APPROVAL SHEET

Title of Thesis: Real-Time High Quality Volume Isosurface Rendering

Name of Candidate: John Werner Kloetzli, Jr
Master of Science, 2008

Thesis and Abstract Approved:

Marc Olano

Associate Professor

Department of Computer Science and
Electrical Engineering

Date Approved:

ABSTRACT

Title of Thesis: Real-Time High Quality Volume Isosurface Rendering
John Werner Kloetzli, Jr , Master of Science, 2008

Thesis directed by: Marc Olano, Associate Professor
Department of Computer Science and
Electrical Engineering

We present a volume format which is capable of representimgptex reconstruc-
tions as well as a fast isosurface rendering algorithm. @lunae format consists of a
set of densely packing tetrahedral polynomials in Bernd®im, each constrained to pro-
vide continuity across face boundaries. We define a spedt#ss of tetrahedral partition
suitable for our method, along with a least-squares appration method to generate data
in this format as approximations to arbitrary continuoukistes. Our volume format is
closed under convolution with scalar volumes, so by repitasg reconstruction filters in
our format we can create convolved volumes easily. We alssgnt a fast rendering algo-
rithm which maintains interactive rates for most volumesaif283 resolution. Our results
include analytic and observational error for how our formaproximate several common

volume reconstructions, as well as space requirementsegaring speed.

Real-Time High Quality Volume Isosurface Rendering

by
John Werner Kloetzli, Jr

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment
of the requirements for the degree of
Master of Science
2008

(© Copyright John Werner Kloetzli, Jr 2008

ACKNOWLEDGMENTS

| want to thank Dr. Olano for being a great academic guide alwisar, as well as
the entire VANGOGH lab for the technical help and comradesliam also thankful to
my thesis committee for the time they have given to me, ancethiee CS department at
UMBC for the high-quality undergraduate and graduate efiluc#hat they have provided.
Most of all I am thankful to God for the opportunities He hasegi me in the field of
Computer Graphics, as well as to my family for supporting hreugh the stressful times
of graduate school.

Volume data sets were provided by The Volume Library
(http://wwO. i nformatik. uni -erl angen. de/ External /vol | i b/)and
\VolVis (ht t p: / / www. vol vi s. org/).

TABLE OF CONTENTS

ACKNOWLEDGMENTS ii
LISTOFFIGURES e Vi
LISTOFTABLES e Xi
Chapter 1 INTRODUCTION 1
1.1 WlumeRendering e 1
1.2 Reconstruction Filtering L 2
1.3 lIsosurface Rendering 4
1.4 GraphicsHardware 4
1.5 Preconvolution 6
1.6 A Generalized Preconvolved Volume Format. 7
Chapter 2 RELATEDWORK 9
21 Ray-TraCing o o i 10
2.2 Interactive Ray-Tracing 11
2.3 Surface Extraction 11
2.4 Real-Time Surface Extraction 13
25 HybridMethods 14

Chapter 3 BACKGROUND 17

3.1 Regular Scalar Fields on the Integer Lattice 17

3.2 Discrete Convolution 18

3.3 Beézier Tetrahedra and Supersplines. 19
3.3.1 Properties of Bézier Tetrahedra 19
3.3.2 Continuity Constraints 12

3.3.3 Beézier Tetrahedrain Super Splines 22

3.4 Graphics Programming 2 2

3.5 Rendering Bézier Tetrahedra 25
3.5.1 The Tensor Formulation 25
3.5.2 Rendering Bézier Tetraherda 29

Chapter 4 METHOD 33

4.1 BTWolumes e e 34
4.1.1 Voxels and ShiftInvariance 34
4.1.2 Tetrahedral Partitions amdpartitions 34
4.1.3 The BT Wolume Definition 38

4.2 Approximating Continuous Volumes as BT Volumes 38

4.3 BT Wlume Convolution 40
4.4 RenderingBTWolumes 42
441 FirstPass:Culling 45
4.4.2 SecondPass:Rendering 45
443 ThirdPass: Shading a7
Chapter 5 RESULTS 48

5.1 Least-Squares Approximation 48
5.2 BT VWolume Convolution, 52
53 Rendering e e 55

5.3.1 Scalability and Bottleneck Identification 55

Chapter 6 CONCLUSION 59

11

1.2

3.1

LIST OF FIGURES

Two reconstructions of a small texture. Bilinear on té#, lan approxi-
mation of a 3x3 Gaussian with standard deviation .5 on thiat.rigNote
the high-frequency linear artifacts on the left, which magehimportant

information by distractingtheuser.

Three isosurface renderings of (from left to right) a@calar simulation,
a 3D scan of a foot, and a 3D scan of a mechanical part. Therudt(e

image) shows two different isosurfaces correspondinggalénsity of skin

and the densityofbone.

On the left are two diagrams showing a cubic Bézier hetleon with the
twenty weight positions as black dots. Note that weightsxsadgivided into
“bands” which are co-planar - top shows division accordmbdttom face,
bottom shows division according to front-right face. Thghtitop image is
of two adjacent Bézier tetrahedra, slightly separatedlemity. Co-located
weights are connected with dashed lines - constraints_focontinuity

across the splines requires that co-located weights have gglue. The
image on the bottom-right shows a single continuity constraint for the

same two tetrahedra - all weights connected with the closbathlines

have to lie on the same hyperplane.

Vi

3.2 Onthe left is the generic programmable graphics pipelBold elements
represent a single instance of input to the next stage, wéyegl-out ele-
ments shown for context. Boxes on the left show the compsnantach
element at each stag¥ertex shadertransform single vertices. Triangles
are then re-assembled as input to @eometry shademwhich can output
zero or more triangles. The fixed-functicasterizercomputes pixel cover-
age for each triangle and passes them tgpikel shaderwhich produces
a color. Vertex elements are interpolated before beingegubsthe pixel
shader. The middle diagram shows how Loop & Blinn (2006) eziidkzier
tetrahedra on the pipeline by pre-computing screen-spars®ots, as well
as screen-space triangles which interpolate the depthcbfaawing ray.
They skip the vertex and geometry stages, computing ra&ysattion in
the pixel shader. Finally, the right shows how they suggeanging their
method when geometry shaders are available. In this cageacsingle
vertex is stored for each tetrahedron, which is expandedsicrteen-space

triangles in the geometryshader. 26

3.3 Three- and four-triangle screen-space projectionstadiidera. Two four-
triangle orientations appear on the top left, with two thirg@ngle orienta-
tions on the top right. Below them are the screen-spaceglegrojections,
along with a visualization of depth interpolated acrosshdaangle from
vertex values. Individual triangles have been separatgttbl to clearly

differentiate them.

Vil

4.1

4.2

4.3

4.4

4.5

Three example triangular partitions of a square domémrel boundaries
are dotted grey lines. Lef€overingandpackingtriangular partition. Cen-
ter: A partition which igegular, exact(coveringandcontained, andvoxel
exact(each voxel is has aexactsub-partition), but is noshift invariant

and so not a-partition. Right: A validx-partition.

The three partitions used in our work. Image from Carr,lléfto &
Snoeyink (2006). From left to right: Freudenthal with 6 &kedra, the

two different face-divided orientations with 12 tetrahedach, and face-

centered with 24 tetrahedra.

An isosurface rendering of a BT Volume with theetrahedra freuden-
thal k-partition approximating a Gaussian reconstruction filtdrere lines
denote tetrahedron boundaries. Note that tetrahedra woakd not con-

tribute to this particular isosurface are culled beforelering. This volume

enforced smooth borders and continuity. 39

We model convolution as a summation of BT solids. In otderonvolve

one tetrahedron of a BT volume, pictured above in red, witiTar8lume

filter with the samex-partition, we need to sum together the contributions

of overlapping BT in all possible translations of the filteach scaled by

the sample value at that filter position.

Several shots in a zoom animation 824 volume reconstruction show the

resolution independence of the BT Volume format.

viii

7

41

43

3

4.6

5.1

5.2

5.3

Our BT volume rendering pipeline. Passemoves all tetrahedra, which
are stored as single vertices, that do not contribute to tineeiet isosur-
face, storing the resulting set of contributing tetrahedran intermediate
buffer. Pas® expands each tetrahedron into screen-space triangles, in-
terpolating depth across the triangles to the pixel shadech calculates
ray-intersection and surface normals. Pixels which do ft@rhisosurface

are discarded. Pa8gyenerates the final shading in another pixel shader. . .

From left to right, each column shows isosurfaces ohfittiesults for
Gaussian with standard deviatiory, B-Spline, and Catmull-Rom recon-
struction filters, all using”® continuity constraints. The sharp discontinu-
ities, which appear obvious in the filter, are not as distngdi a volume
reconstructed using the filter. Top row is the freudenthdit@n, the mid-

dle row face-divided, and the bottom face-centered. 50

From left to right, each column shows isosurfaces ohfttiesults for
Gaussian with standard deviatiory, B-Spline, and Catmull-Rom recon-
struction filters, all using”! continuity constraints. The directional bias
of some isosurfaces is due to the anisotropic distributispbtine weights
in those partitions. Top row is the freudenthal partitidme middle row

face-divided, and the bottom face-centered. 51

On the left is a reconstruction using the six tetrahedpartition with C°
constraints, while the left enforces!' continuity. In this case it seems
that C° would be preferable to the smooth@t version because the small
sharp discontinuities are less distracting in the largegrthan the lower-

frequency artifacts introduced by enforcing the smootheerfi. 53

44

5.4

5.5

5.6

5.7

Cracks caused by the 16-bit floating point weight valoesir compressed

volume format.

Various reconstructions of the Marschner and Lobb tatt det. On the
left is the ground truth result from Marschner & Lobb (1994ith our re-
sult using the 24 tetrahedronpartition on the right. The top row is for
B-Spline reconstruction, while the bottom row shows CatrRadm recon-

struction. For these results, we ugglcontinuity.

Four isosurface reconstructions of a Buckyball data Betm upper left
clockwise, marching cubes, BT volume B-Spline, BT volumanal-
Rom, BT volume gaussian with st. dev. of 0.7. All BT volumeaec

structions used 24 tetrahedtgpartition andC? continuity.

Test data sets rendered using our method. From top tnbdtft to right:
simulation of electron density of a protein molecule, scha teddy bear,

scan of an engine block, and a scan of a foot rendered fortgteafsskin

and bone.

5.1

5.2

LIST OF TABLES

Squared error for all the filters we performed fitting 68.continuity con-
straints cause less absolute error tharconstraints. In general, moving to
a more-expressive-partition reduces error in the fitting (although it does

increase complexity of the BT volume). 49

Rendering performance and data sizes for our test valumélumes
marked with af remove tetrahedra which only contributed to very small
isosurfaces. All size and performance measurements arehén-

tetrahedronk-partition rendered on 800x1200 resolution desktop. 55

Xi

Chapter 1

INTRODUCTION

1.1 Volume Rendering

Volume rendering is the process of converting volumetriadato meaningful 2D
images with the goal of conveying specific information abiet data to the viewer. Ap-
plications of volume rendering cover a wide range of disogs including hurricane vi-
sualization, medical diagnosis and planning, and smokepartitle simulations. Volume
rendering is differentiated from other areas of computappics and visualization by the
fact that the actual primitive to be rendered is 3D. Compgtaphics traditionally deals
with 2D surfaces, usually triangular meshes, embedded is@e, but volume rendering
truly deals with rendering 3D data.

The purpose of volume rendering is to produce images or viddgbe data which
help someone to understand it better. This is contrastdd ewimputer graphics, where
generally the task is to appear realistic or artistic buttoatonvey specific information.
Unfortunately, it is very difficult, if not impossible, to gerate a quantitative measure for
how well information is conveyed which works across manyliapgion domains. This is
because different applications have very different tydaaformation which it is impor-
tant to convey, and a rendering method which satisfies théresgents of one application

may fail to satisfy the requirements of another. For thisoea it is important to provide

rendering techniques which are flexible enough to applyfterdint applications.

Within volume rendering there are many different data tyges$formats. In the phys-
ical world, data is a continuous 3D distribution (e.g. a harbady) but, in order to effi-
ciently deal with such data on a computer, it must be degedtinto a finite set of samples.
Although there are many different ways of sampling contumidata, the most common
for medical volume acquisition is the regular 3D grid, whatbres samples along regular
intervals in each dimension. Although some applicationsotime rendering require com-
plex sample elements such as vectors or tensors, medicahes|generally have samples
which are scalar real numbers. Scalar volume data is platigwseful because it can be
used to naturally represent volumes of electron densith@résonant response of hydro-
gen atoms to RF pulses, which are exactly the values produc€bmputed Tomography
(CT) and Magnetic Resonance Imaging (MRI) scans, resggtiMany scientific simula-
tions also produce volume data sets of density or electrosityewhich would also benefit
from effective visualization. Because of the prevalencelath which is naturally avail-
able in the scalar-valued regularly sampled 3D grid, it asmnable to focus on generating

high-quality renderings of this specific format in real-tm

1.2 Reconstruction Filtering

All volume rendering methods have to perforatonstruction filteringo produce a
continuous function of the discrete sample points. A largdybof research deals with
filters for reconstruction of continuous volume data, arel ldvel of quality attained by
this step plays a huge role in the efficiency with which theitésy image will perform its
task of conveying information to the user. This process isegaly expensive, however,
and most real-time volume rendering methods perform thplsishpossible reconstruction

filtering: linear blending in each dimension (tri-lineaehting).

3
Tri-linear filtering is almost ubiquitous throughout reaahe graphics because of its
speed, but the quality disadvantages of such poor filteriegignificant. Figure 1.1 shows
a comparison of linear and Gaussian reconstruction filgesiran image, pointing out the
artifacts of linear reconstruction. Most real-time volureadering methods not only use
tri-linear reconstruction, but require it in order for thetnod to work. This tight coupling
between the reconstruction filter and the rendering meth@hiunfortunate one, and is

difficult to break and maintain high performance.

AA

FiG. 1.1. Two reconstructions of a small texture. Bilinear oa kbft, an approximation
of a 3x3 Gaussian with standard deviation .5 on the right.eNlo¢ high-frequency linear
artifacts on the left, which may hide important informatimndistracting the user.

The poor quality of linear filtering was demonstrated by Marser & Lobb (1994),
who evaluated a large number of reconstruction filters ircthrgext of volume rendering.
They presented evaluation criteria for filters specificalgsigned for volume rendering,
and measured how well several common filters performed iim tests. In their results
they mention that linear reconstruction is the least expenbut also that it is poor quality,

and recommend cubic polynomial filters for good quality amadewed sinc filters for high

4
quality. In the end their recommendation was to choose a fitea specific application
based upon the requirements of that application, since mylesfilter works best in all
situations. For this reason it is desirable for our rendenethod to support a wide variety

of reconstruction filters in order to work well within a larget of applications.

1.3 Isosurface Rendering

Finally, we have to decide the properties of the actual irmagkich the rendering
will produce. Our application domain of medical imagingpgeels to determine that we
wantisosurface renderingvhich is the display of the locus of points of the volume (end
reconstruction filtering) which are equal to a target vak@. example, consider a contin-
uously reconstructed volume of the density of the human béidye could identify and
display as opaque only the points in that 3D function whicth thee same density value as
bone, we would have an effective visualization of a skeletbrve were to then change
this isovalue density to the density of muscle, our rendgniould depict the muscular and
skeletal systems of the body. Every density value which isasehe target will produce
a continuous surface around all areas in the volume whick haleast that high density.
This is similar to the way that a contour map in 2D draws a lireeiad all heights greater

than the value of the contour. See Figure 1.2 for an exampsoetirface rendering.

1.4 Graphics Hardware

The tremendous computational powergpéphics hardwarewhich is a special class
of computer hardware designed to accelerate rendering,téskvhat allows isosurface
rendering to be possible in real-time at all. The amount ¢ daquired to be processed
in any volume rendering application is tremendous, far acitpg the memory bandwidth

available to the traditional CPU. Even if that amount of dadald be passed through the

FiG. 1.2. Three isosurface renderings of (from left to right) @exular simulation, a 3D
scan of a foot, and a 3D scan of a mechanical part. The footd{midhage) shows two
different isosurfaces corresponding to the density of akith the density of bone.

CPU, it could not possibly finish the massive amount of corapom required to perform
rendering in real-time. It would be possible to execute r@duendering on a cluster of
CPUs, but, because of low demand, such clusters are expargivifficult to maintain.
Graphics hardware does not have any of these disadvantdgesrder to avoid
the memory bandwidth problems, graphics hardware has amaitmemory store large
enough to hold the problem data set which typically has aeroofi magnitude greater
bandwidth than the CPU. Graphics hardware also has liyenathdreds of individual pro-
cessors which run in parallel, resulting in several teraflofprocessing power for current
models. Even all of this would not be enough to solve the rendegroblem efficiently,
however, so the real power of graphics hardware is to exdatgacy hiding.Latency is
the time required by the memory system to fetch a piece of flata the memory store
and pass it to the processor. The GPU architecture is dekignkold literally tens of
thousands of independent computing tasks all executirigeatdme time, so when one task
needs to fetch memory there is a very high chance that antdbkris ready to execute
while that memory is being fetched, making memory accegsgally free (assuming there

is enough computing work to hide the latency of the memoryesys Finally, because

6
of high demand from the video game market, these processersmexpensive, usually
costing a few hundred dollars, and fit into standard computéthout requiring special
software or maintenance. Any isosurface rendering teclenwgll have to be able to run

on graphics hardware in order to have the possibility of-tieaé performance.

1.5 Preconvolution

In Section 1.2 we showed that no single reconstruction filtenks for all applications
of isosurface rendering, and therefore a rendering methiodse across many application
domains will have to support a wide variety of filters. Howeweveloping a single ren-
dering algorithm to support many or all of these differeriefs is a difficult problem. The
reason for this is that convolution is very computationakyensive, and not reasonable to
compute on-the-fly for large and/or complex filters. All @nt real-time isosurface render-
ing methods use filters of the smallest possible size, ang wigthem require poor-quality
linear filtering.

It seems that what we want in this situation is to separateahgolution step, which
is very expensive, from the actual rendering step. If we lmadesintermediate format to
store the volume between these two stages, we could perfeeradnvolution step as a
pre-process and only deal with the intermediate form dutiegendering step. We refer to
this process of storing the convolved data set in an intelaedbrmat agpreconvolution
since the process of generating the intermediatpreconvolvedform of the data can be
performed before the actual rendering. In addition, we khba able to support multiple
reconstruction filters with the same rendering technigsi&rag as the preconvolved format
is capable of representing the volume data under diffesmairstructions. If we are able to
render the preconvolved format quickly, then we can getgelgerformance benefit from

preconvolution as well.

7
In order for a particular preconvolved format to be usefulyill have to satisfy a
range of different criteria. First, we will have to rendee {oreconvolved data quickly, so it
will need to be designed to work efficiently with graphicsdwaare. Second, it should be
possible to generate the preconvolved data as the resdhweblution with a wide range of
filters. This would give us the ability to support multiplgsipations which prefer different
reconstruction filtering without changing how the rendgtgorithm works. If we can find
a preconvolved format which provides this level of speed ftadbility, it would greatly

extend the usefulness of the core rendering algorithm for it

1.6 A Generalized Preconvolved Volume Format

In this thesis we present a preconvolved volume formatedaheBT volumewhich
is easy to generate through convolution, fast to rendemgugiaphics hardware, and able
to represent volumes reconstructed with many differergrfilt The BT volume format is
a 3D superspline, which means that it is composed of manyexje8D splines primi-
tives which have been constrained in order to provide caitjimacross the whole volume.
The spline primitive we use is the cubic Bézier tetrahedwamch is a 3D spline with 20
weights defined within a bounding tetrahedron. We found thatcubic spline gave the
best balance between computational efficiently and reptatee power, although all of
our work could be generalized up to fourth-order splines.vBlime data sets exist in the
same cuboid space of the scalar volume data that they represading each unit cube of
this domain into a number of tetrahedra which exactly partiit. Every pair of adjacent
Bézier tetrahedra in the volume are constrained to haveel ¢ continuity in order to
prevent cracks.

We will present several algorithms for creating and remdeBT volume data. First,

we will show how to create a BT volume representation of aitray data set using a least-

8
squares method. Although this is useful for approximatioumes directly, we would
prefer to use the convolution framework, so next we showiflve¢ have a reconstruction
filter already approximated as a BT volume, then convolutibthat filter with a scalar
volume data set produces a BT volume. It is important to nude this process is not an
approximation, but exact convolution. This fact, when dedpvith the least-squares direct
fitting method, give us a powerful generalized frameworkdenerating BT volumes as
the result of convolution - first approximate a reconstautfilter with a BT volume using
least-squares, then perform convolution with a volume datato produce the final BT
volume for rendering. We will present several common retronton filters for volume
data and their BT volume approximations, evaluating théityuaf approximation for each.
Finally, we will describe an optimized rendering algorithvhich can render a complete

volume at around ten frames a second.

Chapter 2

RELATED WORK

Many isosurface rendering techniques have been develapedver a wide range
of applications. Making images from 3D data is a fundameptablem for computer
graphics applied to scientific or medical visualizationl &flthe different techniques can
be classified into two categories based upon the speed wiithvihey operate; Offline
methods are too slow for the user to directly interact withilavinteractive techniques are
designed to generate more than three or four frames a sec@mdble user interaction.

Offline rendering techniques have been around longer thi@mnaictive techniques,
mainly because it has only been in the last ten years that etanpardware has been fast
enough for any type of volume rendering. They can be divigko two main categories
according to the high-level description of the algorithrechiniques which usay-tracing
(described in Section 2.1) follow a single viewing ray thghuhe volume to determine if
and where it intersects the isosurface, whileface constructiomethods (Section 2.3)
focus on extracting a single isosurface in a 2D represemtathich can then be rendered
using standard techniques. The most important of theseausgticalledviarching Cubes
(Lorensen & Cline, 1987), is still one of the most popularsisdace rendering methods
used today.

As computers have gotten faster and special-purpose gsaphrdware has become

10
more popular, volume rendering methods have been developath take advantage of
this speed. Most interactive isosurface rendering meticadsbe viewed as acceleration
of ray-tracing (Section 2.2) or marching cubes (Section thdorder to allow user in-
teraction. There is a third category, which we refer tdhgsrid methods (Section 2.5),
which can be viewed as a combination of surface extracti@hrag-tracing. The main
advantage of surface-based algorithms is speed - an eedredisurface triangular mesh
can be rendered very quickly using standard graphics haedviRay-tracing, on the other
hand, generally gives better quality results becauseguil@an meshes are not exact repre-
sentations of the isosurface. Hybrid methods work by ektrg@ coarse boundary of the
isosurface (like surface extraction), but then performprel refinement on each primitive
of this coarse representation to produce high-qualitylteglike ray-tracing). This can be
viewed as dividing the rendering process into two phasesagese surface extraction phase
which generates the mesh, and a high-quality refinementeplggnerally some form of

ray-intersection for each pixel, which generates the fimage.

2.1 Ray-Tracing

One of the first methods which rendered surfaces from volume#ta directly was
developed by Levoy (1988), who described a method for comgutpacity at each voxel
depending on the density values at the voxel and how clogentbee to the target density.
He then accumulated the opacity values along each viewyng igenerate the final surface,
and computed lighting using a normalized gradient as themabvector. Danskin & Han-
rahan (1992) presented several hierarchical acceleratgthods for volume ray-tracing
algorithms, showing that efficient volume ray-tracing regs! efficient data structures to
allow skipping of empty space. More recently, Sramek & Kaarin2000) introduced the

distance transfornto allow even more efficient traversal of regular volume data

11

2.2 Interactive Ray-Tracing

Many real-time applications of ray-tracing have been dgved in the last few years,
so only a few of the most important methods will be discussa@.hThe first interactive
isosurface rendering methods were made possible by thendizeupercomputers, and
focused on the problem of efficient computation on specifiromating systems (Parket
al., 1999a,b). DeMarlet al. (2003) extended this method to render very large data sets
interactively across a cluster of supercomputers. Thestesy showed how to organize
processing nodes in the system to efficiently balance meludyprocessing power, and
worked with data sets up to several gigabytes.

The bulk of interactive ray-tracing techniques have beaiguhed to work on Graphics
Processing Units (GPUs) which are in the general consumekanaUnlike specialized
supercomputers, GPUs are mainstream processors whiclelatevely inexpensive and

provide acceleration of standard graphics libraries.

2.3 Surface Extraction

As opposed to ray-tracing, where the volume data is beindered directly, surface
extraction algorithms attempt to find an approximation ofetipular isosurface in a form
which is easier to render. Even though all the algorithmadp@resented in this section
were developed for offline rendering, performance canlsgiltritical: a rendering time of
seconds is greatly preferred to one of hours. In a typicaliegtpon a single isosurface
is rendered many times, so it is worth while to generate aifdstmediate form for the
isosurface of interest. Surface extraction methods attéongio exactly this by extracting
the surface in a more compute-friendly format than a fullvoé render would be. Because
triangles are easy to render quickly, most methods usejnlanmeshes as the intermediate

form.

12

Marching Cubes (Lorensen & Cline, 1987) is the most impdrédgorithm that be-
longs to this category. It is still very widely used, eithéredtly or in one of its derivative
forms, even today. The basic idea of marching cubes is taelithe input volume into
discrete cubes between sample positions. By assuming lieeanstruction filtering, each
cube which contains a piece of a given isosurface can easilyantified because the sam-
ple values at the cube vertices must span the target isoswddue. For each of these cubes
independently they create a triangle mesh, but in such a ayttiey all align correctly at
boundaries. The original method precomputed all possilmigurations of inside/outside
along with triangulations which would stitch all adjacenbes together without any holes,
and, from a single cube which straddled the target densityeybegan to “march” through
the volume, constructing the mesh one cube at a time.

Although Marching Cubes generates the lowest quality idasas of any of the tech-
niques discussed here, it has several advantages whiclpr@waged its usefulness. First,
it is very fast and relatively easy to implement. Secondradpces a triangle representa-
tion of the isosurface which can be rendered quickly usiaditional methods. There have
been many extensions to the basic method, including Magcretrahedra (Treece, Prager,
& Gee, 1999) and Marching Diamonds (Anderson, Bennett, & 20¥5), among others.
One interesting modification of marching cubes by GerstndRnpf (1999) extended
marching tetrahedra by using a recursive nested tetraketlrmme which allowed them to
arbitrarily subdivide the extracted mesh, eventually ngag a smooth reconstruction.

Triangle meshes are the most common isosurface reprasentatmat, but others
also exist. Theisel (2002) pointed out that, from a filterpegspective, Marching Cubes
is very irregular and the triangular meshes it producesdhice severe linear artifacts. To
fix this, they generate a mesh of rational cubic Bézier pedahhich exactly represent the

isosurface generated from tri-linear reconstruction.

13

2.4 Real-Time Surface Extraction

Surface extraction methods which are fast enough to all@wingeraction have been
developed recently. Acceleration of these methods refeasdelerating the process of ex-
tracting the triangle mesh of the isosurface, and not rengéne extracted mesh (which is
a trivial problem). Pascucci (2004) presented a methodXwaeting an isosurface from a
tetrahedral mesh by exploiting the transform capabilibethe vertex shadeon graphics
hardware. The vertex shader is a programmable stage in #phigs pipeline which has
the capability of transforming vertices which they use amsifform a polygonal represen-
tation of the isosurface intersection with each tetrahednto the correct position. Every
isosurface intersection with a tetrahedron can be apprabeichby either one or two trian-
gles without changing the overall topology of the surfacec&ise the graphics hardware
performs all of these steps in parallel this technique it fate also presented a nested
tetrahedral decomposition to allow refinement by subdngdhe tetrahedral mesh before
extracting the isosurface, which effectively increasedrésolution of the extracted mesh.

Klein, Stegmaier, & Ertl (2004) presented an extension isftlork which allowed the
resulting tetrahedral mesh to be stored for future framegmet-processing. They achieved
this by exploiting the then-new hardware capability of nplé views of data buffers. They
render the isosurface vertices into a render buffer as €cdord then re-interpret the buffer
as a vertex array. By storing the render buffer they can mreadgngle isosurface many
times without recalculating the mesh, and by reading theutexback and extracting the
vertex data they can recover the vertex buffer on the CPWitihér processing or storage.
Recket al. (2004) presented a similar method which usedrdarval treeto speed up
isosurface extraction. Because the range of vertex vatwesath tetrahedron must contain
the isosurface value in order for that tetrahedron to gagte in the isosurface, they store

a tree data structure of these intervals. This allows theretg quickly determine only

14
the set of tetrahedra which participate in the isosurfackthen extract the triangle mesh
from them. Because participating tetrahedra are usualynasmall percentage of the total
number of tetrahedra, their method provided large speedups

This idea was extended by Goetz, Junklewitz, & Domik (20@5)vork with cubes
instead of the more simple case of tetrahedra. Their cauitoib was to develop efficient
ways of generating the triangular approximation of theustage within contributing cubes
on graphics hardware, which is a non-trivial problem. Thistimod was later extended
(Johansson & Carr, 2006) to include correct normal gerardor the mesh as well as a
higher-quality intersection approximation and acceleratising an interval tree. Finally,
Tatarchuk, Shopf, & DeCoro (2007) presented an enhancetbwvesf this basic technique.
Their method is a hybrid between tetrahedron- and cubedm@geaction techniques. First,
they create a cubic grid of values. Using the latest hardaeapability ofgeometry shaders
(which allow addition of new geometry in the middle of the gnacs pipeline) they use
interval methods to extract only the contributing tetratedrinally, they perform triangular
isosurface extraction from this tetrahedral grid. In orttereduce linear artifacts in the

extracted mesh, they perform cubic interpolation betweenmpde points instead of linear.

2.5 Hybrid Methods

Hybrid methods have been developed in order to exploit tvaratdges of both sur-
face extraction and ray-tracing. Graphics hardware isndpéd for rendering triangular
meshes, so surface extraction methods which produce susthneygresentations of an iso-
surface can take advantage of this speed. However, triamggé approximations of isosur-
faces have visible discontinuities at reasonable reswigtiwhile higher resolution meshes
become large and slow to render. Ray-tracing methods daadjgkeof producing smooth,

artifact-free images because each pixel is traced indegmeélyd However, tracing each ray

15
through the volume is a non-trivial task which can take aificant amount of time, even
when spatial data structures are employed to accelerajgrdloess. Hybrid methods try
to capture the advantages of both these methods, whileiagditeir disadvantages. The
process is to have surface extraction of high-level priragj which are then refined further
using a pixel-exact method such as ray intersection. Becaosas many hybrid methods
exist, we will discuss several techniques which do not $pedly render isosurfaces.

One of the first examples of a hybrid volume rendering meti&tdr{ey & Tuchman,
1990) created a tetrahedral representation of the volutmey foted that the 2D projection
of tetrahedra onto the screen space is a set of one to fongkeisy, and that, for orthog-
onal view transformations, they could interpolate valuess these triangles for each
intersecting viewing ray instead of recomputing them. S$jmadly, the length of a spe-
cific ray through a position on the tetrahedra can be calkedlay computing the lengths
at each vertex and interpolating the values across thegtedaces. They exploit this by
pre-integrating the volume at the vertex positions andrpatiating across the triangles to
fill the remainder of the pixels. Because each integral omaly to be computed within a
given tetrahedra, computing the vertex values is muchrféséa trying to trace through a
larger volume, and does not require any acceleration datetstes. Further, the interpo-
lation step allows them to fill all the pixels which intersaagiven tetrahedra with a small
number of integration steps.

More recently, Sadowsky, Cohen, & Taylor (2005) presentewee advanced hybrid
technique based upon similar ideas. They also create d¢elra grid and interpolate
values across screen-space triangle faces, but, instetigeofly interpolating the integral
result, they interpolate coordinates which allos them foutate the integral even under
perspective projection. They also extended the reprebeniagower of each tetrahedral
primitive by using a Bézier tetrahedron spline primitivestead of linear interpolation.

This gave their method the ability to render very smooth Iteseven on low-resolution

16
data. In order to extend this idea to isosurface renderingpl& Blinn (2006) developed
a closed-form expression for ray-intersection with anygistace of a Bézier tetrahedron.
They also created screen space triangles and interpokatethth values, evaluating the
isosurface formula at each pixel. They were able to rendadiqiic, cubic, and quar-
tic Bézier tetrahedra, but any higher order primitives ldawt work because there is no
closed-form solution for the roots of quintic and highernypmmials. Although their ren-
dering algorithm produces very high quality isosurfacesafty mesh of Bézier tetrahedra,
they did not present any way of generating volume data i fbeinat, so their work has
seen limited application.

Finally, Rosslet al. (2003) presented an offline rendering method which used-a spe
cific tetrahedral decomposition of quadratic Bézier tetdra to render smooth isosurfaces
of volumetric data. Their method used the idea cfugper spling which is a mesh of
splines with continuity constraints across spline bouredarAlthough the number of free
parameters is very large with an unconstrained spline gddjng continuity constraints
greatly reduces the number of legal splines in the grid. Tdreywed how all the spline
weights in a specific tetrahedral grid could be completetgaigined from a small subset,
which could be set to approximate the volume. The referretthitomethod asepeated
averaging since the continuity constraints provided enough infdrometo reconstruct all
of the weights through repeated averaging of the initiakstibThey used interval culling
to select only tetrahedra which intersected a given isasarfrendering them with direct
ray-intersection equations. Because of the spline smesthproperties, their method gen-
erated higher quality isosurfaces than most surface e@dramethods, but their repeated

averaging scheme was a heuristic and did not represent a aomaoonstruction filter.

Chapter 3

BACKGROUND

This section provides some background information necgs$saescribe the BT vol-
ume rendering method presented later. First, Section 3ds@ formal definition of the
regularly sampled scalar field volume format which is usedugh the rest of this thesis.
Section 3.2 provides a description of discrete convolytidmich is the basic mathematical

tool used to perform reconstruction filtering.

3.1 Regular Scalar Fields on the Integer Lattice

For the purposes of this paper, we will discuss only regulsaimpled scalar-valued
3D fields. Each data point in these volumes is callsadmple poinand contains a single
real number, usually interpreted as density at that poiatchB/olume has domain de-
noted D, which is the smallest cuboid containing all the sampleshBelume also has a
size represented as a tripléV,,, N,,, IV,), which is the number of unique sample positions
in each dimension. The set of sample valueb is {/;;, : 0 < i < N,, 0 < j < N,,

0 < k < N.}, where(i, , k) is an integer identifier for each sample.

In order to simplify our notation, we will implicitly transfm each volume so thd?

overlaps the cuboid’ := (0,0,0) x (N, — 1, N, — 1, N, — 1). Under this transformation

theidentifiertriplet (¢, j, k) for each samplé;; is also thepositionof that sample. We will

17

18
call this theinteger latticeof the volume, since it corresponds to a subsetofUnder this
transformation a scalar volumeis defined as a mappifdg— R. For the rest of this thesis
when we refer to &olumewe will be refering to this definition, unless specificallatsd

otherwise.

3.2 Discrete Convolution

Reconstruction filterings the process of creating a continuous function from a dtscr
volume. Reconstruction requires blending sample poims fthe volume using élter
kernelto define how the sample points should be blended togetherm&thematical tool
which we use to perform reconstruction filtering is caltksgicrete convolutionwhich, in
the context of volumes, is a function of 3D space that sumsaersed filter kernel with a
volume. For some volume with domaihand integer lattic& (see section 3.1), the formula
for the convolution of volumel : I — R by a kernelG : R?* — R at the pointP € R? is

the summation ovek given by

(AxG)(P) =
Z (3.1)
Al) -G (P —1)
iel
The specific filter used can determine properties about tla¢ fatonstruction. For
example, Gaussian and B-Spline filters are blurring filtetsle Bilinear and Catmull-Rom
filters produce aliasing. For a thorough examination of nstwction filtering for volume

data, including an examination of different reconstrutfitiers, we refer the reader to the

work of Marschner & Lobb (1994).

19

3.3 Beézier Tetrahedra and Supersplines

Our method will heavily use a specific type of 3D polynomidlexthe Bézier Tetra-
hedra (BT for short). The cubic BT are a set of cubic polyndsadids represented in the
Bernstein basis where each element of the family is definddma& bounding tetrahedron
domain by a set of weights on the twenty basis polynomialstheepointsv; : {i € [1, 4]}
be the vertices of a tetrahedfac P (R?) (three-dimensional Euclidian projective space),
and the set o0 weightsw = {w;;,, : i+ 75+ k+ [=3}. Note that the weighposi-
tionsare fixed relative to the bounding tetrahedron and only Wedineg which is a scalar,
changes. Togethew andT define a Bézier Tetrahedron,

In order to actually evaluate the BT, we must go through &lithore work. The
matrixMr = [vq, Ve, Vs, v4]T is an affine transform into thgarycentric spacef T (Loop
& Blinn, 2006). Given a poinP = (z,y, z,1) € P (R?) transform it into the barycentric

space ofl byr = (r,s,t,u) = P - (Mg)~". The formula for evaluation of := {T, w} is

3 o
BP) = Y wi risTthy! (3.2)
itjrk+=3 17kl

3
where is themultinomial functiordefined by(%) foralli+j+k+1=d.
ijkl

3.3.1 Properties of Bzier Tetrahedra
Bézier tetrahedra have several properties which make teeyrintuitive to work with.
Weight Positions Every weightw;, is associated with positidiive + jvi + kva + [vs)

in the barycentric space defined hy Each weight associated with a vertex of the bound-

ing tetrahedra is equal to the evaluation of the BT at thaitpsb it is relatively easy to tell

20

what the general topology of a BT is by looking at the corndues.

The Bounding Property All of the weights follow thebounding propertywhich
gives limits on the range of the solid based on the weightFs@ta given BT with weights
w, any value resulting from evaluation of the BT will have toletween the highest and
lowest weight values. In other words, for any pdihin the domain of a BT with weights
w the resulting valu&) = bt(P) must be between the maximum and minimum values in
w. Therefore, one can determine easily if a given BT has aurfase of a specific level

by computing the min and max weights.

Addition of B ézier Tetrahedra Because Bézier tetrahedra are polynomials, we can
add them as long as their domain tetrahedra are the same eRBlloaed under addition, so
the result is another BT which is computed by adding all aated weight values. This

follows directly from the definition in equation 3.2, so we ibanproof.

Total Degree Consider any:-variate polynomial

Thetotal degreeof this polynomial is given byup(i+j+...+k) forall 7, 5, ..., k. According

to definition of cubic Bézier Tetrahedra from equation 82, total degree of these splines
is also cubic. This fact, which does not hold for tensor poadyplines, is what allows us
to find closed-form ray-intersection equations in Sectidn13 which is what allows us to
maintain high-performance and achieve interactive rafegng to modify our method to
work with cubical domain Bézier patches would incur a lapgeformance penalty, since
ray-intersection would have to be performed using an erabethod which does not map

as well to graphics hardware.

21

3.3.2 Continuity Constraints

Bézier tetrahedra have constraints which will enforcetioaiity between anydjacent
pair. For our purposes a pair of tetrahedra are adjacent Wiegnshare a common trian-
gular face but have no overlapping volume, and two BT arecadijgif and only if their
bounding tetrahedra are adjacent. Since cubic BT are cubynpmials we can enforce
up toC’; continuity between any pair, but this would over-constthmtetrahedra and limit
it's usefulness. For this reason, we limit ourselveg’{aandC’; continuity since they will
help prevent gaps and ensure basic smoothness withounlintite representative power
of the splines.

EnforcingCj continuity is simple: each pair of co-located weights asribe shared
face must have equal value. Consider a pair of Band 7' defined by{w,T =
[v1, V2, 3, v4]} @Nd{W', T" = [v1, va, v3, V)] }, respectively.Cy Adjacency across the com-
mon face(vy, v9, v3) is ensured by enforcing; ;.o = wij;o foralli+j+k = 3. The center
of Figure 3.1 shows an example of this.

(4 continuity is slightly more complex. It can be helpful torikiof the weights of a
BT in levelsdepending on how far away they are from a given face. For el@mgights
in 7 are at levell from face (v, vy, v3) if they have the formw;;,;. The left of Figure
3.1 shows a BT with weights in the same level connected, wighfar left showing levels
counted from the bottom face and the one next to it showingi$esounted from the front-
right face. In general(’,, continuity across a common face involves weights in the first
levels in each BT relative to the common face. Specificallycontinuity across and7’

in achieved by enforcing that

/ —1
Wi j1 = 5 < MrMr) Wit k00 Wi11k05 Wijk+1,00 Wijk1]

22

The middle term of this equatioé% X M’TMT‘l) represents the barycentric posi-
tion of w;;,, relative toT. The intuitive explanation is that this equation enfordest &ll
“diamonds” formed by five adjacent weights across the comfaoa - three on the face
and one in each of the tetrahedra - lie on the same hyperpldmeebottom right of figure
3.1 shows two adjacent cubic BT with one of these “diamondatkad with close-dotted

lines.

3.3.3 Bezier Tetrahedra in Super Splines

Although individual splines can represent simple shapesyder to perform useful
work we will have to construct a set of splines which all cdnite to representing a larger,
more complex volume. In order to maintain coherence actessarger volume it is nec-
essary to enforce some level of continuity constraints asriteed in section 3.3.2. For our
application this means eithék, or C; constraints across all BT boundaries, without mixing
continuity levels. This construction is callegdaper splingRosslet al,, 2003), and will be

the basis for our intermediate volume format.

3.4 Graphics Programming

The nature of the rendering problem has pushed the desigmaphigs hardware
towards massively parallel stream processing systemsseTpecessors, referred to as
Graphics Processing Unitg&GPUs), have a high-level sequential order called the gcaph
pipeline which defines how individual rendering primitivaae processed into pixels. Each
stage of the pipeline is implemented in very wide parallelcgssors which have built-in
scheduling for each compute unit. Each stage in this prdwaésskernelprogram which
takes one or more primitives from the previous stage andymesl primitives of the next

stage. The data between stages is referred todeaastreamand each kernel program

23

/
[

FiG. 3.1. On the left are two diagrams showing a cubic Bézieakbetdron with the twenty
weight positions as black dots. Note that weights can beldd/into “bands” which are
co-planar - top shows division according to bottom facetdmotshows division according
to front-right face. The right-top image is of two adjacer@zier tetrahedra, slightly sep-
arated for clarity. Co-located weights are connected wétbhed lines - constraints fof,
continuity across the splines requires that co-locatedsihave equal value. The image
on the bottom-right shows a singlg continuity constraint for the same two tetrahedra -
all weights connected with the close dashed lines have tmlithe same hyperplane.

24
processes the minimum number of elements on its input degarstin order to allow it to
produce the primitives on its output stream. Although ttegeemany different stages in the
graphics pipeline, several of them have the ability to losertdefined kernels and perform
custom operations on them. The three programmable stagesléed thevertex stagethe
geometry stagéBlythe, 2006), and theixel stage and custom kernel programs in these

stages are calleshaders The left of Figure 3.2 shows the pipeline in full.

The Vertex Stage The first programmable stage in the graphics pipeline, thiexe
stage, takes one vertex as input and sends one vertex as.datpudual vertices need to
have a position, but can also have other data associatedheitin such as color. The stan-
dard use of this stage is to transform the vertex into the finaition given a transformation
defined by a camera. Although each execution instance oftexveinader only has access
to one vertex, small amounts of extra data can be passedmghtder through the use of
constant bufferswhich are available to all of the programmable stages. dltesvs custom
transformations or other data to be passed into every @pedastance of the shaders, and

can be changed very quickly for every frame rendered.

The Geometry Stage The transformed vertices are then marshaled by the hardware
into triangles, which are then passed into the geometryestBigis stage can output zero or
more triangles, although the maximum number of triangle€kvit can output is relatively
low (generally a few dozen or less). If the data output from ¥lertex shader does not
define the connectivity required to determine trianglesgiometry shader can input single

vertices as well.

The Pixel Stage The triangles output by the geometry shader are then passed t
rasterizer which is a fixed piece of hardware that determines whichlpitkes triangle cov-

ers. These pixel locations are then passed to the pixel,stdgeh is responsible for either

25
computing a final color or discarding the pixel so that no cadooutput. Attributes from
the vertex data can be interpolated across the trianglenpartito each execution instance
of the pixel shader. See the left of Figure 3.2 to see a flowrdragof this process. Bold
elements represent a single instance of input to the negé staith grayed-out elements

shown for context.

3.5 Rendering Bezier Tetrahedra

Although BT and supersplines of BT are a nice formulation Bff®lynomials into
a format which is easily controlled by the input weightssiteally only of use to us if it
can be rendered quickly to the screen. It turns out that ramglef BT is a problem which
can be solved very quickly using a method presented by Loopi@nB2006) which takes
advantage of the parallel processing power of graphicsteel In order to describe this

method, it is necessary to introduce a way of representing8fensors.

3.5.1 The Tensor Formulation

Tensors provide a generalized understanding of matrixiphigkition and dot prod-
ucts through the notion afontraction We will use Einstein Index Notation as described
by Blinn (2003) to represent tensor contraction. To sumpeanivhen the same symbol
appears as both a superscript and subscript in the sameagg@at implied summation is
performed at that index, where the superscript represemisavariant indices (a column
of a matrix) and subscripts represent covariant indices\aaf a matrix). Consider the
BT defined by a tetrahedrdh and weight sefw}. We can construct & tensor of control

pointsB by

Bijk = w6i+8]’+6k (33)

Position
Color
Custom Data 1

Vertex Stage

y S

N

Custom Data N1

Position
Color
Custom Data 1

Custom Data N2 o

Geometry Stage I

S
v

Rasterization

Color
Custom Data 1

Custom Data N3

A -}

Interpolated Values N
TN D
Color ap
Custom Data1 Y
Custom Data N3 I

Pixel Stage
v

™

Final Colors

Position
Screen-Space
Tensor BT

Vertex Stage

(

26

Tetrahedron Position | ® . ° °
World-Space
Tensor BT

Geomt{ftry Stage

Rasterization

v

Interpolated Values o /
Screen-Space S o
Tensor BT L

Pixel Stage

Ray-intersection
Final Colors

Verkex Stage

Geometry Stage I

N

hd

Rasterization I

Position
Tetrahedron Depth
Screen-Space

Tensor BT

Interpolated Values

Tetrahedron Depth
Screen-Space

Tensor BT

A

Pixel Stage

Ray-intersection
Final Colors

FIG. 3.2. On the left is the generic programmable graphics pipelBold elements rep-
resent a single instance of input to the next stage, withegteyut elements shown for
context. Boxes on the left show the components of each eleatezach stageVertex
shaderdransform single vertices. Triangles are then re-assairdgdanput to th&seom-
etry shaderwhich can output zero or more triangles. The fixed-functasterizercom-
putes pixel coverage for each triangle and passes them fxbleshadeywhich produces
a color. Vertex elements are interpolated before beingguass the pixel shader. The
middle diagram shows how Loop & Blinn (2006) render Bézetrghedra on the pipeline

by pre-computing screen-space tensors, as well as scpaeer-giangles which interpolate

the depth of each viewing ray. They skip the vertex and gegns¢ages, computing ray-

intersection in the pixel shader. Finally, the right showsvtihey suggest changing their

method when geometry shaders are available. In this cagaaihgle vertex is stored for
each tetrahedron, which is expanded into screen-spaoglggin the geometry shader.

27
wheree, is a four component vector with a 1 at positiomnd all other components equal

to 0. Cubic BT have a tensor form defined as the three contractions

bt(P) = r'r/r"B;j; (3.4)

with P, r from equation 3.2. Although this equation is mathematycatjuivalent to equa-
tion 3.2, sincaB is much larger tham (it contains64 components instead @0), it will be
much less efficient to evaluate. This is because the tensordontains much redundancy
in the weight tensoB when compared to the weight set The reason for using the tensor

formation is to take advantage of some useful propertiesrafdr contraction.

Tensor-ray Intersection Tensor notation also allows efficient calculation of ray-
intersection with the zero isosurface of a BT in tensor fowhijch is defined by setting
equation 3.4 equal to zero. Consider a univariate cubicrowiyal in Bernstein basis that

corresponds to a single ray through a BT, given by

3. (3 ai
Z (1—v)""v'a; =0
i=0 \17
wherev € [0, 1] corresponds to the portion of the ray inside the tetrahedoamds. Find-
ing the roots of this equation will tell us where the ray istmts the zero-isosurface of the
spline, but first we have to calculate the coefficieantdom the tensor form. Consider two

pointsp, g which both lie on the bounding tetrahdron of a given Band form the line

(1 —v)p + vq through the tetrahedron. The coefficientxan then be written

28

ap = p'p'P*Bij

a; = plqukBijk (3.5)

Qg = piqjquijk

a3 = 4'q’q"Biji
Since this equation is in Bernstein form it conforms to theaedounding property that
Bézier Tetrahedra have, namely that if all coefficientdlaeesame sign then the polynomial
cannot have any roots in the 1] range. This allows us to perform early-termination tests
to avoid the expensive root finding algorithm.

In order to actually find the roots we use the method develdpe@linn (2006),

which, although not the fastest root-finding algorithm &alale, is the most numerically
stable algorithm we are aware of. Numerical stability isyvenportant for our applica-

tion since we will be performing this calculation on graghltardware, which does not

efficiently support double-precision floating point renetations.

Tensor Transformation While T is in 3D projective Euclidean space,andB are
in the barycentric space defined Ty so evaluation of any point requires first transforming
the point into barycentric coordinates and then evaluagiggation 3.2 or 3.4 with the
transformed point. It turns out that we can actually tramsfthe weight tensor into the
space of the evaluation point and perform the evaluationahgpace without transforming
the point. The weight tensd@ after transformation into Euclidean space, dend3edan

be calculated by

By = WIW/ "W B"™" (3.6)

whereW = M;' (see equation 3.2).

29

Intersecting Arbitrary Isosurfaces We can use tensor transformation of Bézier
Tetrahedra to simplify ray-intersection with any isosugdevel. In Section 3.5.1 we
showed how to efficiently render the zero-isosurface of adeform BT. It turns out that
we can transform a BT so that any level isosurface is equdid@éro-isosurface under
the transformation. Consider the case where we set Equadoequal to a constant In
order to perform this transformation we need to identify acgowhere one of the polyno-
mial basis functions is a constant term which can “abserkdnd transform the resulting
weights back into the original space. By inspection, Euatidgpace will serve this purpose
well since the polynomial basis functions will be in powesisawhich has a constant term
corresponding to positiofi, j, k,1) = (0, 0,0, 3).

Consider the tensor form BB which we want to transform int# so that thec-
isosurface ofB becomes thé-isosurface of8. We can evaluate equation 3.6 to get the
Euclidian space tensor, where Equation 3.3 shows us thatlgevalue in the which con-
tains the weight from positiof0, 0, 0, 3) is B3 3 3, SO we can subtraetfrom that term to

get the new tensor, which can be transformed back into tiggnatispace.

3.5.2 Rendering Eezier Tetraherda

Now that we have developed the mathematical basis requoedetform ray-
intersection with any isosurface of a BT spline solid, weéh&v design an actual ren-
dering pipeline which executes the intersection efficieati graphics hardware. Our con-
tributions in this area are extensions of a method first desdrby Loop & Blinn (2006),
which we will describe in detail here. Because there was ndvirare support for geometry
shaders when they published their paper, they presentedhitioods - one for hardware
which they had access to and one looking forward to upcomandvirare. These two meth-

ods are depicted as the center and right columns of Figureesg@ectively.

30
Screen-Space Triangles The basic idea of both methods is to create screen-space
triangles with depth information at each vertex which isitirgerpolated across the trian-
gles, similar to previous tetrahedron-based methods|éyrér Tuchman, 1990; Sadowsky,
Cohen, & Taylor, 2005). The simplest method for decompoaitgtrahedron into screen-
space triangles contains two cases: the three-triangkewhen one vertex is contained
(in 2D screen space) within the convex hull of all four veeticand the four-triangle case
where all four vertices contribute to the convex hull. Altighh some tetrahedron orienta-
tions will produce one or two screen-space triangles, tlaeybe expressed as degenerate

versions of these two cases. Since these cases are verny iareasonable to ignore them.

Example three- and four-triangle orientations can be seé&ingure 3.3.

FiG. 3.3. Three- and four-triangle screen-space projectibtet@hdera. Two four-triangle
orientations appear on the top left, with two three-trinwlientations on the top right. Be-
low them are the screen-space triangle projections, alatigawisualization of depth in-
terpolated across each triangle from vertex values. Iddaditriangles have been separated
slightly to clearly differentiate them.

>

The purpose of this construction is to allow each instandb@pixel shader to deter-
mine the pointg, q from Equation 3.5 for ray-intersection calculation, whislperformed

in screen-space.

31

Transforming the BT Tensor to Screen-Space The transformation into screen
space is defined by a 4x4 transformation matrix called thddAdiew-Projection matrix,
denotedW VP. Because the vertices of the bounding tetrahedr@ame in Euclidean space
already, applying the World-View-Projection transforioatdirectly will transform them
into screen space. The BT weights, however, are in the bainycspace defined for Equa-
tion 3.2 above, so we will need to multiply the transformatimm barycentric coordinates
into Euclidean spacéMt) with the World-View-Projection transformation. The imge of
this composite transformation provides us with an Equdtothe barycentric coordinates

r of a screen space poiRt given by

r=P,-(Mp-WVP) ' =P, W

whereW is the inverse composite transform. We can calculate thmesfiotamed weight

tensorB by equation 3.6.

Hardware Mapping Loop and Blinn presented two different ways of mapping these
steps onto hardware. The first technique, which is the onetiglemented, pre-computes
the screen-space weight tensors on the CPU. They also prputed the screen-space
triangles on the CPU and passed the tensor information ret&tPU through vertex data
for the ray-intersection calculations. The pixel shadeahte to reconstruct the points
p, q for ray-intersection from the current position (which iserpolated from the vertex
positions) and the depth position, givipg= [z, y, z, 1] andq = [z, y, z + depth, 1]. Since
these values are in screen-space and the tensor valuessareém-space, they are able to
evaluate the ray-intersection (Equation 3.5) directlye @ilsadvantage of this method is that
a lot of computation has to be done on the CPU as a pre-prdoegsig the scalability
of their method. This makes it more of a proof-of-concephthareasonable rendering

architecture.

32

Their second method, which they did not implement for lackhafdware support,
stored a single vertex with all of the BT coefficients as usdad The performed no pre-
processing on the CPU, transforming the tensor into scspawe and generating the depth-
interpolating screen-space triangles in the geometrestape pixel stage was the same.
In theory this method is much preferred to the first one bex#udoes not perform any
pre-process on the CPU and therefore scaled much bettdroBtitese methods, however,
transform the weight tensor every frame, which is an expensperation for the CPU or

the GPU.

Chapter 4

METHOD

The foundational construction of this work, tB& volumeis a continuous 3D func-
tion representation based upon the concept of tetrahadpal-splines introduced in Sec-
tion 3.3.3. It is described in detail in Section 4.1, follahia Section 4.2 by a description
of how to generate a BT volume as the best least-squaresxapyaton of a given func-
tion. One of the most important features of BT volumes is thatset of BT volumes is
closed under convolution with a scalar-valued volume datala other words, if we have
a BT volume (approximating, for instance, a reconstrucfitber) and any scalar-valued
volume data set, their convolution will also be a BT volumeaing this fact, we can com-
pute a BT volume which is the exact reconstruction of an eahjitdata set as long as the
reconstruction filter we use is also represented as a BT alurhis property of the BT
volume format, which is described in detail in Section 4s3what allows us to separate
the convolution and rendering steps in our algorithm. Bn&ection 4.4 describes how
to actually render a BT volume efficiently using graphicsoaare. Most of this work has

was published in 2007 (Kloetzli, Olano, & Rheingans, 2008).

33

34
4.1 BT Volumes

This Section presents a formal definition of the BT volumenglwith some justi-
fication for the usefulness of its design. Section 4.1.1 riless how we divide a volume
domain into unit cubes, which we catbxels This is followed in section 4.1.2 by a descrip-
tion of general tetrahedral partitions and the more spesuifiset of:-partitions along with
some useful properties afpartitions. The formal definition of a BT volume as a super-

spline on ax-partition is given in section 4.1.3.

4.1.1 Voxels and Shift Invariance

Given a volumeA with domainC' and integer latic&, avoxel A4, ; ;. of the volume is
defined as any cubg, j, k) x (i + 1,7 + 1,k + 1) of A x G for some reconstruction filter
G. We would like to have similar definition of a voxel for a BT wvohe, but BT volumes
are continuous functions and not discrete volumes, so wédygyafer to have a definition
which does not require the reconstruction filier Therefore we forget the reconstruction
filter and define a voxédl; ; , of a BT volumel” as the cubéi, j, k) x (i+1,j+1,k+1) of
the volume. This may seem like a simplistic definition, batirhs out that voxels will help
us to capture the idea ehift invariance which will be needed later to perform convolution

with BT volumes.

4.1.2 Tetrahedral Partitions and x-partitions

BT volumes are comprised of individual Bézier splines drateedra. Since each of
the spline primitives is defined only within its boundingré¢tedron, we need to have a
way of dividing the domairC' of the BT volume into tetrahedra. This type of division is
called atetrahedral partitionof C', and is commonly used in volume rendering (Gerstner

& Rumpf, 1999; Loop & Blinn, 2006; Treece, Prager, & Gee, 1.988derson, Bennett,

35
& Joy, 2005; Rossét al,, 2003). Notation in this section was developed by us to filyma
define partitions which are applicable to our method. Ustdtrahedral partitions will
be coveringsandpackings that is, every point in the domain will be covered by at least
one tetrahedron, and no two tetrahedra will have overlappalume (note that adjacent
boundaries must overlap). In the general case tetrahedratipns may be completely
unstructured, but in general regular patterns of tetrahade found to be more useful.
Carr, Moller, & Snoeyink (2006) presented an overview ofulag tetrahedral partitions.
Our method will require a special type of regularity in thetp@an which has not been
formally defined in previous work.

We introduce the notation of @partition as a special class of tetrahedral partition
which meets the extra constraints imposed by our method.ddiitian to covering and
packing,x-partitions must meet two additional constraints: they nesvalidvoxel exact
partitions and they must behift invariant Exact partitions are covering partitions that
are contained within the bounds of the volume; every pointh& volume has at least
one tetrahedron covering it and every tetrahedron in thetiparis contained inside the
domain space. Visually, this means that no tetrahedra #okifsy outside” of the domain.
Voxel exactpartitions must include as subsets exact partitions of @agkl cube in the
domain. Finally, shift invariance requires that all voxkés/e partitions that are the same
when shifted so that the voxel domains are coincident. Eigut shows several examples
of triangular partitions in order to demonstrate these ertgs in 2D, as well as a valid

k-partition.

Shift-Invariance Examined Shift invariance is an essential property for our pur-
poses which will be used later, so this section provides amgorous examination of its
implications. Define the&annonical mappin@f a x-partition, denoted:;;, : Vi, — H

(whereH is a set of tetrahedra which partition the vokg} o), to be

36

FIG. 4.1. Three example triangular partitions of a square domsloxel boundaries are
dotted grey lines. Left:Coveringand packingtriangular partition. Center: A partition
which is regular, exact(coveringand contained, andvoxel exacteach voxel is has an
exactsub-partition), but is noshift invariantand so not a:-partition. Right: A valid
k-partition.

kijkP)=Th:(p—|p]) € The H

The purpose of the canonical mapping is to demonstrate #zét enique tetrahedron
in the canonical voxel; (o has a related tetrahedra in every other vd%el which differs
only by the translatiofi, j, k|. Consider a tetrahedratpartitions; Wherev;‘;.}; denotes the
Bézier tetrahedron in vox&f;;, which is related in this way to tetrahedr@h, in the canon-
ical setH. We will use this notation later to perform summations ovériBr tetrahedra

which only differ by a translation.

Test «-partitions Many common tetrahedral partitions acepartitions. We will
limit our attention to the three specificpartitions shown in Figure 4.2reudenthalwith
six tetrahedra per cube, two equivalent orientationfaoé-dividedwith 12 tetrahedra per
cube, andace-centeredvith 24 tetrahedra per cube. Note that the minirbdktrahedra

partition of a cube is not a valid-partition because adjacent cubes have to be inverted in

37
order to make their triangle faces align correctly, whichkesathe resulting partition not
shift invariant.

There are several desirable properties which make cedtathiedral partitions better
than others (Carr, Moller, & Snoeyink, 2006). Of relevanez®tr application areymme-
try, minimality, anderror (which Carr, Moller, & Snoeyink (2006) refer to aactness
Symmetric partitions are invariant under cardinal rotagmd mirroring transformations,
and ensure that directional artifacts are not present ifinbeoutput. The freudenthal and
face-divided partitions are not symmetric, although thieants introduced by the freuden-
thal partition are much more severe than face-divided tpans.

Minimal partitions contain a small number of tetrahedrad are desirable because
they reduce further processing required later in the metherdudenthal partitions have
the smallest number of tetrahedra possible«fgrartitions, while face-centered and face-
divided contain twice and four times that number, respettivFinally, error determines
how closely a BT volume based on a given partition can apprate a given function.
As you would expect for our three partitions, this is maingtetmined by the number of
tetrahedra in each, because this determines the resudfprgsentative power of the BT

volume.

FIG. 4.2. The three partitions used in our work. Image from Csloller, & Snoeyink
(2006). From left to right: Freudenthal with 6 tetrahedtee two different face-divided
orientations with 12 tetrahedra each, and face-centertftd2#itetrahedra.

38
4.1.3 The BT Volume Definition

Given all of the background material we have presented,dfinition of a BT volume
is simple: associate a cubic Bézier spline with every hetdaon of ax-partitionsy. As a

notational shortcut, we will represent evaluation of the\®lumesy as

~(p)(P)
v(p) = Vuif " (P)

wherex is the canonical mapping from section 4.1.2. Figure 4.3 shawexample BT
volume approximating a 3D Gaussian, with wireframe drawnliginguish tetrahedral

boundaries.

4.2 Approximating Continuous Volumes as BT Volumes

In order to generate a BT volumg to approximate an arbitrary continuous scalar-
valued volumetric functiory : D € R®> — R we have to create a-partition for D as
described in section 4.1.2. The specific partition useddeiermine how close our approx-
imation can be to the original function, since it will detenathe number and distribution
of weights per voxel (We assume th@thas already been scaled so tiagligns to the
desired integer lattice).

Once we generate our tetrahedral partition, we have to canfiie definition of; by
determining the optimal weights so thatapproximates- as closely as possible. Since BT
are collections of polynomials, a simple least-squaresagmh works well. We determine
a set of sample points distributed evenly in the barycerwmrdinates of each bounding
tetrahedron, transforming the points into Euclidean spaxckevaluate the target function
value. In our experience a single sample at each weightitocéten per tetrahedron)
is sufficient to produce good results. We then construct stdeguares matrix with one

element per matrix, computing the optimal weights.

39

There are several boundary conditions which can be enfdockelp make the result-
ing BT volume well-behaved. First, we can ensure that themel goes to zero smoothly
around its entire border by forcing the first two rows of weggalong the border to be zero.
We can ensuré€® continuity by performing one large least-squares systeitwtontains
one unknown for each weight iy. Finally, each pair of adjacent tetrahedra introduce six
new constraints to ensuré' continuity. Since each of these constraint types is lineer,
use standard linearly-constrained least-squares. Bed¢hasnumber of terms in the least
squares matrix can get very large for even small volumes,sed an iterative least-squares

technique instead of singular value decomposition.

Y

FiG. 4.3. An isosurface rendering of a BT Volume with thetrahedra freudenthal
partition approximating a Gaussian reconstruction filtenere lines denote tetrahedron
boundaries. Note that tetrahedra which would not conteitbatthis particular isosurface
are culled before rendering. This volume enforced smoottdys and”° continuity.

40

4.3 BT Volume Convolution

Although the least-squares method performs reasonablyfarehpproximating ar-
bitrary 3D functions, it also has several drawbacks. Fitsgkes a long time to solve the
least-squares matrix, especially when the smooth bourderstraints are enforced, taking
a few minutes for a volume as small@x6. Also, least squares error reduction does not
fit into the convolution framework easily since it does nédalmany different reconstruc-
tion filters. It might be possible to minimize a different@rmetric to support this, but
it would undoubtedly be very slow as well. What we really wand new framework for
creating BT volume data which does fit the reconstructioarfitg model, which, it turns
out, is possible.

Our goal is produce a BT volume as the result of convolution of a scalar-valued
discrete volumed and a reconstruction filtegy (which is already approximated as a BT
volume). Since a volumetric reconstruction filter is simplgcalar-valued volume function,
we can create a BT Volume approximation by the method fronpteegious section. We

can substitute; into the formula for discrete convolution given in Equat®i to get

(Axv)(P) =) Al)-v (P -i)

i€l
Sincel is the set of samples on the integer lattiPe;- i will be shifted by integer amounts

in each direction fronP. Therefore, for allP — i for a givenP,

Iiijk(P — l) = Th

This means that every evaluationgfin the summation will fall in the same barycentric
position(r, s, t, u) of a tetrahedron which is a shifted versionf. Substituting Equation

3.2 forsy in Equation 4.1 gives

41

(3,
(A=) (P) =D AG) Y wiy - risithul

icl i+j+k+=3 1]
Since only the weights/! depend on the outer summation (see Section 3.3.1 abouicaddit
of Bézier tetrahedra), we can re-arrange the order of thergtions, leaving only the terms

which depend on the summation ovenside the summation, to get

_ Z ,.?)kl rigighyl (ZA(i)wzij (4.1)
ij

i+j+k+1=3 iel
By inspection this is the equation of a BT with the weight cam@nt equal to the entire
second summation, so we have achieved our goal of derivingote thate and <y will

both have the same-partition, although they can have different dimensions.

. =

FIG. 4.4. We model convolution as a summation of BT solids. Ireotd convolve one
tetrahedron of a BT volume, pictured above in red, with a Blunee filter with the same
r-partition, we need to sum together the contributions ofrleyping BT in all possible
translations of the filter, each scaled by the sample valtieaafilter position.

The intuitive explanation behind this derivation is to cdes the view of convolution

42
as a sum of kernel functions centered on each sample poinvaigthted by the sample
value. Since the volume samples are evenly spacedsasdhe same for each voxel,
each tetrahedron in the result will be covered by one and onéytetrahedron froraach
piecewise BT kernel in the sum (see Figure 4.4). So eachhtdran of the full volume
can be expressed as a sum of BT from the kernels. BT are closkat addition, so the
result of the convolution is a single BT for each tetrahedrathe full volume.

This is the main result from our work and allows us to représerolume convolved
with a BT volume filter as a BT volume. The power of this residslin the fact that BT
volumes can be rendered in real time, thus allowing us toeehah quality convolved

volumes exactly, assuming we can represent the reconstditter as a BT volume.

4.4 Rendering BT Volumes

Our rendering algorithm is a modification of the second metpmposed by Loop
& Blinn (2006), which we have described in Section 3.5.2. Dasic idea is to store
each Bézier tetrahedron in the super spline as a singlex/ertpanding it to screen-space
triangles in the geometry shader and calculating ray-$et&ron in the pixel shader. Figure
4.6 shows the entire rendering pipeline, which consisthiafe stages.

Since our goal is to make the rendering as fast as possiblperferm some steps as
a pre-process in order to minimize the work required per &afssume that we start with
a BT o. First, we compute the tensor form for each Bézier tetredre¢Equation 3.3) and
transform into Euclidian space (Equation 3.5.1). We corsgptiee transformed splines back
into the tetrahedral indexed form, storing them as custaimidaa single vertex buffer. The
position of each vertex is set to the center of the voxel thateétrahedron belongs to. The
following sections describe how we use graphics hardwatkdrhree accelerated passes

of our rendering algorithm.

43

FiG. 4.5. Several shots in a zoom animation 8P4 volume reconstruction show the
resolution independence of the BT Volume format.

44

Pass 1 Pass 2 Pass 3
- ‘ ‘ ‘ Tetrahedron Position [o ‘
. . . . Eculidean-Space
\ Tensor BT
Vertek\Stage Ver&ax Stage Vertex Stage
Tetrahedron Position \
Eculid -S;
™ Tensor BT Geometry Stage Geomk:try Stage ‘
’/\ Raste}\ization
G try Stage 'Ill'gtsri;il(l);ldron Depth
eome ry ag Eculidean—SpaceP *
Tensor BT & ;
ol S Pixel Stage
TR Rasterization ¢
Tetrahedron Position i ¢ N i
Eculidean-Space Interpolated Values ° : T
Tensor BT Tetrahedron Depth 5 a
Eculidean-Space X {
Tensor BT
Output Buffer ,
P Pixel Stage

a

Ray-intersection -
Normal Calculation| [

FIG. 4.6. Our BT volume rendering pipeline. Passemoves all tetrahedra, which are
stored as single vertices, that do not contribute to theeatiisosurface, storing the result-
ing set of contributing tetrahedra in an intermediate buffeass2 expands each tetrahe-
dron into screen-space triangles, interpolating deptbsadhe triangles to the pixel shader,
which calculates ray-intersection and surface normalel®which do not hit an isosurface
are discarded. Paggyenerates the final shading in another pixel shader.

45
4.4.1 First Pass: Culling

The first accelerated rendering pass uses dfieam-outcapability of geometry
shaders. This hardware feature allows the output stream fine geometry shader stage
to be stored in a buffer to be passed into later renderingegas@/e use this capability
to determine the subset of tetrahedra which actually daurtiito a given isosurface value
by using the bounding property of BT (Section 3.3.1). Ourrgetry shader for this stage
checks the largest and smallest weight values, and passesrtiex to the output stream if
and only if the target isosurface is between them. Beforpuitihg the resulting vertex,
however, it also adds the offset to the BT so that the zersuigace is transformed to the
desired isosurface (Equation 3.5.1). Because each BT heesdglbeen transformed into
Euclidian space, this is a single addition to the constani.t& he resulting output stream
is stored in a second buffer, which is used for all subsegsieps. Because the contents
of this buffer will only change when the isosurface changesre-use this buffer until the
user decides to change the isosurface level. This passigelmn the leftmost column of

Figure 4.6.

4.4.2 Second Pass: Rendering

The rendering pass generates the actual pixel coverageigadesnormal information
in a screen-space buffer. It works from the culled buffenfrihe previous stage, so only
BT which contribute to the current isosurface are proces3déw geometry shader is re-
sponsible for creating the screen-space triangles to emsurect pixel coverage, while the
pixel shader calculates the actual ray-intersection anchalvectors. This pass is depicted

in the center column of Figure 4.6.

Geometry Shader Our system uses the geometry shader to generate screen-spac

triangles to cover each tetrahedron, interpolating degtirination across each triangle for

46
use by the ray-intersection. We accelerate the proces®aficg screen-space triangles in
the geometry shader by precomputing triangle coveragesi@enthe problem of generat-
ing screen-space triangles for two tetrahedra which ddfdy by a translation. Although
this problem is reasonable to calculate in a shader (Col@€®)2we choose to precompute
the triangle breakdown in order to accelerate this stagecoffgute the screen-space trian-
gle coverage for each tetrahedron in the vad%gb, 0, translating the appropriate triangles
into the correct position during rendering. Note that thegesinot work under perspective
projection, since the triangle breakdown is not constardsactranslated tetrahedra in this
case. Since scientific applications frequently use isdgcapameras, we feel that this is a

reasonable restriction.

Pixel Shader Finally, we use the pixel shader to determine if each pixativhits
the tetrahedron also hits the isosurface we are trying tdeerSince our BT are stored in
tetrahedral indexed form, we first have to expand them outltteinsor form. We can com-
pute the equation of the viewing ray inside the tetrahedvdretthe line between:, y, n, 1]
and|z,y, f, 1], where(x, y) is the screen position of the pixel andf are the near and far
intersections of the viewing ray with the tetrahedron. We campute this from the depth
information interpolated across each triangle. Before ae compute the intersection,
however, we have to translate this line into Euclidian sgao®e it is currently in screen
space), which is a simple matrix multiplication.

Actually computing the intersection points is performedbiving for the roots of the
cubic in equation 3.5 and choosing the solution with the saapositive value which is
inside the tetrahedron. If no valid root is found, the piXehder discards (terminates) the
pixel, and no data is output. If an intersection is found, shader continues to find the
surface normal at that intersection (Blinn, 2006) and stdinat in the screen-space buffer

at that pixel location.

47
4.4.3 Third Pass: Shading

The last pass of our algorithm generates the final pixel c@ar pixel shader detects
if an intersection was found for each pixel, generating &gemund color for each empty
pixel and evaluating our lighting model for each pixel with iatersection. Our lighting
model is a simple cool-to-warm model (Gooethal., 1998). Final rendered images can be

seen in Figures 1.2, 4.3, 4.5, and 5.7.

Chapter 5

RESULTS

This section presents the results we have obtained for ctersy We present results
for the three different-partitions from Section 4.1.2 - freudenthal, face-diddand face-
centered. First we present results for least-squaregffittirseveral reconstruction filters
consisting of timing results and error analysis. Next wespng analysis of the convolution

step in our algorithm and space constraints, followed bgeeng performance.

5.1 Least-Squares Approximation

We tested our least-squares approximations for threereliftdilters: Gaussian with
standard deviation&5, 0.6, and0.7, B-Spline polynomial, and Catmull-Rom polynomial.
We tested botlC° andC* continuity for all threes-partitions from section 4.1.2, which
consist of6, 12, and24 tetrahedra per voxel, respectively. We fit all of the filteretx6x6
BT volume. Table 5.1 shows the error from each of these legséres fitting operations.

As we would expect, more tetrahedra in eupartition results in lower error in the
fitting. Doubling the number of tetrahedra in the partiticgcoeases the error substan-
tially. The less stringent’® continuity constraints also introduce much less error than
more demanding’'! constraints, although the resulting volume may have hightfency

discontinuities.

48

49

Filter Freudenthal (6) Face-Divided (12) Face-Centered (24)
C° Ct C° Ct CY C!
Gauss. 0.5 || 1.25x107% 1.18x10~* 2.24x10~7 4.60x10~° 1.29x10~% 3.04x10~6
Gauss. 0.6 || 1.74x1077 3.11x107° 2.71x10~% 9.01x107% 2.35x107° 2.64x10~7
Gauss. 0.7 || 3.35x1078 8.42x107% 5.10x107? 1.80x107% 6.19x10~1° 3.50x10~®
B-Spline 1.42x10~7 3.21x107° 2.04x107% 8.64x10~% 1.94x10~° 2.08x10~"
Catmull-Rom| 7.56x107°% 6.53x10~% 1.30x107°% 2.86x10~* 5.94x10~% 2.28x10~°

Table 5.1. Squared error for all the filters we performedifitton. C° continuity constraints
cause less absolute error th@h constraints. In general, moving to a more-expressive
r-partition reduces error in the fitting (although it doesrease complexity of the BT
volume).

The Bézier spline form also limits how closely higher-fuegcy functions can be
approximated. This can be seen in the gaussian function ayieng the error as the
standard deviation changes. As it gets larger, producinglanfilter with lower frequency
content, the error decreases. Standard deviation 0.7 pesdhe lowest error of any of our

filters, while 0.5 produces almost the highest error.

Anisotropic x-partitions Figures 5.1 and 5.2 show all of the filter approximations
which we used on all three-partitions enforcing’® andC'"* continuity constraints, respec-
tively. Note that freudenthal, which is not a mirroring tg¢tedral partition, produces highly
anisotropic artifacts in the resulting volume due to thedion bias of weight points. The
face-divided partition with 12 tetrahedra introduces Bsgre anisotropic bias, while the
24 tetrahedra face-centered partition, which is the onlyaring partition which we exam-
ined, does not produce any anisotropic error. The largeibtesduced byC! continuity
fitting for the Freudenthal partition suggests that this boration partition/continuity level
should not be used in practice, as the artifacts it will idtrce under reconstruction will be

severe.

50

/. . s
j

[|
1

\

\

. .
. .
, ‘

FIG. 5.1. From left to right, each column shows isosurfaces thdtresults for Gaussian
with standard deviation.7, B-Spline, and Catmull-Rom reconstruction filters, allngsi
C° continuity constraints. The sharp discontinuities, whagipear obvious in the filter,
are not as distracting in a volume reconstructed using tteg.fifop row is the freudenthal
partition, the middle row face-divided, and the bottom faeatered.

51

oS
A
A

FIG. 5.2. From left to right, each column shows isosurfaces tndtresults for Gaussian
with standard deviation.7, B-Spline, and Catmull-Rom reconstruction filters, allngsi
C' continuity constraints. The directional bias of some istzmes is due to the anisotropic
distribution of spline weights in those partitions. Top r@the freudenthal partition, the
middle row face-divided, and the bottom face-centered.

52

Artifacts from Continuity Constraints k-partitions composed of few tetrahedra
also suffer from low-frequency artifacts which are not prasn the original data set. This
is because th€! fitting is over constraining the system, resulting in muchhleir error
than the equivalent? fitting. Figure 5.3 shows a comparison of the artifacts presden
our fitting is constrained to obey° vs. C'! constraints with the B-Spline filter. Since our
goal in this case is to approximate the target B-Spline fitethat reconstructions with the
approximation are visually as close as possible to usin@t&gline, the raw RMS error
data has limited usefulness. However, this image cleadyshhe difference betweei’
andC' continuity constraint fitting in terms of how they affect theal reconstructionC®
fitting produces high-frequency discontinuities, whiléiriig the additionat”! constraints
trades this for smooth lower-frequency constraints. Gienfact that many applications
have been using linear reconstruction, which has simitanalgh much more pronounced
artifacts tharC?, we believe that the higher-frequency artifacts are lessatiting and thus
C? fitting is adequate for most applications. This is a prelanyrresult, and would have to

be verified by a formal user study.

5.2 BT Volume Convolution

We performed convolution on several common test volume sketis, listed in Table
5.2. The limiting factor of our method was found to be the amaaf graphics memory
available, which is due to the fact that each Bézier tettadre must be stored indepen-
dently. In addition, the first rendering pass to cull outab&dra which do not participate
in a given isosurface requires a second buffer which, in tbestncase, contains the en-
tire volume, and thus effectively doubles the memory rezfilsy our system. Finally, the
two 1600x1200 backbuffer/textures that we use to actuadigldy on the screen take up

memory, along with various smaller buffers and loss dueigmatent issues.

53

FiG. 5.3. On the left is a reconstruction using the six tetrahegpartition with C° con-
straints, while the left enforce§! continuity. In this case it seems thaf would be
preferable to the smoothér' version because the small sharp discontinuities are less di
tracting in the large image than the lower-frequency art#antroduced by enforcing the
smoother filter.

This leaves us with around 300MB of space for the actual veldata, given the
graphics memory space in 32-bit Vista. In order to fit as largiemes as possible into
that space, we perform several space optimizations foe laajumes. First, we remove
all tetrahedra which only contribute to isosurfaces venselto zero, which saves from
%5 to almost %50 depending on the particular volume. Secerdstore large volumes

with 16-bit floating point weights instead of 32-bit. Thisvgs us another %50 storage

54
savings, but does introduceackartifacts in the rendering where the precision loss affects

the ray-intersection at the boundaries between tetrah&dyare 5.4 shows this artifact.

FIG. 5.4. Cracks caused by the 16-bit floating point weight \v&ineour compressed
volume format.

Figure 5.5 shows several reconstructions of the Marschmétabb data in our sys-
tem using the4 tetrahedra:-function as compared to their ground-truth results using B
Spline and Catmull-Rom splines approximated withcontinuity. Although our system is
only generating approximations which are not even guaeaittebe continuous, the results
are visually almost identical.

Figure 4.5 shows four reconstructions of a Buckyball datavith Gaussian (st. dev.
0.7), B-Spline, and Catmull-Rom BT volume reconstructiansl marching cubes. The

marching cubes reconstruction shows severe linear adifalsich are not present in the

55

BT volume reconstructions.

Data Set|| foot} | enging | teddy; | bucky| M&L Test Signal| neghip
Size 1283 | 128%x64 | 128%x62 | 32° 413 643
MB 230 157 330 21 37 165
FPS 10 10 8 80 44 14

Table 5.2. Rendering performance and data sizes for ouvddsines. Volumes marked
with a 1 remove tetrahedra which only contributed to very smallustaxes. All size and
performance measurements are for@ketrahedron:-partition rendered on 800x1200
resolution desktop.

5.3 Rendering

We ran our system on a quad-core Intel processor with 2 gigaloy RAM and an ATI
4870x2 graphics card with 2 gigabytes of RAM. All tests wene at 1600x1200 resolution
on 32 bit Windows Vista. Due to the memory limitations of tteldt OS, we only had one
gigabyte of graphics RAM available to us. Table 5.2 showsarsary of performance and
size requirements for several volumes at 1600x1200 scesaiution. Volumes marked
with a { used 16-bit floating point weight values to reduce size. fEdu7 shows several

volumetric data sets rendered in our system.

5.3.1 Scalability and Bottleneck Identification

In order to determine if the system is pixel limited or membandwidth limited, we
performed several performance tests at different reswisti Changing the resolution of
the renderer leaves the memory bandwidth requirementsangell (because the volume
data is not changing) but increases the number of pixelstwhave to be filled, testing
whether the pixel shader is the bottleneck in the rendeigg@hm. On all of the volumes

which we tested, there was a maximum of one frame-per-sedifiedlence between the

56

FIG. 5.5. Various reconstructions of the Marschner and Lobidi@s set. On the left is the
ground truth result from Marschner & Lobb (1994), with ousul using the 24 tetrahedron
r-partition on the right. The top row is for B-Spline reconstiion, while the bottom row
shows Catmull-Rom reconstruction. For these results, wd @S continuity.

640x480 resolution, which was the smallest that we tested, and thedteen1600x1200
resolution. This means that, even though we are performipgresive root finding in the
pixel shader, the bottleneck of our rendering is interna&dmndwidth on the GPU, so

reducing the amount of data passed around would be beneficial

57

FIG. 5.6. Four isosurface reconstructions of a Buckyball dataBrom upper left clock-
wise, marching cubes, BT volume B-Spline, BT volume CatrARdim, BT volume gaus-
sian with st. dev. of 0.7. All BT volume reconstructions u@ddetrahedra-partition and

C° continuity.

58

FIiG. 5.7. Test data sets rendered using our method. From topttonioleft to right:
simulation of electron density of a protein molecule, sceateddy bear, scan of an engine
block, and a scan of a foot rendered for density of skin ana&tbon

Chapter 6

CONCLUSION

We have presented the BT volume as a volume representatimh whovides a so-
lution to the difficult problem of rendering high-qualityosurfaces. The BT volume is
defined as a 3D super spline on a special type of tetrahedrttigga which we call a
r-partition. As a proof of concept, we have implemented thdifferent «-partitions in
our work, consisting 06, 12, and24 tetrahedra, respectively. Because they are piecewise-
continuous polynomials, BT volumes can approximate abjt8D functions, and we have
demonstrated how to generate such approximations usiragtdquares technique.

We also demonstrated how to produce a BT volume as the resadtnvolution of
a BT volume-format reconstruction filter and an arbitrargular scalar-valued volume.
We compute BT volume-format filters using the least squagelsrtique, showing that the
convolution result is exactly another BT volume. We have destrated this technique
for several example volumes and filters, including Gausstatmull-Rom, and B-Spline
reconstruction filters. We showed the advantages of thiesyas compared to many other
volume rendering systems, including the facts that BT vasrare continuous, smooth
representations and that they have the ability to reprewsany different reconstructions,
including large footprint reconstruction filters, withtlé additional cost.

BT volumes can also be rendered efficiently on current gcaphardware. We pre-

59

60
sented a complete rendering algorithm, along with perfaiceaesults from our proof-of-
concept implementation. First, all spline primitives i thuper spline which actually in-
tersect the desired isosurface are extracted. Each eedraptine is represented as a single
vertex, which is expanded into screen-space triangleshwdaeer all possible contribution
from this spline. Finally, all pixels covered by the prinagiare filled by performing ex-
act ray-intersection and outputting the normal if there @aasntersection for that pixel.
Shading is performed in a deferred manner in a separate pass.

The BT volume format achieves a balance between renderiegdsand rendering
guality which has not been achieved before for isosurfaes results are flexible because
we support multiple reconstruction filters and fast becausecan map efficiently onto
graphics hardware. Finally, because we separate the regderd convolution steps of

volume rendering, we can achieve very high quality results.

Bibliography

Anderson, J. C.; Bennett, J.; and Joy, K. I. 2005. Marchiregrdinds for unstructured
meshes. INEEE Visualization 2005423—-429.

Blinn, J. 2003.Jim Blinn’s Corner Morgan Kaufmann.

Blinn, J. F. 2006. How to solve a cubic equation, part 1: Thepsghof the discriminant.
IEEE Comput. Graph. App26(3):84-93.

Blythe, D. 2006. The direct3d 10 syste®CM Trans. Graph25(3):724—734.

Carr, H.; Moller, T.; and Snoeyink, J. 2006. Artifacts cali®y simplicial subdivision.
IEEE Transactions on Visualization and Computer Graphiz€):231-242.

Cohen, J. D. 2006. Projected tetrahedra revisited: A batyiceformulation applied to
digital radiograph reconstruction using higher-ordeemtiation functionslEEE Trans-
actions on Visualization and Computer Graphicq4):461-473. Student Member-Ofri

Sadowsky and Fellow-Russell H. Taylor.

Danskin, J., and Hanrahan, P. 1992. Fast algorithms fomweltay tracing. InvVS
'92: Proceedings of the 1992 workshop on Volume visuabrafi1-98. New York, NY,
USA: ACM.

DeMarle, D. E.; Parker, S.; Hartner, M.; Gribble, C.; and Blam C. 2003. Distributed

interactive ray tracing for large volume visualization. RNG '03: Proceedings of the

61

62
2003 IEEE Symposium on Parallel and Large-Data Visual@atnd Graphics 12.
Washington, DC, USA: IEEE Computer Society.

Gerstner, T., and Rumpf, M. 1999. Multiresolutional pakibosurface extraction based

on tetrahedral bisection. in Proc. VolVis99267—-278. Press.

Goetz, F.; Junklewitz, T.; and Domik, G. 2005. Real-time charg cubes on the vertex

shader. IrEurographics 2005 short presentatiorisurographics Association.

Gooch, A.; Gooch, B.; Shirley, P.; and Cohen, E. 1998. A nbatgrealistic lighting model
for automatic technical illustration. IBIGGRAPH '98: Proceedings of the 25th annual
conference on Computer graphics and interactive techrsigi#7—452. New York, NY,

USA: ACM.

Johansson, G., and Carr, H. 2006. Accelerating marchingscwith graphics hardware. In
CASCON '06: Proceedings of the 2006 conference of the Cémté&xdvanced Studies
on Collaborative research39. New York, NY, USA: ACM.

Klein, T.; Stegmaier, S.; and Ertl, T. 2004. Hardware-aexakd reconstruction of polyg-
onal isosurface representations on unstructured grid®2@Ari04: Proceedings of the
Computer Graphics and Applications, 12th Pacific Confeegd86—-195. Washington,
DC, USA: IEEE Computer Society.

Kloetzli, J.; Olano, M.; and Rheingans, P. 2008. Interactislume isosurface rendering
using bt volumes. 813D '08: Proceedings of the 2008 symposium on Interactde 3

graphics and gamegl5-52. New York, NY, USA: ACM.

Levoy, M. 1988. Display of surfaces from volume datiEEE Comput. Graph. Appl.
8(3):29-37.

63
Loop, C., and Blinn, J. 2006. Real-time gpu rendering of @dse algebraic surfaces. In
SIGGRAPH '06: ACM SIGGRAPH 2006 Pape#$4—670. New York, NY, USA: ACM

Press.

Lorensen, W. E., and Cline, H. E. 1987. Marching cubes: A magolution 3d surface
construction algorithm. I8IGGRAPH '87: Proceedings of the 14th annual conference
on Computer graphics and interactive technigueg3—-169. New York, NY, USA: ACM

Press.

Marschner, S. R., and Lobb, R. J. 1994. An evaluation of rsiraation filters for volume
rendering. INVIS '94: Proceedings of the conference on Visualization 130-107. Los

Alamitos, CA, USA: IEEE Computer Society Press.

Parker, S.; Martin, W.; pike J. Sloan, P.; Shirley, P.; Spi@s and Hansen, C. 1999a.

Interactive ray tracing. Itn Symposium on interactive 3D graphjds.9-126.

Parker, S.; Parker, M.; Livnat, Y.; Sloan, P.-P.; Hansena@d Shirley, P. 1999b. Interactive
ray tracing for volume visualizatiodlEEE Transactions on Visualization and Computer

Graphics5(3):238-250.

Pascucci, V. 2004. Isosurface computation made simpletweaae acceleration, adaptive
refinement and tetrahedral stripping.linJoint Eurographics - IEEE TVCG Symposium
on Visualization (VisSyn293-300.

Reck, F.; Dachsbacher, C.; Stamminger, M.; Greiner, G.;@mso, R. 2004. Realtime
isosurface extraction with graphics hardwareEimographics 2004 - short presentations

and interactive demodgEurographics Association.

Rossl, C.; Zeilfelder, F.; Nurnberger, G.; and Seidel, H2803. Visualization of volume

64
data with quadratic super splines Mis '03: Proceedings of the 14th IEEE Visualization
2003 (VIS'03) 52—-60. Washington, DC, USA: IEEE Computer Society.

Sadowsky, O.; Cohen, J. D.; and Taylor, R. H. 2005. Renddgtrghedral meshes with
higher-order attenuation functions for digital radiograpconstruction. Inn Proc. of

IEEE Visualization303-310.

Shirley, P., and Tuchman, A. 1990. A polygonal approxinratio direct scalar volume

rendering.SIGGRAPH Comput. GrapB4(5):63-70.

Sramek, M., and Kaufman, A. 2000. Fast ray-tracing of readr volume data using dis-
tance transform3EEE Transactions on Visualization and Computer Grapbi&:236—

252.

Tatarchuk, N.; Shopf, J.; and DeCoro, C. 2007. Real-timsudace extraction using
the gpu programmable geometry pipeline.SIGGRAPH '07: ACM SIGGRAPH 2007
courses122-137. New York, NY, USA: ACM.

Theisel, H. 2002. Exact isosurfaces for marching cubes<Cdmputer Graphics Forum

19-31. Blackwell Publishers for Eurographics Association

Treece, G. M.; Prager, R. W.; and Gee, A. H. 1999. Regulansacthing tetrahedra:

improved iso-surface extractio@omputers and Graphica3(4):583-598.

