
APPROVAL SHEET

Title of Thesis: HYBRID 3D-MODEL REPRESENTATION THROUGH QUADRIC
METRICS AND HARDWARE ACCELERATED POINT-BASED RENDERING

Name of Candidate: Hanli Ni
Master of Science, 2005

Thesis and Abstract Approved:
Dr. Marc Olano
Assistant Professor
Department of Computer Science and
Electrical Engineering

Date Approved:

CURRICULUM VITAE

Name: Hanli Ni.

Degree and date to be conferred: Master of Science, August 2005.

Date of Birth: January 11, 1977.

Place of Birth: Nanjing, P. R. China.

Collegiate institutions attended:
University of Maryland, Baltimore County, M.S. Computer Science, 2005.
Mississippi State University, M.S. Organic Chemistry, 2002.
Nanjing University, Nanjing, B.S. Polymer Chemistry, 1999.

Major: Computer Science.

ABSTRACT

Title of Thesis: HYBRID 3D-MODEL REPRESENTATION THROUGH QUADRIC MET-

RICS AND HARDWARE ACCELERATED POINT-BASED RENDERING

Hanli Ni, Master of Science, 2005

Thesis directed by:Dr. Marc Olano

The expectation for highly realistic 3D images has resultedin 3D models with mil-

lions of triangles. Traditional algorithms accelerate rendering speed by taking advantage of

coherence within a triangle if the screen projection of the triangle covers multiple pixels.

However, as the triangle count increases and the triangle size decreases, screen projections

of triangles cover fewer pixels. In some cases, projectionsare even sub-pixel size, which

makes these acceleration algorithms ineffective. Alternatively, points have the advantage

of no explicit connectivity and the rendering pipeline can be implemented using the lat-

est 3D hardware functionalities. But sufficient densities and proper sampling patterns are

required for points to be effective. Previous research suggests that neither triangles nor

points are the ultimate solution in terms of hardware rendering. In this study, we build a

hybrid rendering system that takes advantage of both primitives. Our system is composed

of two components, preprocessing and rendering. During preprocessing, the system builds

a hierarchical hybrid model taking a 3D polygonal model as input. The system breaks the

input polygonal model into patches by applying clustering algorithms on the model. Planar

patches are rendered using triangles, while patches with high variations are rendered with

points. The clustering algorithm is based on quadric error metrics, which is a good measure

of the planarity of surfaces. Other metrics, such as shape, normal and size are used. The

point representation of a patch is obtained through regularsampling of the triangle patch.

The system uses traditional polygonal hardware rendering pipeline for polygonal patch ren-

dering. We implement point rendering pipeline using hardware vertex and pixel shaders.

The final system combines the advantages of both polygonal and point rendering pipelines

and achieves relatively high image quality while maintaining interactive rendering speed.

HYBRID 3D-MODEL REPRESENTATION THROUGH
QUADRIC METRICS AND HARDWARE

ACCELERATED POINT-BASED RENDERING

by
Hanli Ni

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
Master of Science

2005

Contents

1 Introduction 1

2 Related Works 4

2.1 Point-based Rendering . 4

2.2 Hardware Accelerated Point-Based Rendering 7

2.3 Hybrid Rendering Systems . 9

2.4 3D Surface Simplification and Clustering Techniques 11

3 Methodology 12

3.1 Research Goal and Contribution .12

3.2 Surface Clustering Algorithms .. . 14

3.2.1 Quadric Error Metrics and Surface Simplification 15

3.2.2 Surface Clustering Using Quadric Metric 18

3.2.3 Two-phase Clustering . 22

3.2.4 Level of Detail (LOD) Control within Clusters 23

3.3 Point Sampling Algorithms .. 24

3.3.1 Point Sample Definition . 24

ii

3.3.2 Surface Sampling . 25

3.4 Point-based Rendering Algorithms 29

3.4.1 EWA Splatting Framework . 29

3.4.2 Hardware Implementation . 33

4 Results and Discussion 39

4.1 Surface Clustering . 39

4.2 Surface Sampling . 44

4.3 Hybrid Rendering Pipeline .46

4.3.1 Hardware EWA Rendering . 46

4.3.2 Hybrid Model Rendering . 51

5 Conclusion and Future Work 63

5.1 Summary of Contributions . 63

5.2 Future Directions . 64

iii

List of Figures

2.1 The programmable graphics pipeline. 8

3.1 Schematical overview of the hybrid renderer and rendering algorithm. . . . 14

3.2 Edge contraction example [9]. .. . 15

3.3 A tipical face hierarchy of a patch with 4 triangles. Initially each triangle is

a cluster. Then red triangles form a cluster and green triangles form another

cluster. Finally the two clusters are combined into the rootcluster. 19

3.4 Surfel definition. 25

3.5 Concept view of the sampling algorithm. This figure only shows sampling

rays from one face of the bounding box.26

3.6 Defining a texture function on the surface of a point sampled 3D model [35]. 30

3.7 Calculating the Jacobian [27]. .. . 34

3.8 Camera space ray casting for per-pixel depth correction.. 36

3.9 Blending effects of the EWA filtering pass of four surfel disks. 38

4.1 Phase one clustering result of the cow model (5804 triangles) with different

cost thresholds. (a) 0.033, (b) -0.19, (c) -0.96. Each cluster is represented

by one color. 40

iv

4.2 Wire frame of the phase one clustering result of the cow model. Cost

threshold is -0.19. 42

4.3 Phase two clustering result of the cow model (5804 triangles) with different

cost thresholds. (a) -0.07, (b) -0.16, (c) -0.42. (The cost threshold used in

phase one of this example is -0.19, see Figure 4.1(b)) 43

4.4 A rendering of partial point samples of a fully sampled model. 45

4.5 Rendering results from different passes (a) visibility splatting, (b) EWA

filtering, (c) Normalization. .48

4.6 Applying the depth offsetε during visibility splatting. 49

4.7 Checker board rendering using (a) without EWA filtering, (b) with EWA

filtering. 50

4.8 Checkboard rendering with different sampling rate (a) low rate, (b) medium

rate, (c) high rate. 52

4.9 Missing surfel samples at the corner of a surfel cloud mayleave holes dur-

ing rendering. The red lines are part of surrounding triangle patches. The

two blue dots indicate the sampling grid position at the boundary, which

miss the surfel cloud patch. This leaves empty space at the the tip of the

corner. 53

4.10 Global sampling rate. The grid distance is 0.01. The frame buffer resolu-

tion is 512× 512. 54

4.11 Rendering results of the cow hybrid model on a NVdia GeForce FX 5950

Ultra. The frame buffer resolution is 512× 512. 56

4.12 Running times for preprocessing of different models. 57

v

4.13 Rendering performances of different triangle models. 58

4.14 Rendering performances of different hybrid models. Theperformances are

plotted with respect to surfel counts. Overlap indicates the average number

of surfels contributing to each pixel in the framebuffer. 58

4.15 Visualization of the number of surfels contributing toeach pixel in the

framebuffer. The higher the red color the larger the number of surfels con-

tributing. 59

4.16 Rendering results of the bone model on a NVdia GeForce FX 5950 Ultra.

The frame buffer resolution is 512× 512. 60

4.17 Rendering results of the cow model on a NVdia GeForce FX 5950 Ultra.

The frame buffer resolution is 512× 512. 60

4.18 Rendering results of the dragon model on a NVdia GeForce FX 5950 Ultra.

The frame buffer resolution is 512× 512. 61

4.19 Rendering results of the bunny model on a NVdia GeForce FX5950 Ultra.

The frame buffer resolution is 512× 512. 61

4.20 Rendering results of the terrain model on a NVdia GeForceFX 5950 Ultra.

The frame buffer resolution is 512× 512. 62

vi

List of Tables

4.1 Number of instructions needed for each pass. 47

4.2 Rendering performance of texture mapped checker board onour system on

a NVdia GeForce FX 5950 Ultra. The frame buffer resolution is512× 512. 51

4.3 Preprocessing time and Rendering performance of hybrid models on our

system on a NVdia GeForce FX 5950 Ultra. The frame buffer resolution is

512× 512. 57

4.4 Rendering performance of triangle models on our system ona NVdia GeForce

FX 5950 Ultra. The frame buffer resolution is 512× 512. 57

vii

Chapter 1

Introduction

Triangles have been thede factoprimitives for 3D surface representations for many years,

especially in the realm of real time rendering. Huge amountsof research has been done

in polygon surface modeling, simplification, level of detail management and texture map-

ping. Polygon rendering algorithm development has been accompanied by the support of

graphics hardware. The traditional graphics hardware rendering pipeline has a relatively

efficient data representation and is able to take full advantage of coherence within triangle

screen projections during scan-line rasterization.

However the expectation for highly realistic 3D images has pushed the complexity of tri-

angle models to increase continuously. Currently, realism means millions of triangles. As

the triangle count increases and the triangle size decreases, screen projections of triangles

cover fewer pixels. In some cases, projections are even sub-pixel size, which makes clas-

sic acceleration algorithms less appealing. On the other hand, progress in 3D acquisition

1

2

technology has also increased the complexity of available 3D objects. Modern laser 3D

scanning devices are able to acquire huge volumes of point data [16]. To avoid the time

consuming triangulation process, an alternative surface modeling and rendering primitive

is needed.

One of the alternatives is point-based rendering. The idea of using points as rendering

primitives was briefly investigated by Levoy and Whitted for the special case of continuous,

differentiable surfaces [17]. Recently, point-based rendering has attracted a lot of research

attention and algorithms for point data acquisition, processing, rendering and hardware

pipeline acceleration were developed [3, 4, 13, 14, 22, 23, 27, 35] . Points have some

advantages over triangles as representation and renderingprimitives. First, point data has

no connectivity overhead, this overhead is especially a problem at high triangle counts.

Second, point data has the highest degree of freedom, therefore, more flexible modeling al-

gorithms can be developed. Third, the advances of features in the latest graphics hardware,

especially the emergence of vertex and fragment programs, made the efficient hardware

point-based rendering possible.

Although point-based rendering has demonstrated its potential application in real-time ren-

dering, it has its limitations. Previous research showed that sufficient densities and proper

sampling patterns are required for points to be effective. It is also true that as the most ma-

ture and widely used 3D rendering primitive, triangles willcontinue to be an important part

of real-time graphics. It is of great interest to build a hybrid renderer to exploit advantages

of both triangles and points. Some rendering systems have explored this area [6, 8]. In this

study, the concept of hybrid model representation, a 3D model composed of both triangle

3

and point patches, is presented. A rendering system is developed to build the hybrid model

by assigning different representation primitives to different patches through certain metrics.

During rendering, patches are rendered using point or polygon pipelines as appropriate.

Some important problems are addressed in this study. Point sample and its data structure

are formally defined. Surface clustering algorithms and metrics are discussed in detail.

Our major contribution is to apply the quadric error metric proposed by [9] to do surface

clustering and build hybrid models. The quadric error metric was initially used for surface

simplification. The thesis discusses the point sampling technique and sampling rate. It also

talks about the spatial data structure used to represent thehybrid model. Furthermore, it

discusses the boundary conditions between patches, which may leave holes during render-

ing. Hardware point-based rendering pipeline is implemented and the rendering efficiency

results are presented.

The thesis is organized as follows. Chapter 2 talks about somerelated works on point-

based rendering, hybrid rendering systems, hardware implementations and some surface

clustering methods. A system overview is first given in Chapter 3. It then talks about the

methodology used in this study. Chapter 4 is the results and discussions. We conclude this

study in Chapter 5.

Chapter 2

Related Works

2.1 Point-based Rendering

Points have often been used historically to model certain natural phenomenons such as

smoke, clouds, dust, fire, water and ‘soft’ objects as trees [25, 26, 30]. This modeling

technique is well known as particle systems. Particles generated by the rendering system

have a limited lifetime. During their lifetime, particle behaviors are defined through certain

physical models. Particles may change position, speed, direction, color and size. This

technique has been successfully used as special effects in motion pictures and also in 3D

games. In Pixar’s recent animation ‘Finding Nemo’, particle system was used to model and

render ocean water [24].

A technical report by Levoy and Whitted [17] first discussed the feasibility of using points

as rendering primitives. Their work touched many areas of active research on point-based

4

5

3D graphics today. These areas include point data acquisition and preprocessing, point-

based data structures and representation, point-based rendering algorithms, texture filtering

and shading.

There exist two types of methods to acquire point data, sampling existing geometry and us-

ing laser scan devices. Levoy and Whitted pointed out that thesurface must be continuous

and differentiable in a small neighborhood around each point for proper sampling. Gross-

man and Dally proved that the surface is adequately sampled if the side length of every

triangle resulted from the triangulation of the sampled points is less than the side length of

a pixel [13]. Adequately sampled means no holes will appear during rendering from any

angle. Pfister et al. obtained point samples from three layered depth images at orthographic

views and guaranteed that the maximum distance between adjacent point samples is less

than the pixel reconstruction filter [23].

Scanned real objects are becoming popular due to advances in3D scanning technologies.

Models with millions of points can be easily collected with scanning devices [16]. Due to

a variety of physical effects and limitations of the model acquisition procedure, raw data

sets are prone to noise and distortions. Some preprocessingand resampling of the raw

data are usually needed. Pauly and Gross applied spectral analysis to filter and resample

point patches [22]. Alexa et al. developed tools to represent point set surfaces with varying

sampling density based on differential geometry [2].

Because of the huge number of samples within a single model, proper data structures must

be applied to organize point samples. A common strategy is touse hierarchical data struc-

6

tures, for example a tree structure. Rusinkiewicz and Levoy applied a bounding sphere

hierarchy to represent a point cloud [28]. Their algorithm builds up the tree by recursively

splitting the node along the longest axis of the bounding box. They quantized point proper-

ties such as position and normal to compress the model. Pfister et al. used an octree based

representation of point samples [23]. Each octree node is attached with a layered depth

cube (LDC) with increasing sampling rate as traveling from root to leaves. Each LDC is

composed of three orthogonal layered depth images (LDI) [5]. Gobbetti and Marton used

binary trees to represent point sampled models by reordering and clustering points [11].

The tree traveseral picks the right point sampling densities according to the projected size

in the image.

After collecting and preprocessing point samples and selecting the proper data structures,

the final stage is to develop efficient point-based renderingalgorithms. The major chal-

lenge from point-based representations is that we need to render continuous surfaces (hole

free) from discrete samplings of the underline surfaces (unlike triangle models). One pop-

ular technique is called splatting. It was originally studied by Levoy and Whitted in their

early technical report and was also mentioned in the contextof volume rendering [33]. The

basic idea of splatting is that a single point is mapped to multiple pixels on the screen and

the color of a pixel is the weighted average of the colors of the contributing points. Pfis-

ter et al. proposed a novel technique called visibility splatting to determine visible points

and holes [23]. In their technique, points are represented as disks and during rendering,

these disks are projected from object space to screen space z-buffer in order to perform the

visibility test. Zwicker et al. formally defined the framework of surface splatting using

7

rigorous mathematical analysis [35]. In their work, the rendering process is a concatena-

tion of sampling, warping and filtering. All these steps are represented as a reconstruction

kernel function to improve efficiency. This is actually an extension of the well known tex-

ture filtering framework using the anisotropic elliptical weighted average (EWA) filtering

proposed by Heckbert [15]. Later Zwicker et al. introduced perspective accurate splatting

using homogeneous coordinates to obtain the correct screenprojection shape [36].

Grossman and Dally avoided using splatting by ignoring holes during rendering and filling

gaps at an image reconstruction stage [13]. Each pixel is assigned a weight between 0 to 1

indicating the confidence of whether or not it is a hole (0 means it is a hole). Then a two

phase “pull-push” algorithm is applied to fill the gaps [12].This is essentially to generate

a succession of lower resolution approximations of a image.Their work assumes ortho-

graphic views and predefined target resolution and magnification. Max and Ohsaki used a

similar method to render trees [21]. To overcome the limitations of viewing parameters,

techniques that are able to dynamically adjust the samplingrate on a frame by frame basis

have also been developed [1, 31, 32].

2.2 Hardware Accelerated Point-Based Rendering

Surface splatting techniques achieve superior visual quality, however, the high computa-

tion cost has limited its application in real-time graphics. In recent years, the increasing

efficiency and programmability of modern graphic cards [18,20] has triggered the devel-

opment of hardware-based splatting methods. A diagram of a modern graphics pipeline is

8

shown in Figure 2.1. Todays graphics chips, such as the NVIDIA GeForce and the ATI

Radeon replace the fixed function vertex and fragment (including texture) stages with pro-

grammable stages. These programmable vertex and fragment engines execute user-defined

programs and allow fine control over shading and texturing calculations. A vertex program

is run on each incoming vertex from the application and the computed results are passed

on to the rasterization stage. Typical computations include vertex transformation, normal

transformation and normalization, texture coordinate generation, lighting and etc. A frag-

ment program is run on each incoming pixel from the reaterization stage and the computed

results are passed on to display. Typical computations include operations on interpolated

values, texture access, texture application, fog and etc.

Vertex Program

Application

Rasterization

Fragment Program

Display

Figure 2.1: The programmable graphics pipeline.

The difficulty of surface splatting is when to blend two splats if two splats are projected

to the same pixel. Only closely overlapping splats should beblended when they locally

9

belong to the same surface; while in other cases when the z-distance between the splats is

above a certain threshold, the front-most splat should overwrite the splats behind. To solve

this problem, a two pass rendering algorithm is used [3, 14, 27]. The visibility splatting

pass only renders the z-buffer with all objects shifted awayfrom the viewer byε. The

second pass renders all splats with filter blending turned on, but it does not alter the z-

buffer, thereby blending only those splats that differ by less thanε in depth.

Using the pixel shaders of current graphics hardware allowsthe rasterization of elliptical

splats by rendering just one vertex per splat. Computing the projected size in a vertex

shader triggers the rasterization of an image space square.A fragment shader processes

each of its pixels and constructs the elliptical shape by discarding pixels outside the ellipse.

Extensions of this framework includes perspective accurate splatting [36], using a different

affine approximation to the projection; and phong splatting[4], by computing per-pixel

lighting.

2.3 Hybrid Rendering Systems

Points and triangles have significant differences in terms of model representation and ren-

dering. Both have their own advantages and disadvantages. Ifthe screen projections cover

multiple pixels, algorithms that utilize coherence are very efficient for triangle rendering.

If the screen projections are sub pixel sizes, point-based rendering has less overhead and is

more flexible. Some work has been done on developing hybrid rendering systems, which

are able to build point and triangle hybrid models and have both point and triangle rendering

10

capabilities. POP is an early system developed to visualizelarge data sets [6]. The system

builds tree model structures by having triangle representation at leaf nodes and point repre-

sentation at intermediate nodes. The design of the system suggested that triangles at leaves

are to ensure the quality of the rendering while points are tospeed up the rendering. POP

chooses a different number of points and triangles based on viewing location. The closer

the model is to the eye, the higher percentage of triangles rendered. The whole system

treats points as secondary rendering primitive, mainly forpre-viewing purposes. The most

detailed level is still rendered with triangles, which is not very efficient at high triangle

counts. It fits the need for visualization applications, butis not suitable for 3D real-time

applications. A similar system developed by Coconu and Hege is able to switch between

points and triangle rendering based on sampling density [7]. PMR is a system that also

uses a hierarchy both in points and triangles [8]. The difference between PMR and POP

is that the hierarchy in PMR is built according to the featuregeometry in the object space

rather than its projection in the screen space. Therefore, the rendering is not affected by

viewing parameters. The system chooses a surface representation according to the surface

curvature information. For example, flat surfaces are represented by triangles while highly

curved surfaces are represented by points. PMR takes as input a point cloud and does the

triangulation using Voronoi regions. This system does not take polygonal models. The

design philosophy of our rendering system is very close to that of PMR. The idea is that

more planar surfaces are more efficiently rendered with triangles. Points are best used for

surface areas with high variations. Certain metrics based onplanarity measures need to

be applied to cluster surfaces for proper representation and rendering. More details on the

clustering metric and algorithm are provided in Chapter 3.

11

2.4 3D Surface Simplification and Clustering Techniques

In this study, we are interested in clustering 3D model surfaces into patches for either

point or triangle representation. Although surface simplification is not the focus of this

study, it is in some aspect related to surface clustering. Surface simplification is the process

of generating simpler versions of detailed geometric surface models. In this study, one

surface simplification and clustering technique is of our interest. A quadric error metric

was proposed for surface simplification by Garland and Heckbert [9]. Their algorithm is

based on pair contraction, which iteratively contracts pairs of adjacent vertices to a single

new vertex according to a cost function. The cost function isbased on a 4×4 symmetric

matrix associated with each vertex. The matrix is related tothe sum of distances from the

vertex to the planes associated with it. Initially, the error at each vertex is 0 because the

planes associated with each vertex pass through it. The error grows as vertex are combined

together. This metric is used later on by Garland for surfaceclustering [10]. The only

difference is that no actual contraction is performed in theclustering algorithm. The method

is fast and general. Because the metric is a measure of the accumulated distance of planes

to a vertex, it is a indication of the planarity of the clustering, which is the criteria this study

uses to decide on the patch representation (point or triangle).

Chapter 3

Methodology

3.1 Research Goal and Contribution

The goal of this study is to build a hybrid real-time rendering system. The system is com-

posed of two parts, the preprocessor and the renderer (each part is shown within dashed

lines in Figure 3.1). Shaded blocks represent key algorithms in this study. Given a 3D

triangle model as input, our system is able to cluster the model surfaces into patches. The

clustering is based on the planarity of the surface (§3.2). Either points or triangles are se-

lected as the representation for each individual patch. Patch sampling algorithms are used

to obtain point data. Then, the system organizes these patches into an octree. The rendering

of the model is a tree traversal process. A traditional polygon rendering pipeline is used for

triangle patch rendering. A point-based rendering pipeline applying splatting techniques is

used for point patch rendering. A hardware accelerated implementation is provided for the

12

13

point-based rendering pipeline, utilizing hardware vertex and fragment shaders in modern

graphics boards, to achieve interactive frame rates.

The contributions of this study are two-fold. First, a two phase clustering algorithm based

on Garland’s quadric error metrics [10] is used to generate surface patches and build hybrid

models. Patch representation is independent of the viewingparameters because patches are

generated based on the object space surface geometric information. Our method success-

fully identifies highly varied areas (point representation) on a 3D model from those planar

areas (triangle representation). Second, unlike previoushybrid renderers, our rendering

system treats points and triangles as equivalent primitives (most previous hybrid rendering

systems treat points as the previewing primitive). The renderer is able to choose the best

representation to ensure both rendering quality and speed.One extension of this renderer

could be level of detail (LOD) management. There could be a 3Dmodel hierarchy com-

posed of a tree with different LODs associated with each node, the system could pick the

appropriate set of nodes (a cut through the tree) for rendering according to a cost function.

The cost function could have input as viewing parameters andother related parameters. We

implement the complete point-based rendering pipeline from point sampling to hardware

point-based acceleration, which parallels the traditional triangle rendering pipeline. Our

rendering system gives the user great flexibility to choose the desired primitive to render

parts of a 3D model.

14

3D Polygonal
Model

Two-phase
surface

clustering

Hybrid octree
representation

Point
sampling

View frustum culling

Triangles Points

Traditional polygon
rendering pipeline

Visibility splatting
(vertex and

fragment shader)

EWA filtering
(vertex and

fragment shader)

Figure 3.1: Schematical overview of the hybrid renderer andrendering algorithm.

3.2 Surface Clustering Algorithms

In this section, we lay out the foundation of Garland’s surface simplification and clustering

algorithm. First, we define the quadric error metrics used inboth surface simplification and

clustering. Then we describe our two phase clustering algorithm.

15

3.2.1 Quadric Error Metrics and Surface Simplification

One common strategy of surface simplification is callediterative edge contraction. The

basic idea is that during each iteration, an edge is selectedand the incident vertices are

replaced by a new vertex with proper updating of the edges associated with the old ver-

tices (Figure 3.2). The position of the new vertex is decidedeither by picking one of the

old vertices or by finding the optimal position that represents a minimum modification of

the surface. Both need a cost function to evaluate the effect of the contraction operation.

Therefore, picking the right cost function is the key to the success of this type of simplifica-

tion algorithm. Naturally, we want to contract vertices that are similar. To do that, we need

a measure to quantify similarity. One heuristic is the planarity of the local environment of

the vertex. A quadric error metric [9] is an efficient way to measure planarity.

Figure 3.2: Edge contraction example [9].

First, a set of planes are associated with each vertex in the model. The initial selection of

planes are the incident triangles of the vertex. Each plane is defined by

nTv+d = 0 (3.1)

16

wheren =

[

a b c

]T

is a unit normal (i.e.,a2 +b2 +c2 = 1) andd is a scalar constant.

The square distance of a vertexv =

[

x y z

]T

to the plane is given by

D2(v) = (nTv+d)2 = (ax+by+cz+d)2 (3.2)

The error at each vertexv is defined as the sum of squared distances of the set of planesP

associated with the vertex

Err(v) = ∑
i

D2
i (v) = ∑

i
(nT

i v+di)
2 (3.3)

It is noted that initially the error at each vertex is zero because each vertex is the intersection

of the associated planes. For any contraction(v1,v2) → v̄, a new error needs to be derived.

Ideally, the union of the planes from each vertex needs to be computed and the error needs

to be re-calculated by Equation 3.3. To do this, we need to keep tracking a list of planes

for each vertex (new or original). This has two disadvantages. First, the amount of storage

increases as the simplification goes. Second, the computation cost is proportional to the

number of planes associated with each vertex. It would be nice to have both constant

storage and computation for each iteration. Garland [9] proposed to use the summation of

the error calculated by Equation 3.3 for each vertex to represent the error of the new vertex.

To see how this is practical, we can rewrite Equation 3.1 as follows:

D2(v) = (nTv+d)2

17

= (vTn+d)(nTv+d)

= (vTnnTv+2dnTv+d2)

= (vT(nnT)v+2(dn)Tv+d2) (3.4)

We can define aquadric Qas a triplet

Q = (A,b,c) (3.5)

whereA is a 3×3 matrix,b is a vector andc is a scalar. The quadric assigns a valueQ(v)

to every vertexv by the equation

Q(v) = vTAv +2bTv+c (3.6)

Comparing Equation 3.6 to Equation 3.4, we have

D2(v) = Q(v) (3.7)

whereQ = (nnT ,dn,d2). Q can be represented by a single 4×4 matrix

























a2 ab ac ad

ab b2 bc bd

ac bc c2 cd

ad bd cd d2

























18

This is calledfundamental error quadric[9]. Therefore, the error defined in Equation 3.3

can be rewritten as

ErrQ(v) = ∑
i

D2
i (v) = ∑

i
Qi(v) = Q(v) (3.8)

Each vertex is associated with a quadric matrix and the quadric Q for any new vertex

v̄ from a contraction of an edge(vi ,v j) is Q = Qi + Q j . And the cost of contraction is

Q(v̄) = Qi(v̄)+Q j(v̄). By doing this, the cost of storage and computation for each vertex

at every iteration is constant. We can findv̄ by solvingv̄ =−A−1b, which gives the optimal

solution ifA is not singular. The simplification algorithm is summarizedin Algorithm 3.1.

Require: Initialize the quadricQi for each input vertexi and a heapH for sorting contrac-
tion cost

1: for each vertex pair(vi ,v j) do
2: ComputeQ = Qi +Q j

3: Computev̄
4: Compute the contraction costQ(v̄) = Qi(v̄)+Q j(v̄)
5: Place pair inH keyed on costQ(v̄)
6: end for
7: repeat
8: Remove the pair(vi ,v j) from the top of the heap.
9: Perform contraction(vi ,v j) → v̄

10: Set the new quadricQ = Qi +Q j , update the remaining pairs and the heap
11: until the desired approximation is reached

Algorithm 3.1: Simple surface simplification using quadric metric

3.2.2 Surface Clustering Using Quadric Metric

Garland [10] also applied the quadric error metric in surface clustering. Rather than doing

the actual contraction, the modified algorithm groups similar surfaces together. The output

of the algorithm is a hierarchy of surfaces (Figure 3.3). Initially, each triangle face is

represented as a leaf node in the hierarchy. For each iteration, the algorithm combines two

19

Figure 3.3: A tipical face hierarchy of a patch with 4 triangles. Initially each triangle is a
cluster. Then red triangles form a cluster and green triangles form another cluster. Finally
the two clusters are combined into the root cluster.

nodes and forms a new node based on the error metrics. There are two differences from

Algorithm 3.1. First,Q is calculated as the distances from different vertices to the best

fitting plane of the vertices. Second, the final result is averaged. Assuming each node has a

set of faces{ f1, ..., fn}, a set of vertices{v1, ...,vk} and a least square best fit plane to this

set of vertices, the fit error of a given planenvT +d = 0 is

Ef it =
1
k

k

∑
i=1

(nTvi +d)2 (3.9)

wheren is the normal of the plane andd is the offset. Similar to Equation 3.4, the equation

above can be rewritten as

(nTv+d)2 = nT(vivT
i)n+2dvT

i n+d2 (3.10)

20

If we define a quadric

Pi = (A i,bi,ci) = (vivT
i ,vi,1) (3.11)

then Equation 3.10 can be represented asPi(n,d). The total error is then

Ef it =
1
k ∑

i
Pi(n,d) =

1
k

(

∑
i

Pi

)

(n,d) (3.12)

Therefore, we can represent the cost of combining two nodes by the sum of the quadrics of

each node
(

Pi +Pj
)

(n,d).

One challenge of the modified algorithm is to find the best fitting plane of the vertices. The

technique used in Garland’s paper is based on principal component analysis (PCA). The

basic idea is to find the plane by first using the covariance matrix

Z =
1

k−1

k

∑
i=1

(vi − v̄)(vi − v̄)T (3.13)

wherev̄ =

(

∑
i

vi

)/

k. The eigenvector with the least eigenvalue is the normal of the plane.

It can be proved that the average of all the positions of the vertices is a point on the plane.

In practice, Garland adds two more metrics to do the clustering. The first isEdir , a measure

of the deviation of the plane normaln from surface normals:

Edir =
1
w∑

i
wi(1−nTni)

2 (3.14)

wherewi is the area of facefi andw = ∑
i

wi is the total area of the face cluster. This metric

avoids surface folding back within a cluster. It can also be presented as a quadric. The

21

second isEshape. This error metric is to control the shape of the cluster, which makes the

cluster as circular as possible by taking into account the areaw and perimeterρ relationship

of the cluster. The clustering algorithm is shown in Algorithm 3.2.

Require: Initialize the quadricPi for each input facei and a heapH for sorting contraction
cost

1: for each node pair(nodei ,nodej) do
2: Compute the best fit planenvT +d = 0 for the vertex setVnodei ∪Vnodej

3: Compute the cost of merging
(

Pi +Pj
)

(n,d)
4: Place pair inH keyed on cost
5: end for
6: repeat
7: Remove the pair(nodei,nodej) from the top of the heap.
8: Create a new node in the hierarchy
9: Set the new quadricP, update the remaining pairs and the heap

10: until the desired level of clustering is reached

Algorithm 3.2: Simple surface clustering using quadric metric

We assume the input modelM initially having n valid node pairs. The goal is to produce

a cluster hierarchy havingm cluster trees. Each iteration combines two nodes and forms

a new node. We also assume that the maximum node degree is bounded by a constant

k, this gives an upper bound on updating the neibouring node pairs after pair contraction.

Constructing all the initial quadrics takesO(n) time. Placing all the resulting candidates in

a heap requiresO(nlogn) time. Thus, the total complexity of initialization isO(nlogn).

For each iterationi of the clustering, we need to select the minimum cost pair, contract it,

and update the local neighborhood. Selecting the minimum cost pair takesO(log(n−2i)).

Contracing the pair and updating the neighborhood requireO(k log(n− 2i)). The total

complexity for each iteration is thereforeO(log(n−2i)). Summing over all iterations, the

22

total cost for the clustering is

logn+ log(n−2)+ log(n−4)+ . . .+ logm

≤ logn+ log(n−1)+ log(n−2)+ . . .+ logm

which is simply

log
n!
m!

= logn!− logm! = O(nlogn−mlogm)

Thus, the overall complexity of the clustering algorithm isO(nlogn).

3.2.3 Two-phase Clustering

Based on Algorithm 3.2, we use a modified algorithm to find the best representations of the

input model. The heuristic is that the higher the variation of the surface, the more efficient it

is to represent and render the surface using points. A quadric error metric is a good measure

of the planarity of the surface (§3.2.1), which is an indication of the surface variation. The

algorithm goes in two phases. The first phase is exactly the same as Algorithm 3.2. The

algorithm clusters surfaces based on a predefined planarityerror threshold. The maximum

size of a cluster is also set in phase one. All three error metrics (Ef it , Edir andEshape)

are turned on in phase one. Before the second phase, the algorithm marks all the clusters

resulted in phase one. Because the error measure is set in the first phase, the clusters at

the highly varied areas of the model tend to be smaller than those at the planar areas of

the model. The second phase tries to combine these small clusters, and outputs clusters

in similar shapes and sizes. Therefore, in this phase,Eshapeis turned on,Ef it andEdir are

23

turned off. We add a new error measureEsize. This is a measure of the size of the patch,

which applies more penalty on merging larger patches. The newly formed clusters will be

unmarked. The output of the two-phase clustering algorithmis also a surface hierarchy.

The marked clusters will be represented using triangles, while unmarked clusters will be

represented using points. The algorithm is summarized in Algorithm 3.3.

Require: Set the planarity error threshold, set the maximum size of a cluster
1: turn onEf it , Edir andEshape{start phase one}
2: Run Algorithm 3.2
3: Mark all the resulting clusters
4: Turn off Ef it andEdir , addEsize{start phase two}
5: Run Algorithm 3.2
6: Unmark all the newly created clusters

Algorithm 3.3: Two-phase surface clustering

3.2.4 Level of Detail (LOD) Control within Clusters

The two-phase clustering algorithm (§3.2.3) does not change the geometry of the input

model. The cluster hierarchy is at the highest LOD. During rendering, it is not always

necessary to render the cluster using the highest level of detail. For example, if the screen

projection of the cluster is relatively small, it is enough to render the cluster at a lower

LOD. It will be nice to have some sort of LOD control within clusters. In this section, we

concentrate on LOD on triangle clusters. we talk about LOD onpoint clusters in Section

3.3.

For each triangle cluster, we could build a series of surfacepatches with decreasing LODs.

For simplification purposes, we could use Algorithm 3.1 directly. However, Algorithm 3.1

does not preserve boundaries during the simplification process. It could be possible to leave

24

holes between clusters if the boundary edges are contractedduring simplification. Garland

[9] provides a solution to preserve boundaries of models such as terrain height fields, which

could be used here. First, we will need to mark all the boundary edges during clustering.

For each boundary edge, we could generate a perpendicular plane through this edge. This

plane can be easily converted into a quadric. Then Algorithm3.1 could be applied on this

cluster. Because the high penalty imposed by the added planes, boundary edges will avoid

being the target of edge contraction. This technique is usedto preserve color discontinuities

of a surface patch by Garland [9].

3.3 Point Sampling Algorithms

In this section, we describe the point sampling algorithm weuse to sample the patches from

the two phase clustering algorithm in the previous section.We first define point samples,

and then talk about the algorithm and the sampling pattern and sampling density.

3.3.1 Point Sample Definition

To represent a 3D surface with points, each point is actuallyan oriented disk (Figure 3.4).

First, we need three scalars to represent the spatial coordinates of a point and three scalars

to represent the color of the point (one scalar for alpha transparency can also be added).

A normal vector is also needed. We need a radiusrp to represent the size of the disk. To

perform anisotropic EWA filtering, two tangential vectors(S,T) are needed. The normal

25

and the two tangential vectors form a local coordinate system at the point. Tangent vectors

can be calculated on the fly during rendering (§3.4.1), therefore, we don’t have to save these

two vectors. The complete data representation of a point sample with the above informa-

tion is called a surface element or a surfel [23]. Therefore,a surfel is a multidimensional

representation. Other information can also be incorporated, such as texture coordinates.

Further more the most accurate representation of a point sample is not by symmetric disk,

but by an ellipse, whose axis correspond to the two tangent vectors.

Normal

Position

Radius

Color

Figure 3.4: Surfel definition.

3.3.2 Surface Sampling

The output of the two-phase clustering algorithm (§3.2.3) is a set of triangle patches. Our

heuristic is that patches generated during phase two represent highly varied areas on the

surface, therefore, it is more efficient to render them by points. The goal of this section is

to find a surfel representation of the triangle geometry by doing sampling. Surface sampling

26

needs to meet two requirements. First, the sampling rate hasto be high enough to record

the details of the model. Second, we need to choose the radiusof the surfel disk carefully

to ensure a waterproof surface reconstruction.

Figure 3.5: Concept view of the sampling algorithm. This figure only shows sampling rays
from one face of the bounding box.

We use a method similar to the one used by Pfister et al. [23]. The basic idea is to sample

the patch from three faces of the bounding box of a patch through ray casting (Figure 3.5).

At each intersection point between a ray and the patch, a surfel is created with its position

and normal. Because triangle patches are used, we take advantage of barycentric coordi-

nates of each triangle to do normal interpolation. If necessary, we also do the barycentric

coordinates interpolation to calculate texture coordinates and color values of each surfel.

Perturbation of the surface normal or of the geometry for bump and displacement mapping

can be performed on the geometry before sampling or during ray casting using procedu-

ral shaders. To simplify the sampling process, we use the axis aligned bounding box to

27

generate the sampling grid. The detailed sampling algorithm is listed below

Require: Initialize the Surfel Cloud (a list of surfels) of the patch
1: Generate the axis aligned bounding box of the patch
2: Compute the sampling distance (h) of the patch
3: for each face of the bounding boxdo
4: Generate the sampling grid
5: for each ray on the griddo
6: for each triangle in the patchdo
7: Compute the intersection of the ray and the triangle
8: if intersection is in the trianglethen
9: Generate a surfel with the intersection as the position

10: Compute normal, texture coordinate, color and etc through interpolation
11: Set the radius of the surfel
12: Add the surfel into the Surfel Cloud
13: end if
14: end for
15: end for
16: end for

Algorithm 3.4: Surface sampling through ray casting

Line 3 of Algorithm 3.4 only needs to be executed three times because parallel faces of the

bounding box produce the same sampling grid. If we assume thebounding box is a cube

and there aren2 (n is the number of rays per side of the grid) rays per sampling grid; also

we assume the number of triangles in a patch ism, then the complexity of the sampling

algorithm isO(mn2). One way to improve the efficiency of this algorithm is to build an

octree for each triangle patch. This saves some cost on ray-triangle intersection calculation.

Because the sampling is a preprocessing step, it does not affect the rendering speed. For

simplicity, we do not use the octree for each patch. We call the resulting sampled patches

surfel clouds.

Line 2 of Algorithm 3.4 computes the sampling distance (h) of the patch. This value is used

to set the sampling grid distance. As was observed by Lischinski and Rappoport [19], the

28

imaginary triangle mesh generated by this sampling processhas a maximum side length

smax of
√

3h. The minimum side lengthsmin is 0 when two or three sampling rays intersect

at the same surface position. Ifsmax is less than the radius of the surfel (surface reconstruc-

tion filter, see Section 3.4.1), we can guarantee a waterproof point sampled surface [13].

Originally, we choose a global sampling distance (h) that is the same across all the triangle

patches. The problem with this is that some patches are undersampled, with a resulting loss

of surface detail. Therefore, we let the algorithm adjust the sampling distance per patch.

The sampling algorithm calculates the average side length (l) of triangles in a patch and set

the sampling distance ash = l
c, wherec is a constant scaling factor. A typical choice ofc

is 4. The geometric interpretation is that we make sure thereare more than one surfels per

triangle after sampling (see detailed results in Chapter 4).

Another issue we consider when applying the sampling algorithm is the boundaries be-

tween surfel cloud patches and triangle patches. The concern is the possibility of leaving

holes at the boundary area. The actual rendering result exhibits this situation very rarely

(We explain the reason in Chapter 4). Therefore, we do not increase the sampling rate along

the boundary areas between triangle patches and surfel cloud patches.

In section 3.2.4, we discussed the LOD control for triangle patches. It is also possible to

do LOD control for surfel cloud patches. Our sampling grid isregular and we assume the

number of sampling rays for each side of the grid is a power of 2. A fully sampled patch

(highest LOD) hasn rays per side and grid distanceh. To get a patch that is one level less

detail, we could haven2 rays by picking every second ray in the first sampling grid and

double the grid distanceh. By doing this recursively, a series of LOD patches could be

29

generated until one of the three sampling grids has only one ray.

3.4 Point-based Rendering Algorithms

As discussed in Section 3.1, the rendering system organizespatches into an octree rep-

resentation. The rendering of the model is a tree traversal process. Traditional polygon

rendering pipeline is used for triangle patch rendering. Point-based rendering pipeline ap-

plying a splatting technique is used for surfel cloud patch rendering. In this section, we

first give a brief introduction to EWA and then discuss in detail the hardware accelerated

multi-pass point-based rendering algorithm.

3.4.1 EWA Splatting Framework

Elliptical weighted average (EWA) filtering was first proposed by Heckbert [15] for appli-

cation in texture mapping. Zwicker et al. formalized the framework in the application of

point-based rendering [35]. It is essentially an anisotropic filtering technique that in theory

avoids aliasing.

Let Pk be a set of points which defines a 3D surface. Each point has a position and a normal.

As discussed in Section 3.3.1, the point set is essentially aset of surfels. We assign a color

coefficientwk for each point. We need to define a continuous texture function fc on the

surface represented byPk. To do this, each point is associated with a radial functionrk at

the center of the point. We call these basis functions at eachpoint reconstruction filters, due

30

to the fact that they form a continuous surface from the discrete point setPk. If there is a

point on the surface with local coordinatesu, then the continuous functionfc(u) is defined

as the weighted sum:

fc(u) = ∑
k∈N

wkrk(u−uk) (3.15)

whereuk is the local coordinates of pointPk.

This is illustrated in Figure 3.6. PointQ is a point anywhere on the surface. A local

parameterization of the surface in a small neighborhood ofQ can be constructed. The color

value ofQ is the sum of the contributions of its local neighbors. Because the basis function

of each point has a cut off radial range, pointQ lies in a small number of basis functions.

3D object space

Pk

Q

u0

u1

2D parameterization
local parameterization

basis function rk(u-uk)k

small neighborhood

around Q

P3P1

P2

1

Figure 2:Defining a texture function on the surface of a point-based
Figure 3.6: Defining a texture function on the surface of a point sampled 3D model [35].

During rendering, each basis functionrk is warped from object space to screen space. It is

possible that some of the screen projection of the basis functions will be sub-pixel sizes,

creating aliasing artifacts. Therefore, we need to band-limit the warping ofrk by convolving

it with a prefilterh. h is related to the Nyquist limit of the screen pixel grid. Usually h is the

31

identity matrix for unit-spaced pixels. This output function can be written as a weighted

sum of screen space resampling filterρk(x):

gc(x) = ∑
k∈N

wkρk(x) (3.16)

where

ρk(x) = (r ′k⊗h)(x−mk(uk)) (3.17)

wheremk is the local affine approximation of the projective mappingx= m(u) for the point

uk. This approximation is given by the Taylor expansion ofmatuk:

mk(u) = m(uk)+Jk(u−uk) (3.18)

whereJk is the JacobianJk = ∂m
∂u (uk).

We choose elliptical Gaussians as the basis functions (reconstruction filters) and prefilters.

Gaussians are closed under affine mappings and convolution,which means the resampling

filter is also a Gaussian. If the 2D elliptical Gaussian is defined as:

GV(x) =
1

2π |V| 1
2

e−
xTV−1x

2 (3.19)

whereV ∈ ℜ2, the object space resampling filterρ ′
k(x) can be represented as:

GVr
k +J−1

k (J−1
k)T (u−uk) (3.20)

32

whereVr
k is:









R2 0

0 R2









(3.21)

andR is the maximum distance between surfels, which is related tosurface sampling rate.

In our case,R is the same as the grid sampling distanceh (§3.3.2). The screen space

resampling filterρ ′
k(u) can be represented as:

1
∣

∣J−1
k

∣

∣

GJkVr
k JT

k +I (x−mk(uk)) (3.22)

Now we need to evaluate the JacobianJk. If we assume that the transformation from object

space to camera space only contains uniform scaling, rotation and translation, a pointu in

camera space can be represented as:

Pc(u) = O+uS·S+uT ·T (3.23)

whereO = (Ox,Oy,Oz) is the point’s position in camera space,S= (Sx,Sy,Sz) andT =

(Tx,Ty,Tz) are the tangent vectors in camera space [27]. Next, we map thepoints from

camera space to screen space. This includes the projection to the image plane by per-

spective division, followed by a scaling with a factorη to screen coordinates (viewport

transformation). The scaling factorη is determined by the view frustum and computed as

follows:

η =
hvp
2t
n

(3.24)

33

wherehvp is viewport height,t andn are the standard parameters of the viewing frustum.

Hence, screen space coordinates(x0,x1) of the projected point are computed as (c0 andc1

are given translation constants):

x0 = η · Ox+uS·Sx+uT ·Tx
Oz+uS·Sz+uT ·Tz

+c0

x1 = −η · Oy+uS·Sy+uT ·Ty
Oz+uS·Sz+uT ·Tz

+c1

(3.25)

We approximate the Jacobian at the center of the point, therefore, it is the partial derivative

of Equation. 3.25 evaluated at(uS,uT) = (0,0):

Jk =









∂x0
∂uS

∂x0
∂uT

∂x1
∂uS

∂x1
∂uT









(0,0) (3.26)

which is:

η · 1

O2
Z









SxOz−SzOx TxOz−TzOx

SyOz−SzOy TyOz−TzOy









(3.27)

Figure 3.7 shows the process.

3.4.2 Hardware Implementation

Due to the recent development of graphics hardware, the hardware implementation of

point-based splatting algorithms based on EWA filtering is possible. To achieve this, we

employ hardware vertex and fragment shaders. The implementation is a multi-pass render-

ing process, namely, visibility splatting, EWA filtering and normalization. Our implemen-

34

Figure 3.7: Calculating the Jacobian [27].

tation is mostly based on the hardware point-based pipelineproposed by Guennebaud and

Paulin [14].

Visibility Splatting

To render water-proof surfaces with point samples, we need to guarantee the overlapping

between surfel projections. Because there is no connection information about point sam-

ples, we can only assume that neighboring surfels form the local part of a 3D surface.

For each pixel on the screen, we need to blend contributions from neighboring surfels. It

should be noted that blending does not happen just because the projection of two surfel on

the screen overlap. We assume that it is only possible for a set of surfels to form a local

surface if the depth values of these surfels differ by no morethan a thresholdε and blend-

ing only happens if the condition is true. Therefore, the first pass is to render the correct

depth buffer for blending and avoiding artifacts. To ensurecorrect blending, the depth im-

35

age should be translated away from the viewpoint by a small offset. First we calculate the

screen projection size of each surfel and render a square on the screen. The vertex program

calculates the point size according to the surfel normal andview parameters. The equation

for point size is defined as:

size= 2R· n
zC

· hvp

t −b
(3.28)

wheren, t andb are the standard parameters of the viewing frustum andhvp is the height

of the viewport. zC is the depth value in camera coordinates.R is related to the surface

sampling rate. In this implementation,R is the maximum distance between two neighboring

surfel centers (§3.4.1).

The rasterization results asize×sizeimage-space square. The fragment program does the

per-pixel depth correction. We use the approach by Bostch et.al [4] to find the object space

coordinates of the pixel and each pixel’s actual depth. A raythrough the eye and the pixel

on the near plane intersects with the surfel and yields the corresponding point on the surfel

(Figure 3.8). The actual depth can be easily calculated. Because the fragment position is

in window coordinates, a 2D transformation of the coordinates is applied to each fragment

position before doing ray casting. The transformation is given by:

QC =

















Qvp
x × 2r

wvp
− r

Qvp
y × 2t

hvp
− t

−n

















(3.29)

whereQC is the pixel position in camera coordinates.Qvp is the window position of the

pixel. wvp is the width of the viewport. Because we have the intersectionpoint, we can

36

calculate the true depth of each pixel and normalize the depth between[−1,1]. The final

step is to add a small offsetε along the ray for proper blending of surfels. We also compute

the minimum and maximum depth value and kill all fragments that are not in this range.

normal

-z
-f -n

t

b

intersecting
ray

Figure 3.8: Camera space ray casting for per-pixel depth correction.

EWA filtering

The EWA filtering pass is very similar to the previous section. We need to calculate the

color value for each surfel. During rendering, blending is turned on. The blending factor

for both color RGB and alpha are one. Therefore, the resultingframe buffer pixel value is

calculated as:

Colorout
RGBA= Colorprev

RGBA+ColorinRGBA (3.30)

whereColorprev
RGBA is the previous frame buffer value for a pixel,ColorinRGBAandColorout

RGBA

are the incoming and resulting color values respectively. Depth comparison is also turned

on. Any incoming fragments with depth values greater than those in the depth buffer are

37

discarded. In this pass, we don’t update the depth buffer because the previous pass already

produces the correct depth buffer. In the vertex program, wecalculate the screen space

resampling filter (Equation. 3.22). The vertex program alsocalculates the lighting infor-

mation. Because the Gaussian resampling kernel is computed only for a limited range, we

choose a cutoff radiusc, such thatx
TV−1x

2 < c (typically c = 1). Therefore, the point size

calculation of each surfel becomes:

size= 2
√

2cR· n
zC

· hvp

t −b
(3.31)

In the fragment program, we test the membership per surfel per pixel usingxTV−1x
2 < c and

kill any pixel that is outside the surfel ellipse screen projection. The final color is calculated

after texture lookup. The color value of each pixel is attenuated by the weight calculated by

the Gaussian resampling filter. Therefore, the final frame buffer is the accumulation of the

blending of surfels. To avoid color clamping, a scaling factor needs to be applied to each

pixel. The scaling factor is chosen to be proportional to1
R2 , whereR is the radius of the

reconstruction filter. Figure 3.9 is a rendering result of 4 surfel disks. The blending effect

is clearly shown.

Normalization

Due to the irregular sampling of point models and the truncation of the filtering kernel

(when the radius is larger than a thresholdc, the contribution of a surfel to a pixel is zero).

We can not guarantee that the summation of the weight of each pixel is the same. Therefore,

38

Figure 3.9: Blending effects of the EWA filtering pass of four surfel disks.

each pixel color is normalized by dividing by the sum of the accumulated contributions,

which is stored in the alpha channel of the resulting color value in the second EWA filtering

pass. The final result can be rendered as a texture mapped quad[14]. The frame buffer is

first copied into a texture. A simple four-sided polygon (rectangle) aligned with the near

plane of the viewing frustum is then rendered with the texture. The rectangle is supplied to

the hardware by GLQUADS in OpenGL.

Chapter 4

Results and Discussion

4.1 Surface Clustering

Figure 4.1 shows the result of the Garland’s surface clustering algorithm applied on a cow

model with 5804 faces. This is actually the phase one of our two-phase surface clustering

algorithm. Each triangle in the input model is initialized as a cluster. Each neighboring pair

of triangles form an edge. The cost of contraction for each edge is calculated (§3.2) and

inserted into a heap. Before clustering, the user needs to either specify the cost threshold or

the number of clusters needed. In our system, the user needs to provide the cost threshold

because this is an indication of the planarity of the surface. The cost threshold may be

negative. Figure 4.1 shows that the higher the threshold thelarger the number of clusters.

Therefore, higher cost value of an edge implies the two clusters connected by the edge is

less planar.

39

40

(a) (b)

(c)

Figure 4.1: Phase one clustering result of the cow model (5804 triangles) with different
cost thresholds. (a) 0.033, (b) -0.19, (c) -0.96. Each cluster is represented by one color.

41

Figure 4.2 is the wire frame result of the phase one clustering algorithm. High variation

areas in the model, such as the head of the cow, need lots of small triangles to define in order

to avoid detail loss. Some of these triangles are close to pixel size. These are the areas that

we want to represent using surfel clouds. In phase two, we addthe patch size as the new

measure for the cost of edge contraction into the total cost and remove the planarity and

direction measure (§3.2.3). Before continuing the clustering, the cost of each edge needs

to be recalculated and the heap updated. The user also needs to provide the cost threshold

for phase two. In this phase, the cost threshold is an indication of the size and shape of the

resulting clusters in the model. It should be noted that for some patches, there is no clear

choice of triangle rendering pipeline or point rendering pipeline. The cost threshold can be

used to control whether or not the user wants more triangle patches or more surfel cloud

patches. Higher cost threshold produces more triangle patches while lower cost threshold

produces more surfel cloud patches. If the cost threshold equals to the maximum value in

the heap, the output is the same triangle model from phase one. If the cost threshold equals

to a minimum possible value, the output is a completely surfel cloud model. Therefore, by

changing the cost threshold, our system provides the user full control of how the model is

to be constructed. The result of the phase two clustering after phase one is shown in Figure

4.3. After this phase, small patches in high variation areas, such as legs and head, are

combined together. After the two phase clustering, we have patches of comparable sizes

and ready to do the patch sampling and build the octree based hybrid model.

42

Figure 4.2: Wire frame of the phase one clustering result of the cow model. Cost threshold
is -0.19.

43

(a) (b)

(c)

Figure 4.3: Phase two clustering result of the cow model (5804 triangles) with different
cost thresholds. (a) -0.07, (b) -0.16, (c) -0.42. (The cost threshold used in phase one of this
example is -0.19, see Figure 4.1(b))

44

4.2 Surface Sampling

We calculate the axis aligned bounding box for each trianglepatch and the average edge

lengthl of the patch (§3.3.2). l is used to evaluate the sampling grid distance inl
c, where

c is a scale factor. Larger values ofc produce more samples in a patch. Whenc is greater

than 1, the triangles in a patch have at least one surfel sample on average. In practice, the

value of 4 forc produces nice sampling result. Sometimes the value ofl
c can be too big

(reduce sampling quality) or too small (increase sampling time). To avoid either situations,

we apply a maximum and minimum sampling grid distance. It should be noted that the

sampling grid distance is related to the side length of the bounding box. It makes no sense

to just provid the grid distance without mentioning the sizeof the bounding box. All our

sampling is done on models that are bounded by a bounding box size of [1,1,1]. Any

models that are bigger or smaller are scaled accordingly before sampling and scaled back

for rendering. Figure 4.4 is a rendering of a small percentage of surfel samples of a fully

sampled model. Because the body of the cow is aligned with one of the axes, the pattern

of regular grid is clearly shown in the figure. It can also be noticed that some surfels

have positions close to each other and almost overlap completely. During rendering, this

redudnant overlap is the major cause for frame rate decreasein that fragment shader is

doing redundant calculation for the same pixels.

The ideal sampling is to have the least overlapping among surfel samples while guarantee-

ing that there are no holes between surfels. This is a hard problem and is a whole research

topic, which we do not address in this study. Wu and Kobelt [34] provides a technique to

45

Figure 4.4: A rendering of partial point samples of a fully sampled model.

46

optimize point sampled models. The technique uses a greedy procedure to first guarantee

sufficient overlapping in order to provide a hole-free surface, then it undergoes a global

relaxation procedure. The idea is to iteratively replace subsets of surfels by new sets that

have fewer elements or at least a better surfel distribution. Further more, Wu and Kobelt

use elliptical surfels rather than circular surfels. Theseelliptical surfels have their major

and minor axis aligned with the surface principal curvaturedirections and scaled according

to principal curvature values. If we apply this technique inour sampling step, the model

generated will have fewer surfel samples, which could potentially increase the rendering

speed.

4.3 Hybrid Rendering Pipeline

We have implemented our hardware accelerated hybrid rendering pipeline with OpenGL

and C++ in Microsoft Visual Studio Dot Net 2003. Performance has been measured on a

2.8GHz Intel Pentium4 system with 768 MB memory with WindowsXP operating system.

A standard OpenGL polygon rendering is used for triangle patch rendering. Hardware

vertex and fragment shaders are used to render surfel cloud patches.

4.3.1 Hardware EWA Rendering

We implemented our EWA algorithm with standard OpenGL ARBVertex Program and

ARB FragmentProgram extensions supported by Radeon 9x00 from ATI and GeForceFX

47

family from NVidia. We tested our implementation on a GeForceFX 5950 Ultra GPU. We

attempted to also run our shaders on an ATI 9800 Pro GPU without success. The reason

is that one of the internal variables defined in the ARBFragmentProgram specification,

fragment.position, is not supported by ATI boards. This variable stores the window co-

ordinates of each pixel. We need this information to do ray-surfel intersection (§3.4.2,

Equation. 3.29). It is noted that both vertex and fragment programs are written in low level

assembly-like code. We also have shaders written in the latest OpenGL Shading Language

(GLSLang). GLSLang is a high level shading language. Although the code is significantly

shorter than that written in low level assembly language, the current compiler provided by

NVidia is not able to produce efficient low level code from high level code. Therefore, high

level code is only able to run in software mode rather than in hardware.

Visibility
Splatting

EWA
Filtering

Normalization

Vertex Shader 37 86 -
Fragment Shader 8 11 3

Table 4.1: Number of instructions needed for each pass.

Table 4.1 lists the number of instructions for each pass of the hardware rendering. The

vertex shaders are much longer than the fragment shaders. Wemove as much calculation

to the vertex shader as possible. The reason is that during rendering many fragments are

rasterized needlessly while OpenGL point primitive handles an axis aligned square on the

window. Even though the fragment programs are very simple, we observe a slowdown of

two-fold in comparison with the case where the fragment programs are disabled.

Figure 4.5 shows the rendering results of each pass of the cowmodel. Figure 4.5(a) is the

48

(a)

(b)

(c)

Figure 4.5: Rendering results from different passes (a) visibility splatting, (b) EWA filter-
ing, (c) Normalization.

resulting depth buffer of the visibility splatting pass. The depth buffer is transferred away

from the camera for an offsetε (§3.4.2). It is very important to choose an appropriateε.

This is illustrated in Figure 4.6. Assume the surfels in the dashed ellipse forms the local

surface, we want to blend these surfels together during rendering. The single surfel to the

right of the dashed ellipse does not belong to the surface formed by the surfels in the ellipse

locally, therefore, no blending of this surfel with those inthe ellipse during rendering.

The dashed lines show the actual depth buffer offset. Becausewe set the OpenGL depth

49

camera

blend

depth offset

Figure 4.6: Applying the depth offsetε during visibility splatting.

comparison function to less than or equal, surfels in the ellipse will be blended successfully

during rendering. If we choose an offset that is too big, the hardware will blend the single

surfel on the right, causing over blending. If we choose an offset that is too small, we

can not guarantee the blending of surfels inside the ellipse, causing under blending. In

practice, we choose the same offset value as the sampling grid distance and allow the user

to apply a scale factor to the grid distance desired (scale factor is between 0.75 to 1.5).

Figure 4.5(b) is the result of the EWA filtering pass. The pattern of the sampling grid and

some banding effects can be seen clearly. Because the surfelsdefining the model are not

uniformly distributed on the surface, we can not guarantee that the sum of contribution

from surfels to each pixel is the same across the frame buffer. Therefore, we need a third

pass to do the normalization, which is just to divide the color value of each pixel by the

sum of contribution of each pixel. The result is shown in Figure 4.5(c).

We compare the texture quality of the standard Gaussian texture filtering function (without

applying the prefilter, see Section 3.4.1) to that of EWA filtering in Figure 4.7. In Figure

4.7(a), the texture function exhibits significant aliasingat high frequency area. Due to the

50

(a)

(b)

Figure 4.7: Checker board rendering using (a) without EWA filtering, (b) with EWA filter-
ing.

convolution of the warped surface reconstruction filter andthe screen prefilter (§3.4.1), we

ensure that the screen projection size of each surfel is at least as big as a screen pixel. Fur-

ther more, the screen projection of each surfel is an ellipse, which has its major and minor

axis aligned according to the 3D surfel orientation. This provides very good anisotropic

texture filtering. Figure 4.7(b) shows the same square rendered with EWA filtering (163k

surfels), which is nicely antialiazed.

As discussed in Chapter 1, sufficient densities and proper sampling patterns are required

for points to be effective. Figure 4.8 shows rendering results from a series of point sampled

squares. It is clearly shown that higher sampling rate provides superior rendering quality.

From classic sampling theory, low sampling rate on a high frequency signal causes aliasing.

We see this happens in Figure 4.8(a), where we get a lower frequency texture mapped image

while the actual texture signal has higher frequency. On theother hand, high sampling rate

affects the rendering speed. Table 4.2 lists frame rates of rendering surfel clouds of different

sampling rates. Our system maintains interactive frame rate (20 fps) with 320k surfels and

51

very high rendering quality. In this checker board example,using a grid distance of 0.007

achieves both good rendering quality and fast rendering speed.

Sampling Grid
distance

0.005 0.007 0.01 0.02 0.05 0.1

Number of
surfels (k)

320 163 80 20 3 < 1

fps 20 31 37 64 83 154

Table 4.2: Rendering performance of texture mapped checker board on our system on a
NVdia GeForce FX 5950 Ultra. The frame buffer resolution is 512× 512.

4.3.2 Hybrid Model Rendering

After clustering and sampling, the rendering system organizes patches into an octree rep-

resentation. The rendering of the model is a tree traversal process. Traditional polygon

rendering pipeline is used for triangle patch rendering. Point-based rendering pipeline ap-

plying EWA filtering techniques is used for point patch rendering (§3.1). As showed in

Section 4.1, the two phase clustering algorithm is able to identify highly varied areas on a

model and the sampling algorithm is able to convert these areas into surfel representations

for rendering.

The patch boundary problem is mentioned in Section 3.3.2. Itis possible that holes exist

between triangle patches and surfel cloud patches. It is very rare in the actual rendering

results. The reason holes may exist is that there is no connection information between

triangle patches and surfel cloud patches. If the sampling rate is not high enough, there

could be pixels in the boundary area that do not get contributions from surfels. However, we

maintain a maximum sampling grid distance (§4.2), which guarantees adequate sampling

52

(a) Grid distance (0.1), 784 surfels. (b) Grid distance (0.02), 20k surfels.

(c) Grid distance (0.007), 163k surfels.

Figure 4.8: Checkboard rendering with different sampling rate (a) low rate, (b) medium
rate, (c) high rate.

53

for all patches. We observed that during rendering, holes may exist (although very rare) at

the corner of a surfel cloud, which is surrounded by trianglepatches (Figure 4.9). Because

of the regular sampling grid, the sampling algorithm is likely to miss samples at the corners

of a patch, especially when the angle of the corner is less than 90 degrees. This problem

could be easily solved by adding surfel samples at each corner of the surfel cloud.

under-sampled area at the
corner of a surfel cloud

Figure 4.9: Missing surfel samples at the corner of a surfel cloud may leave holes during
rendering. The red lines are part of surrounding triangle patches. The two blue dots indicate
the sampling grid position at the boundary, which miss the surfel cloud patch. This leaves
empty space at the the tip of the corner.

During hardware surfel rendering, the OpenGL point primitive renders a square for each

surfel on the screen, therefore, the actual surfel cloud patch size on the screen is bigger

than that of the corresponding triangle patch. This createsan overlapping between triangle

patches and surfel cloud patches. Because we add a depth offset (§3.4.2) to each surfel,

at the boundary overlapping area, triangle patches have smaller depth values than those of

surfel cloud patches. Therefore, triangle patch boundary usually overwrites surfel cloud

boundary. This is clearly shown in Figure 4.11. On the other hand, the boundary between

surfel cloud patches are blurred due to blending. The highersampling rate, the less blurred

54

the boundary appears.

Figure 4.10: Global sampling rate. The grid distance is 0.01. The frame buffer resolution
is 512× 512.

Because our sampling algorithm adjusts the sampling rate foreach patch, the loss of detail

is unnoticeable for most cases. Note in Figure 4.11 that the horns and ears of the cow is

fully detailed. The result of using a global sampling rate isshown in Figure 4.10. The loss

of detail at the horns and ears of the cow is obvious. It can also be noticed that there is

more blur between patches on the head of the cow than that of Figure 4.11.

Table 4.3 (also see Figure 4.12 and Figure 4.14) lists the preprocessing time and render-

ing performance of our hybrid rendering system. Some of the rendering results are shown

in Figure 4.16 - 4.20. Our system achieves interactive rendering speed (over 20 fps) for

medium sized models (less than 100,000 triangles). The clustering algorithm takes almost

linear time in terms of the input triangle count. As the triangle count increases, the sam-

pling time dominates the total preprocessing time (Figure 4.12). Table 4.4 (also see Figure

4.13) lists the rendering performance of the correspondingtriangle models. It is clearly

55

shown that triangle rendering pipeline has much higher performance than that of the hybrid

system. Note that the bottom row of Table 4.3 shows the surfelcontribution per pixel in

the frame buffer. We see a very high overlapping of surfels indicating that the sampling

algorithm produces a lot of redundant surfels. This is the major cause for the reduction

of rendering performance. It is also noted that the overlapping of surfels increases as the

surfel count increases (Figure 4.14). During rendering thesystem does the convolution

operation (§3.4.1) which guarantees the screen projection of each surfel to be at least one

pixel size, therefore, we have higher overlapping for smaller surfels (sub-pixel screen pro-

jection before convolution), which is the case at high surfel counts. It should be mentioned

here that our sampling algorithm does not optimize surface sampling distribution. This is

especially true for patches that are not aligned with any of the major axes. By eliminating

the redundancy of surfels, we could achieve significantly higher rendering speed. Figure

4.15 is a visualizaiton of the overlapping of surfels in the framebuffer. As mentioned in pre-

vious sections, the rendering speed is affected by the number of surfels and the degree of

overlapping (§4.3.1). Increasing the surfel quantity reduces the rendering speed. Reducing

the redundant overlapping between surfels in a model is essentially decreasing the number

of surfels in the model. Another factor to rendering speed isthe screen projection size of

the surfel. The larger the screen projection, the more calculation needed for fragments.

Therefore, moving the object closer to the camera also reduces the rendering speed.

56

(a) Front view. (b) Back view.

(c) Polygon patches. (d) Surfel cloud patches.

Figure 4.11: Rendering results of the cow hybrid model on a NVdia GeForce FX 5950
Ultra. The frame buffer resolution is 512× 512.

57

Model bones cow dragon bunny terrain
triangle count 617 1533 9552 13038 22517
surfel count 43269 51731 145712 308550 1070316
clustering time 1.72 2.59 24.42 30.58 81.61
sampling time 14.13 77.31 132.63 182 555.73
fps 63 69 29 17 2
surfels per pixel 10.9 11.2 20.7 15.8 40.1

Table 4.3: Preprocessing time and Rendering performance of hybrid models on our system
on a NVdia GeForce FX 5950 Ultra. The frame buffer resolutionis 512× 512.

Model bones cow dragon bunny terrain
triangle count 4204 5804 50761 69451 199114
fps 968 906 130 92 10

Table 4.4: Rendering performance of triangle models on our system on a NVdia GeForce
FX 5950 Ultra. The frame buffer resolution is 512× 512.

0

100

200

300

400

500

600

700

0 50000 100000 150000 200000

Triangle Count

T
im

e
(s

ec
)

Clustering
Sampling
Total

Figure 4.12: Running times for preprocessing of different models.

58

0

200

400

600

800

1000

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Triangle Count

fp
s

Figure 4.13: Rendering performances of different triangle models.

0

10

20

30

40

50

60

70

80

0 200000 400000 600000 800000 1000000 1200000

surfel count

fp
s

0

5

10

15

20

25

30

35

40

45

O
ve

rl
ap

fps
overlap

Figure 4.14: Rendering performances of different hybrid models. The performances are
plotted with respect to surfel counts. Overlap indicates the average number of surfels con-
tributing to each pixel in the framebuffer.

59

Figure 4.15: Visualization of the number of surfels contributing to each pixel in the frame-
buffer. The higher the red color the larger the number of surfels contributing.

60

(a) 43269 surfels, 617 triangles. (b) 4204 triangles.

Figure 4.16: Rendering results of the bone model on a NVdia GeForce FX 5950 Ultra. The
frame buffer resolution is 512× 512.

(a) 51166 surfels, 1533 triangles. (b) 5804 triangles.

Figure 4.17: Rendering results of the cow model on a NVdia GeForce FX 5950 Ultra. The
frame buffer resolution is 512× 512.

61

(a) 145712 surfels, 9552 triangles. (b) 50761 triangles.

Figure 4.18: Rendering results of the dragon model on a NVdia GeForce FX 5950 Ultra.
The frame buffer resolution is 512× 512.

(a) 308550 surfels, 13038 triangles. (b) 69451 triangles.

Figure 4.19: Rendering results of the bunny model on a NVdia GeForce FX 5950 Ultra.
The frame buffer resolution is 512× 512.

62

(a) 1070316 surfels, 22517 triangles.

(b) 199114 triangles.

Figure 4.20: Rendering results of the terrain model on a NVdiaGeForce FX 5950 Ultra.
The frame buffer resolution is 512× 512.

Chapter 5

Conclusion and Future Work

5.1 Summary of Contributions

As discussed in Chapter 3, the contributions of this thesis are two folds. First, Garland’s

quadric error metrics based surface clustering algorithm [10] is modified into a two-phase

clustering algorithm to generate patches and build hybrid models. Patch representation is

independent of the viewing parameters. Highly varied surface areas are identified by our

algorithm and represented by points. Second, points and triangles are considered equivalent

primitives in our system and can be used at all levels of details. Unlike most previous hybrid

renderers, points are not used only for previewing purposes. We have built a true hybrid

real-time rendering system. The traditional polygon rendering pipeline is used for triangle

patch rendering. A point-based rendering pipeline applying splatting techniques is used for

point patch rendering. A hardware implementation of EWA filtering is provided for the

63

64

point-based rendering pipeline, utilizing hardware vertex and fragment shaders in modern

graphics boards, to achieve interactive frame rate.

Our system is able to render medium sized models in interactive frame (over 20 fps) on

a 2.8GHz Intel Pentium4 system with 768 MB memory with a GeForceFX 5950 Ultra

GPU. The two phase clustering algorithm successfully identifies planar and highly varied

areas on the surface and the rendering system assigns triangle or point representations for

different patches. The sampling algorithm converts triangle patches into point patches and

adjusts the sampling rate based on the patch local information. The hardware based EWA

filtering achieves superior anisotropic texture filtering while maintains interactive frame

rate. The rendering system outputs hole free hybrid models.It is very rarely that holes

appear at the boundary areas between triangle patches and surfel cloud patches (§4.3.2).

Our system provides the users great flexibility to render anypart of a model with either

points or triangles while maintaining good rendering quality and speed.

5.2 Future Directions

There are several ways in which this work could be extended inthe future. The list below

appears particularly important and promising.

• Modern laser 3D scanning devices are able to acquire huge volumes of point data

(Chapter 1). These point cloud data are essentially point cloud models. Our current

system only takes triangle models as input and converts theminto hybrid models. By

65

incorporating the ability of converting point cloud modelsinto hybrid models, our

system will be more flexible.

• The current sampling algorithm is very simple and easy to implement. However, we

have lots of overlapping surfels as the result of sampling, which affects the efficiency

of the rendering system. We mentioned in Section 4.2, the ideal sampling is to have

the least overlapping among surfel samples while guaranteeing that there is no holes

between surfels. We could apply some global optimization methods as one of them

described by Wu and Kobbelt [34]. The idea is to iteratively replace subsets of surfels

by new sets that have fewer elements or at least a better surfel distribution. Further

more, we could use elliptical rather than circular surfels.These elliptical surfels

can have their major and minor axis aligned with the surface principal curvature

directions and scaled according to principal curvature values, which are elliptical in

object space [34].

• In Chapter 3, we mentioned of building a LOD tree for each modelso that each patch

in the model has a series of LOD representations. By doing that, we could apply a

cost function during rendering. The cost function will takeinto account the screen

projection size of the patch, the distance of the patch and the surface variation of the

patch to select the best representation (point or triangle at certain level of the LOD

tree) of the patch for rendering.

• Our current point rendering system sends all surfels of a model to the hardware for

rendering. We could improve rendering efficiency by applying some hierarchical

data structure to the rendering system. For example, to testthe visibility of a patch,

66

we could use normal cones [29]. We could also find better ways to organize our

surfel data to use graphics memory more efficiently.

Bibliography

[1] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, and

Claudio T. Silva. Point set surfaces. InProceedings fo IEEE Visualization 2001, pages

21–28, 2001.

[2] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, and

Claudio T. Silva. Computing and rendering point set surfaces.IEEE Transactions on

Visualization and Computer Graphics, 9(1):3–15, 2003.

[3] Mario Botsch and Leif Kobbelt. High-quality point-basedrendering on modern

GPUs. InProceedings of Pacific Graphics, pages 335–343, 2003.

[4] Mario Botsch, Michael Spernat, and Leif Kobbelt. Phong splatting. In Proceedings

of Symposium on Point-Based Graphics, pages 25–32, June 2004.

[5] Chun-Fa Chang, Gary Bishop, and Anselmo Lastra. LDI tree: a hierarchical rep-

resentation for image-based rendering. InProceedings of SIGGRAPH 1999, pages

291–298. ACM Press, August 1999.

67

68

[6] Baoquan Chen and Minh Xuan Nguyen. POP: A hybrid point and polygon rendering

system for large data. InProceedings of IEEE Visualization, pages 45–52, October

2001.

[7] Liviu Coconu and Hans-Christian Hege. Hardware-accelerated point-based rendering

of complex scenes. InProceedings of 13th Eurographics Workshop on Rendering,

pages 43–52, June 2002.

[8] Tamal K. Dey and James Hudson. PMR: Point to mesh rendering, a feature-based

approach. InProceedings of IEEE Visualization, pages 155–162, 2002.

[9] Michael Garland and Paul S. Heckbert. Surface simplification using quadric error

metrics. InProceedings of SIGGRAPH 1997, pages 209–216, 1997.

[10] Michael Garland, Andrew Willmott, and Paul S. Heckbert. Hierarchical face cluster-

ing on polygonal surfaces. InProceedings of the 2001 symposium on interactive 3D

graphics, pages 49–58, 2001.

[11] Enrico Gobbetti and Fabio Marton. Layered point clouds. In Proceedings of Sympo-

sium on Point-Based Graphics, pages 113–120, 227, June 2004.

[12] Stephen J. Gortler, Radek Grzeszczuk, Richard Szeliski,and Michael F. Cohen. The

lumigraph. InProceedings of SIGGRAPH 1996, pages 43–54, 1996.

[13] J.P. Grossman and William J. Dally. Point sample rendering. In Proceedings of 9th

Eurographics Workshop on Rendering, pages 181–192, June 1998.

69

[14] Gäel Guennebaud and Mathias Paulin. Efficient screen space approach for hardware

accelerated surfel rendering. InProceedings of 2003 Vision, Modeling and Visualiza-

tion, Munich, pages 1–10. IEEE Signal Processing Society, November 2003.

[15] Paul S. Heckbert.Fundamentals of Texture Mapping and Image Warping. Master’s

thesis, University of California at Berkeley, Department of Electrical Engineering and

Computer science, June 1987.

[16] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David Koller, Lu-

cas Pereira, Matt Ginzton, Sean Anderson, James Davis, Jeremy Ginsberg, Jonathan

Shade, and Duane Fulk. The digital michelangelo project: 3Dscanning of large stat-

ues. InProceedings of SIGGRAPH 2000, pages 131–144, 2000.

[17] Marc Levoy and Turner Whitted.The Use of Points as a Display Primitive. Technical

Report TR 85-022. University of North Carolina at Chapel Hill, Computer Science

Department, 1985.

[18] Erik Lindholm, Mark J. Kilgard, and Henry Moreton. A user-programmable vertex

engine. InProceedings of SIGGRAPH 2001, pages 149–158. ACM Press, 2001.

[19] D. Lischinski and A. Rappoport. Image-based rendering for non-diffuse synthetic

scenes.Rendering Techniques, pages 301–314, 1998.

[20] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard. Cg: A

system for programming graphics hardware in a C-like language. In Proceedings of

SIGGRAPH 2003. ACM Press, 2003.

70

[21] Nelson Max and Keiichi Ohsaki. Rendering trees from precomputed z-buffer views.

In Proceedings of 6th Eurographics Workshop on Rendering, pages 45–54, 1995.

[22] Mark Pauly and Markus Gross. Spectral processing of point-sampled geometry. In

Proceedings of SIGGRAPH 2001, pages 379–386. ACM Press, July 2001.

[23] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus Gross. Surfels:

Surface elements as rendering primitives. InProceedings of SIGGRAPH 2000, pages

335–342. ACM Press, July 2000.

[24] Pixar. Finding Nemo. http://www.pixar.com/featurefilms/nemo [Last

Acessed Feburary 2005], 2003.

[25] William T. Reeves. Particle systems - A technique for modeling a class of fuzzy

objects. InProceedings of SIGGRAPH 1983, pages 359–376. ACM Press, July 1983.

[26] William T. Reeves. Approximate and probabilistic algorithms for shading and render-

ing structured particle systems. InProceedings of SIGGRAPH 1985, pages 313–322.

ACM Press, 1985.

[27] Liu Ren, Hanspeter Pfister, and Matthias Zwicker. Objectspace EWA surface splat-

ting: A hardware accelerated approach to high quality pointrendering. InProceedings

of Eurographics 2002, 2002.

[28] Szymon Rusinkiewicz and Marc Levoy. QSplat: A multiresolution point rendering

system for large meshes. InProceedings of 12th Eurographics Workshop on Render-

ing, pages 151–162, June 2001.

71

[29] Leon A. Shirmun and Salim S. Abi-Ezzi. The cone of normals technique for fast

processing of curved patches. InProceedings of Eurographics 1993, pages 261–272,

1993.

[30] Alvy Ray Smith. Plants, fractals and formal languages. In Proceedings of SIGGRAPH

1984, pages 1–10. ACM Press, July 1984.

[31] Marc Stamminger and George Drettakis. Interactive sampling and rendering for com-

plex and procedural geometry. InProceedings of Eurographics Workshop on Render-

ing 2001, pages 151–162, 2001.

[32] Michael Wand, Matthias Fischer, Ingmar Peter, Friedhelm Meyer auf der Heide, and

Wolfgang Straßer. The randomized z-buffer algorithm: interactive rendering of highly

complex scenes. InProceedings of SIGGRAPH 2001, pages 361–370, 2001.

[33] Lee Westover. Footprint evaluation for volume rendering. In Proceedings of SIG-

GRAPH 1990, pages 367–376. ACM Press, August 1990.

[34] Jianhua Wu and Leif Kobbelt. Optimized sub-sampling fopoint sets for surface splat-

ting. In Proceedings of Eurographics 2004, pages 643–652, 2004.

[35] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus Gross. Surface

splatting. InProceedings of SIGGRAPH 2001, pages 371–378. ACM Press, July

2001.

[36] Matthias Zwicker, Jussi Rasanen, Mario Botsch, Carsten Dachsbacher, and Mark

Pauly. Perspective accurate spaltting. InProceedings of the 2004 Conference on

Graphics Interface, pages 247–254, 2004.

