoand is a whole research

topic, which we do not address in this study. Wu and Kobel} [8évides a technique to

Figure 4.4: A rendering of partial point samples of a fullygded model.

45

46

optimize point sampled models. The technique uses a greedggure to first guarantee
sufficient overlapping in order to provide a hole-free scefathen it undergoes a global
relaxation procedure. The idea is to iteratively repladessts of surfels by new sets that
have fewer elements or at least a better surfel distributtanther more, Wu and Kobelt
use elliptical surfels rather than circular surfels. Theliptical surfels have their major
and minor axis aligned with the surface principal curvatlirections and scaled according
to principal curvature values. If we apply this techniqueur sampling step, the model
generated will have fewer surfel samples, which could pattiy increase the rendering

speed.

4.3 Hybrid Rendering Pipeline

We have implemented our hardware accelerated hybrid remgdpipeline with OpenGL
and C++ in Microsoft Visual Studio Dot Net 2003. Performanes been measured on a
2.8GHz Intel Pentium4 system with 768 MB memory with Windo¥ operating system.
A standard OpenGL polygon rendering is used for trianglelpaéndering. Hardware

vertex and fragment shaders are used to render surfel cktatigs.

4.3.1 Hardware EWA Rendering

We implemented our EWA algorithm with standard OpenGL AR&tex Program and

ARB_FragmentProgram extensions supported by Radeon 9x00 from ATl and i@eFX

a7

family from NVidia. We tested our implementation on a Gefedt¥ 5950 Ultra GPU. We
attempted to also run our shaders on an ATl 9800 Pro GPU withatcess. The reason
is that one of the internal variables defined in the ARBgmentProgram specification,
fragment.positionis not supported by ATI boards. This variable stores thedawm co-
ordinates of each pixel. We need this information to do nafed intersection 43.4.2,
Equation. 3.29). It is noted that both vertex and fragmeogjams are written in low level
assembly-like code. We also have shaders written in thstl@eenGL Shading Language
(GLSLang). GLSLang is a high level shading language. Algtothe code is significantly
shorter than that written in low level assembly language dirrent compiler provided by
NVidia is not able to produce efficient low level code fromthnigvel code. Therefore, high

level code is only able to run in software mode rather tharaimware.

Visibility EWA Normalization
Splatting Filtering

Vertex Shader 37 86 -

Fragment Shader 8 11 3

Table 4.1: Number of instructions needed for each pass.

Table 4.1 lists the number of instructions for each pass efféwrdware rendering. The
vertex shaders are much longer than the fragment shadersadie as much calculation
to the vertex shader as possible. The reason is that duntgreg many fragments are
rasterized needlessly while OpenGL point primitive hasdla axis aligned square on the
window. Even though the fragment programs are very simpéeohserve a slowdown of

two-fold in comparison with the case where the fragment g are disabled.

Figure 4.5 shows the rendering results of each pass of theramel. Figure 4.5(a) is the

48

(©)

Figure 4.5: Rendering results from different passes (apwitsi splatting, (b) EWA filter-
ing, (c) Normalization.

resulting depth buffer of the visibility splatting pass. eTtepth buffer is transferred away
from the camera for an offset(§3.4.2). It is very important to choose an appropriate

This is illustrated in Figure 4.6. Assume the surfels in thslted ellipse forms the local
surface, we want to blend these surfels together duringeramgl The single surfel to the
right of the dashed ellipse does not belong to the surfaceddiby the surfels in the ellipse
locally, therefore, no blending of this surfel with thosethe ellipse during rendering.

The dashed lines show the actual depth buffer offset. Becaasset the OpenGL depth

49

camera

depth offset

Figure 4.6: Applying the depth offsetduring visibility splatting.

comparison function to less than or equal, surfels in thpsalwill be blended successfully
during rendering. If we choose an offset that is too big, theltvare will blend the single
surfel on the right, causing over blending. If we choose dsetfthat is too small, we
can not guarantee the blending of surfels inside the ellipaasing under blending. In
practice, we choose the same offset value as the samplidgligtance and allow the user
to apply a scale factor to the grid distance desired (scaterfas between 0.75 to 1.5).
Figure 4.5(b) is the result of the EWA filtering pass. The grattof the sampling grid and
some banding effects can be seen clearly. Because the siefeigng the model are not
uniformly distributed on the surface, we can not guarante¢ the sum of contribution
from surfels to each pixel is the same across the frame buftegrefore, we need a third
pass to do the normalization, which is just to divide the cofue of each pixel by the

sum of contribution of each pixel. The result is shown in Fegd.5(c).

We compare the texture quality of the standard Gaussianreekitering function (without
applying the prefilter, see Section 3.4.1) to that of EWA fliftg in Figure 4.7. In Figure

4.7(a), the texture function exhibits significant aliasatdhigh frequency area. Due to the

50

(b)

Figure 4.7: Checker board rendering using (a) without EWAariiitg, (b) with EWA filter-
ing.

convolution of the warped surface reconstruction filter tredscreen prefilte8.4.1), we
ensure that the screen projection size of each surfel isst &s big as a screen pixel. Fur-
ther more, the screen projection of each surfel is an ellywbéch has its major and minor
axis aligned according to the 3D surfel orientation. Thigves very good anisotropic
texture filtering. Figure 4.7(b) shows the same square rexddegith EWA filtering (163k

surfels), which is nicely antialiazed.

As discussed in Chapter 1, sufficient densities and propeplgagrpatterns are required
for points to be effective. Figure 4.8 shows rendering tsfubm a series of point sampled
squares. It is clearly shown that higher sampling rate plewisuperior rendering quality.
From classic sampling theory, low sampling rate on a higtpfeacy signal causes aliasing.
We see this happens in Figure 4.8(a), where we get a lowardraxy texture mapped image
while the actual texture signal has higher frequency. Omther hand, high sampling rate
affects the rendering speed. Table 4.2 lists frame rateshaliaring surfel clouds of different

sampling rates. Our system maintains interactive framee(24 fps) with 320k surfels and

51

very high rendering quality. In this checker board exampgeng a grid distance of 0.007

achieves both good rendering quality and fast renderingdspe

Sampling Grid| 0.005 0.007 0.01 0.02 0.05 0.1
distance

Number of| 320 163 80 20 3 <1
surfels (k)

fps 20 31 37 64 83 154

Table 4.2: Rendering performance of texture mapped chedandlon our system on a
NVdia GeForce FX 5950 Ultra. The frame buffer resolutioni2 % 512.

4.3.2 Hybrid Model Rendering

After clustering and sampling, the rendering system omgpatches into an octree rep-
resentation. The rendering of the model is a tree traversaless. Traditional polygon
rendering pipeline is used for triangle patch renderingntPlmased rendering pipeline ap-
plying EWA filtering techniques is used for point patch remog (53.1). As showed in
Section 4.1, the two phase clustering algorithm is able ¢otifly highly varied areas on a
model and the sampling algorithm is able to convert thesasarego surfel representations

for rendering.

The patch boundary problem is mentioned in Section 3.3.& gossible that holes exist
between triangle patches and surfel cloud patches. It is nage in the actual rendering
results. The reason holes may exist is that there is no ctioneaformation between

triangle patches and surfel cloud patches. If the samphig is not high enough, there
could be pixels in the boundary area that do not get contabstfrom surfels. However, we

maintain a maximum sampling grid distanéd.), which guarantees adequate sampling

52

sedosedy
0000"

L Sttt bttd

L PS50 55800064
L OO b bt bttt dd
; ‘oo

Sed e

Lz I 22
sedbesbrer e
r aasnass s s R T S g
L As A S S A2 22 2
04000000 0e
o00¢0000000§
R s 4
#0000000
P800
ot 4

Pt st dod
SRS PR F RN

*
:
*
*
»*
*

seehoesde
‘O

‘00:0:000:00
R33seees83ss
QQOOQQQOQQOOO::Q

0 6666666666666
000000:0000 ¢

2322’233233’3.233‘223332’

 5606666666066604
00000000000000
000:0:000:

(c) Grid distance (0.007), 163k surfels.

Figure 4.8: Checkboard rendering with different sampling @) low rate, (b) medium
rate, (c) high rate.

53

for all patches. We observed that during rendering, holeserest (although very rare) at
the corner of a surfel cloud, which is surrounded by triampgitches (Figure 4.9). Because
of the regular sampling grid, the sampling algorithm isljk® miss samples at the corners
of a patch, especially when the angle of the corner is less 30adegrees. This problem

could be easily solved by adding surfel samples at each cofrtee surfel cloud.

under-sampled area at the
corner of a surfel cloud

000
(A'0A$'0'A'ﬁ-’

\ Rgh
—0""'

s
S \)

Figure 4.9: Missing surfel samples at the corner of a sutteld may leave holes during
rendering. The red lines are part of surrounding triangtetges. The two blue dots indicate
the sampling grid position at the boundary, which miss thiéesaloud patch. This leaves
empty space at the the tip of the corner.

During hardware surfel rendering, the OpenGL point priveitienders a square for each
surfel on the screen, therefore, the actual surfel cloudhpsize on the screen is bigger
than that of the corresponding triangle patch. This cremtesverlapping between triangle
patches and surfel cloud patches. Because we add a depth(68<k2) to each surfel,

at the boundary overlapping area, triangle patches haviesrdapth values than those of
surfel cloud patches. Therefore, triangle patch boundaoally overwrites surfel cloud

boundary. This is clearly shown in Figure 4.11. On the otlaard) the boundary between

surfel cloud patches are blurred due to blending. The higaempling rate, the less blurred

54

the boundary appears.

Figure 4.10: Global sampling rate. The grid distance is 0T{e frame buffer resolution
is512x 512.

Because our sampling algorithm adjusts the sampling rategcn patch, the loss of detail
is unnoticeable for most cases. Note in Figure 4.11 that ¢tineshand ears of the cow is
fully detailed. The result of using a global sampling ratehiswn in Figure 4.10. The loss
of detail at the horns and ears of the cow is obvious. It can lbésnoticed that there is

more blur between patches on the head of the cow than thagofd=4.11.

Table 4.3 (also see Figure 4.12 and Figure 4.14) lists therpcessing time and render-
ing performance of our hybrid rendering system. Some of éinelering results are shown
in Figure 4.16 - 4.20. Our system achieves interactive nengespeed (over 20 fps) for
medium sized models (less than 100,000 triangles). Theetlog algorithm takes almost
linear time in terms of the input triangle count. As the tgencount increases, the sam-
pling time dominates the total preprocessing time (Figui@y Table 4.4 (also see Figure

4.13) lists the rendering performance of the corresponttiaggle models. It is clearly

55

shown that triangle rendering pipeline has much higheroperénce than that of the hybrid
system. Note that the bottom row of Table 4.3 shows the sadetribution per pixel in
the frame buffer. We see a very high overlapping of surfedceting that the sampling
algorithm produces a lot of redundant surfels. This is thgomeause for the reduction
of rendering performance. It is also noted that the overtappf surfels increases as the
surfel count increases (Figure 4.14). During renderingsiysgem does the convolution
operation §3.4.1) which guarantees the screen projection of eachldarbe at least one
pixel size, therefore, we have higher overlapping for semaurfels (sub-pixel screen pro-
jection before convolution), which is the case at high dwdeints. It should be mentioned
here that our sampling algorithm does not optimize surfacepding distribution. This is
especially true for patches that are not aligned with anyefrhajor axes. By eliminating
the redundancy of surfels, we could achieve significantijhér rendering speed. Figure
4.15 is a visualizaiton of the overlapping of surfels in traiebuffer. As mentioned in pre-
vious sections, the rendering speed is affected by the nuaflsurfels and the degree of
overlapping §4.3.1). Increasing the surfel quantity reduces the rendespeed. Reducing
the redundant overlapping between surfels in a model im@alig decreasing the number
of surfels in the model. Another factor to rendering speetiésscreen projection size of
the surfel. The larger the screen projection, the more Gion needed for fragments.

Therefore, moving the object closer to the camera also egitie rendering speed.

56

(a) Front view. (b) Back view.

(c) Polygon patches. (d) Surfel cloud patches.

Figure 4.11: Rendering results of the cow hybrid model on a id\@eForce FX 5950
Ultra. The frame buffer resolution is 522 512.

57

Model bones cow dragon bunny terrain
triangle count 617 1533 9552 13038 22517
surfel count 43269 51731 145712 308550 1070316
clustering time 1.72 2.59 24.42 30.58 81.61
sampling time 14.13 77.31 132.63 182 555.73
fps 63 69 29 17 2

surfels per pixel | 10.9 11.2 20.7 15.8 40.1

Table 4.3: Preprocessing time and Rendering performancgboichmodels on our system
on a NVdia GeForce FX 5950 Ultra. The frame buffer resolutsohl2 x 512.

Model bones cow dragon bunny terrain
triangle count 4204 5804 50761 69451 199114
fps 968 906 130 92 10

Table 4.4: Rendering performance of triangle models on ostegsy on a NVdia GeForce
FX 5950 Ultra. The frame buffer resolution is 5%2512.

700 ~

600 -

500 A

400 A

300 -

Time (sec)

200 ~

100 ~

= Clustering
-e-Sampling
—A—Total

50000 100000 150000 200000

Triangle Count

Figure 4.12: Running times for preprocessing of differentets.

58

1000 1

800 1

600 -

fps

400 4

200 -

0 T T T T T T T T T
0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Triangle Count

Figure 4.13: Rendering performances of different triangtelats.

80 1 T 45
70 - T 40
- fps
P + 35
60 - —&—overlap
+ 30
50
[oX
n T25 ®
2 40 o
T20 O
30
+ 15
20 110
10 - 15
0 T T T T T 0
0 200000 400000 600000 800000 1000000 1200000
surfel count

Figure 4.14: Rendering performances of different hybrid ei®d The performances are
plotted with respect to surfel counts. Overlap indicatesaverage number of surfels con-
tributing to each pixel in the framebuffer.

59

Figure 4.15: Visualization of the number of surfels contitibg to each pixel in the frame-
buffer. The higher the red color the larger the number ofedsicontributing.

60

(a) 43269 surfels, 617 triangles. (b) 4204 triangles.

Figure 4.16: Rendering results of the bone model on a NVdiso@eH-X 5950 Ultra. The
frame buffer resolution is 512 512.

(a) 51166 surfels, 1533 triangles. (b) 5804 triangles.

Figure 4.17: Rendering results of the cow model on a NVdia @bX 5950 Ultra. The
frame buffer resolution is 512 512.

61

(a) 145712 surfels, 9552 triangles. (b) 50761 triangles.

Figure 4.18: Rendering results of the dragon model on a NVéBd&ce FX 5950 Ultra.
The frame buffer resolution is 512 512.

(a) 308550 surfels, 13038 triangles. (b) 69451 triangles.

Figure 4.19: Rendering results of the bunny model on a NVdiBdBze FX 5950 Ultra.
The frame buffer resolution is 512 512.

62

(b) 199114 triangles.

Figure 4.20: Rendering results of the terrain model on a N\@k#&orce FX 5950 Ultra.
The frame buffer resolution is 512 512.

Chapter 5

Conclusion and Future Work

5.1 Summary of Contributions

As discussed in Chapter 3, the contributions of this thesdwo folds. First, Garland’s
guadric error metrics based surface clustering algorithdj is modified into a two-phase
clustering algorithm to generate patches and build hybodels. Patch representation is
independent of the viewing parameters. Highly varied swrfareas are identified by our
algorithm and represented by points. Second, points aatbflies are considered equivalent
primitives in our system and can be used at all levels of etdnlike most previous hybrid
renderers, points are not used only for previewing purpo¥és have built a true hybrid
real-time rendering system. The traditional polygon reimgdepipeline is used for triangle
patch rendering. A point-based rendering pipeline applgivlatting techniques is used for

point patch rendering. A hardware implementation of EW/Aefiltg is provided for the

63

64

point-based rendering pipeline, utilizing hardware wedad fragment shaders in modern

graphics boards, to achieve interactive frame rate.

Our system is able to render medium sized models in intewaétame (over 20 fps) on
a 2.8GHz Intel Pentium4 system with 768 MB memory with a GeEbX 5950 Ultra
GPU. The two phase clustering algorithm successfully ifleatplanar and highly varied
areas on the surface and the rendering system assignddr@mgpint representations for
different patches. The sampling algorithm converts tri@ampgtches into point patches and
adjusts the sampling rate based on the patch local infoomaiihe hardware based EWA
filtering achieves superior anisotropic texture filteringil maintains interactive frame
rate. The rendering system outputs hole free hybrid models. very rarely that holes
appear at the boundary areas between triangle patches dabctoud patchessé.3.2).
Our system provides the users great flexibility to render @ery of a model with either

points or triangles while maintaining good rendering gyadnd speed.

5.2 Future Directions

There are several ways in which this work could be extendeldruture. The list below

appears particularly important and promising.

e Modern laser 3D scanning devices are able to acquire hugened of point data
(Chapter 1). These point cloud data are essentially poinidcinodels. Our current

system only takes triangle models as input and converts thgenhybrid models. By

65

incorporating the ability of converting point cloud modéiso hybrid models, our

system will be more flexible.

The current sampling algorithm is very simple and easy tdement. However, we
have lots of overlapping surfels as the result of samplirtg¢ctvaffects the efficiency
of the rendering system. We mentioned in Section 4.2, thed EBmpling is to have
the least overlapping among surfel samples while guarmgdieat there is no holes
between surfels. We could apply some global optimizatiothows as one of them
described by Wu and Kobbelt [34]. The idea is to iterativelglace subsets of surfels
by new sets that have fewer elements or at least a bettet digtiébution. Further
more, we could use elliptical rather than circular surfelhese elliptical surfels
can have their major and minor axis aligned with the surfatecgal curvature
directions and scaled according to principal curvaturees| which are elliptical in

object space [34].

In Chapter 3, we mentioned of building a LOD tree for each medéehat each patch
in the model has a series of LOD representations. By doing Weatould apply a
cost function during rendering. The cost function will takéo account the screen
projection size of the patch, the distance of the patch amduinface variation of the
patch to select the best representation (point or triangberain level of the LOD

tree) of the patch for rendering.

Our current point rendering system sends all surfels of aghtadthe hardware for
rendering. We could improve rendering efficiency by apglysome hierarchical

data structure to the rendering system. For example, taltestisibility of a patch,

66

we could use normal cones [29]. We could also find better waysrganize our

surfel data to use graphics memory more efficiently.

Bibliography

[1] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shacharliteas, David Levin, and
Claudio T. Silva. Point set surfaces.Pnmoceedings fo IEEE Visualization 20(dages

21-28, 2001.

[2] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shacharlkteas, David Levin, and
Claudio T. Silva. Computing and rendering point set surfatleSE Transactions on

Visualization and Computer Graphicg(1):3-15, 2003.

[3] Mario Botsch and Leif Kobbelt. High-quality point-basedndering on modern

GPUs. InProceedings of Pacific Graphicpages 335-343, 2003.

[4] Mario Botsch, Michael Spernat, and Leif Kobbelt. Phontaiphg. InProceedings

of Symposium on Point-Based Graphipages 25-32, June 2004.

[5] Chun-Fa Chang, Gary Bishop, and Anselmo Lastra. LDI treeieealchical rep-
resentation for image-based rendering. Pilmceedings of SIGGRAPH 1998ages

291-298. ACM Press, August 1999.

67

68

[6] Baoquan Chen and Minh Xuan Nguyen. POP: A hybrid point ariggmm rendering
system for large data. IRroceedings of IEEE Visualizatippages 45-52, October

2001.

[7] Liviu Coconu and Hans-Christian Hege. Hardware-accéderpoint-based rendering
of complex scenes. IRroceedings of 13th Eurographics Workshop on Rendering

pages 43-52, June 2002.

[8] Tamal K. Dey and James Hudson. PMR: Point to mesh rendeairigature-based

approach. IrProceedings of IEEE Visualizatippages 155-162, 2002.

[9] Michael Garland and Paul S. Heckbert. Surface simplificausing quadric error

metrics. InProceedings of SIGGRAPH 199Yages 209-216, 1997.

[10] Michael Garland, Andrew Willmott, and Paul S. Heckbetierarchical face cluster-
ing on polygonal surfaces. IAroceedings of the 2001 symposium on interactive 3D

graphics pages 49-58, 2001.

[11] Enrico Gobbetti and Fabio Marton. Layered point clautsProceedings of Sympo-

sium on Point-Based Graphicgages 113-120, 227, June 2004.

[12] Stephen J. Gortler, Radek Grzeszczuk, Richard Szeéiski Michael F. Cohen. The

lumigraph. InProceedings of SIGGRAPH 199tages 43-54, 1996.

[13] J.P. Grossman and William J. Dally. Point sample reimgerin Proceedings of 9th

Eurographics Workshop on Renderjmages 181-192, June 1998.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

69

Geaél Guennebaud and Mathias Paulin. Efficient screen spaceagpfor hardware
accelerated surfel rendering. Rnmoceedings of 2003 Vision, Modeling and Visualiza-

tion, Munich pages 1-10. IEEE Signal Processing Society, November.2003

Paul S. HeckbertFundamentals of Texture Mapping and Image WarpiMgster's
thesis, University of California at Berkeley, Department tddrical Engineering and

Computer science, June 1987.

Marc Levoy, Kari Pulli, Brian Curless, Szymon RusinkiewidDavid Koller, Lu-
cas Pereira, Matt Ginzton, Sean Anderson, James Davisnyé&easberg, Jonathan
Shade, and Duane Fulk. The digital michelangelo projects&ihning of large stat-

ues. InProceedings of SIGGRAPH 200fages 131-144, 2000.

Marc Levoy and Turner Whittedlhe Use of Points as a Display Primitivéechnical
Report TR 85-022. University of North Carolina at Chapel Hill,rgmuter Science

Department, 1985.

Erik Lindholm, Mark J. Kilgard, and Henry Moreton. A usprogrammable vertex

engine. InProceedings of SIGGRAPH 200iages 149-158. ACM Press, 2001.

D. Lischinski and A. Rappoport. Image-based renderimgnion-diffuse synthetic

scenesRendering Techniquepages 301-314, 1998.

William R. Mark, R. Steven Glanville, Kurt Akeley, and Mad. Kilgard. Cg: A
system for programming graphics hardware in a C-like langudgProceedings of

SIGGRAPH 2003ACM Press, 2003.

70

[21] Nelson Max and Keiichi Ohsaki. Rendering trees from preputed z-buffer views.

In Proceedings of 6th Eurographics Workshop on Rendepages 45-54, 1995.

[22] Mark Pauly and Markus Gross. Spectral processing afitpeampled geometry. In

Proceedings of SIGGRAPH 20Qdages 379-386. ACM Press, July 2001.

[23] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baat,Markus Gross. Surfels:
Surface elements as rendering primitivesPhlceedings of SIGGRAPH 200fages

335-342. ACM Press, July 2000.

[24] Pixar. Finding Nemo. http://www.pixar.com/featurefilms/nemo [Last

Acessed Feburary 2005], 2003.

[25] William T. Reeves. Particle systems - A technique for elody a class of fuzzy

objects. InProceedings of SIGGRAPH 198%ages 359-376. ACM Press, July 1983.

[26] William T. Reeves. Approximate and probabilistic algiems for shading and render-
ing structured particle systems. Rioceedings of SIGGRAPH 198%ges 313-322.

ACM Press, 1985.

[27] Liu Ren, Hanspeter Pfister, and Matthias Zwicker. Obgpatce EWA surface splat-
ting: A hardware accelerated approach to high quality peintlering. IrProceedings

of Eurographics 20022002.

[28] Szymon Rusinkiewicz and Marc Levoy. QSplat: A multiregmn point rendering
system for large meshes. Rroceedings of 12th Eurographics Workshop on Render-

ing, pages 151-162, June 2001.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

71

Leon A. Shirmun and Salim S. Abi-Ezzi. The cone of norsnchnique for fast
processing of curved patches. Rnoceedings of Eurographics 1993ages 261-272,

1993.

Alvy Ray Smith. Plants, fractals and formal languages$?foceedings of SIGGRAPH

1984 pages 1-10. ACM Press, July 1984.

Marc Stamminger and George Drettakis. Interactivefgarg and rendering for com-
plex and procedural geometry. Rroceedings of Eurographics Workshop on Render-

ing 2001, pages 151-162, 2001.

Michael Wand, Matthias Fischer, Ingmar Peter, Fridafhkleyer auf der Heide, and
Wolfgang StralRer. The randomized z-buffer algorithm:riatéve rendering of highly

complex scenes. IRroceedings of SIGGRAPH 20Qdages 361-370, 2001.

Lee Westover. Footprint evaluation for volume rendgri In Proceedings of SIG-

GRAPH 1990pages 367-376. ACM Press, August 1990.

Jianhua Wu and Leif Kobbelt. Optimized sub-samplingéint sets for surface splat-

ting. In Proceedings of Eurographics 200dages 643—-652, 2004.

Matthias Zwicker, Hanspeter Pfister, Jeroen van Baat, Markus Gross. Surface
splatting. InProceedings of SIGGRAPH 200fages 371-378. ACM Press, July

2001.

Matthias Zwicker, Jussi Rasanen, Mario Botsch, CarstechBlaacher, and Mark
Pauly. Perspective accurate spaltting. Froceedings of the 2004 Conference on

Graphics Interfacepages 247-254, 2004.

