
APPROVAL SHEET

Title of Thesis: Real-Time High Quality Volume Isosurface Rendering

Name of Candidate: John Werner Kloetzli, Jr
Master of Science, 2008

Thesis and Abstract Approved:
Marc Olano
Associate Professor
Department of Computer Science and
Electrical Engineering

Date Approved:

ABSTRACT

Title of Thesis: Real-Time High Quality Volume Isosurface Rendering

John Werner Kloetzli, Jr , Master of Science, 2008

Thesis directed by: Marc Olano, Associate Professor
Department of Computer Science and
Electrical Engineering

We present a volume format which is capable of representing complex reconstruc-

tions as well as a fast isosurface rendering algorithm. Our volume format consists of a

set of densely packing tetrahedral polynomials in Bernstein form, each constrained to pro-

vide continuity across face boundaries. We define a specific class of tetrahedral partition

suitable for our method, along with a least-squares approximation method to generate data

in this format as approximations to arbitrary continuous volumes. Our volume format is

closed under convolution with scalar volumes, so by representing reconstruction filters in

our format we can create convolved volumes easily. We also present a fast rendering algo-

rithm which maintains interactive rates for most volumes upto 1283 resolution. Our results

include analytic and observational error for how our formatapproximate several common

volume reconstructions, as well as space requirements and rendering speed.

Real-Time High Quality Volume Isosurface Rendering

by

John Werner Kloetzli, Jr

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
Master of Science

2008

c© Copyright John Werner Kloetzli, Jr 2008

ACKNOWLEDGMENTS

I want to thank Dr. Olano for being a great academic guide and advisor, as well as

the entire VANGOGH lab for the technical help and comradeship. I am also thankful to

my thesis committee for the time they have given to me, and theentire CS department at

UMBC for the high-quality undergraduate and graduate education that they have provided.

Most of all I am thankful to God for the opportunities He has given me in the field of

Computer Graphics, as well as to my family for supporting me through the stressful times

of graduate school.

Volume data sets were provided by The Volume Library

(http://www9.informatik.uni-erlangen.de/External/vollib/) and

VolVis (http://www.volvis.org/).

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF FIGURES . vi

LIST OF TABLES . xi

Chapter 1 INTRODUCTION . 1

1.1 Volume Rendering . 1

1.2 Reconstruction Filtering .. . 2

1.3 Isosurface Rendering .4

1.4 Graphics Hardware . 4

1.5 Preconvolution . 6

1.6 A Generalized Preconvolved Volume Format 7

Chapter 2 RELATED WORK . 9

2.1 Ray-Tracing . 10

2.2 Interactive Ray-Tracing .. . 11

2.3 Surface Extraction . 11

2.4 Real-Time Surface Extraction .. . 13

2.5 Hybrid Methods . 14

iii

Chapter 3 BACKGROUND . 17

3.1 Regular Scalar Fields on the Integer Lattice 17

3.2 Discrete Convolution .18

3.3 Bézier Tetrahedra and Supersplines 19

3.3.1 Properties of Bézier Tetrahedra 19

3.3.2 Continuity Constraints . 21

3.3.3 Bézier Tetrahedra in Super Splines 22

3.4 Graphics Programming . 22

3.5 Rendering Bézier Tetrahedra 25

3.5.1 The Tensor Formulation . 25

3.5.2 Rendering Bézier Tetraherda .. 29

Chapter 4 METHOD . 33

4.1 BT Volumes . 34

4.1.1 Voxels and Shift Invariance .34

4.1.2 Tetrahedral Partitions andκ-partitions 34

4.1.3 The BT Volume Definition . 38

4.2 Approximating Continuous Volumes as BT Volumes 38

4.3 BT Volume Convolution . 40

4.4 Rendering BT Volumes . 42

4.4.1 First Pass: Culling . 45

4.4.2 Second Pass: Rendering . 45

4.4.3 Third Pass: Shading . 47

Chapter 5 RESULTS . 48

iv

5.1 Least-Squares Approximation .. . 48

5.2 BT Volume Convolution . 52

5.3 Rendering . 55

5.3.1 Scalability and Bottleneck Identification 55

Chapter 6 CONCLUSION . 59

v

LIST OF FIGURES

1.1 Two reconstructions of a small texture. Bilinear on the left, an approxi-

mation of a 3x3 Gaussian with standard deviation .5 on the right. Note

the high-frequency linear artifacts on the left, which may hide important

information by distracting the user. 3

1.2 Three isosurface renderings of (from left to right) a molecular simulation,

a 3D scan of a foot, and a 3D scan of a mechanical part. The foot (middle

image) shows two different isosurfaces corresponding to the density of skin

and the density of bone. 5

3.1 On the left are two diagrams showing a cubic Bézier tetrahedron with the

twenty weight positions as black dots. Note that weights canbe divided into

“bands” which are co-planar - top shows division according to bottom face,

bottom shows division according to front-right face. The right-top image is

of two adjacent Bézier tetrahedra, slightly separated forclarity. Co-located

weights are connected with dashed lines - constraints forC0 continuity

across the splines requires that co-located weights have equal value. The

image on the bottom-right shows a singleC1 continuity constraint for the

same two tetrahedra - all weights connected with the close dashed lines

have to lie on the same hyperplane. .23

vi

3.2 On the left is the generic programmable graphics pipeline. Bold elements

represent a single instance of input to the next stage, with greyed-out ele-

ments shown for context. Boxes on the left show the components of each

element at each stage.Vertex shaderstransform single vertices. Triangles

are then re-assembled as input to theGeometry shader, which can output

zero or more triangles. The fixed-functionrasterizercomputes pixel cover-

age for each triangle and passes them to thepixel shader, which produces

a color. Vertex elements are interpolated before being passed to the pixel

shader. The middle diagram shows how Loop & Blinn (2006) render Bézier

tetrahedra on the pipeline by pre-computing screen-space tensors, as well

as screen-space triangles which interpolate the depth of each viewing ray.

They skip the vertex and geometry stages, computing ray-intersection in

the pixel shader. Finally, the right shows how they suggest changing their

method when geometry shaders are available. In this case only a single

vertex is stored for each tetrahedron, which is expanded into screen-space

triangles in the geometry shader. .. 26

3.3 Three- and four-triangle screen-space projections of tetrahdera. Two four-

triangle orientations appear on the top left, with two three-triangle orienta-

tions on the top right. Below them are the screen-space triangle projections,

along with a visualization of depth interpolated across each triangle from

vertex values. Individual triangles have been separated slightly to clearly

differentiate them. 30

vii

4.1 Three example triangular partitions of a square domain.Voxel boundaries

are dotted grey lines. Left:Coveringandpackingtriangular partition. Cen-

ter: A partition which isregular, exact(coveringandcontained), andvoxel

exact(each voxel is has anexactsub-partition), but is notshift invariant

and so not aκ-partition. Right: A validκ-partition. 36

4.2 The three partitions used in our work. Image from Carr, Moller, &

Snoeyink (2006). From left to right: Freudenthal with 6 tetrahedra, the

two different face-divided orientations with 12 tetrahedra each, and face-

centered with 24 tetrahedra. 37

4.3 An isosurface rendering of a BT Volume with the6-tetrahedra freuden-

thalκ-partition approximating a Gaussian reconstruction filter, where lines

denote tetrahedron boundaries. Note that tetrahedra whichwould not con-

tribute to this particular isosurface are culled before rendering. This volume

enforced smooth borders andC0 continuity. 39

4.4 We model convolution as a summation of BT solids. In orderto convolve

one tetrahedron of a BT volume, pictured above in red, with a BT volume

filter with the sameκ-partition, we need to sum together the contributions

of overlapping BT in all possible translations of the filter,each scaled by

the sample value at that filter position. 41

4.5 Several shots in a zoom animation of a323 volume reconstruction show the

resolution independence of the BT Volume format. 43

viii

4.6 Our BT volume rendering pipeline. Pass1 removes all tetrahedra, which

are stored as single vertices, that do not contribute to the current isosur-

face, storing the resulting set of contributing tetrahedrain an intermediate

buffer. Pass2 expands each tetrahedron into screen-space triangles, in-

terpolating depth across the triangles to the pixel shader,which calculates

ray-intersection and surface normals. Pixels which do not hit an isosurface

are discarded. Pass3 generates the final shading in another pixel shader. . . 44

5.1 From left to right, each column shows isosurfaces of fitting results for

Gaussian with standard deviation0.7, B-Spline, and Catmull-Rom recon-

struction filters, all usingC0 continuity constraints. The sharp discontinu-

ities, which appear obvious in the filter, are not as distracting in a volume

reconstructed using the filter. Top row is the freudenthal partition, the mid-

dle row face-divided, and the bottom face-centered. 50

5.2 From left to right, each column shows isosurfaces of fitting results for

Gaussian with standard deviation0.7, B-Spline, and Catmull-Rom recon-

struction filters, all usingC1 continuity constraints. The directional bias

of some isosurfaces is due to the anisotropic distribution of spline weights

in those partitions. Top row is the freudenthal partition, the middle row

face-divided, and the bottom face-centered. 51

5.3 On the left is a reconstruction using the six tetrahedraκ-partition withC0

constraints, while the left enforcesC1 continuity. In this case it seems

thatC0 would be preferable to the smootherC1 version because the small

sharp discontinuities are less distracting in the large image than the lower-

frequency artifacts introduced by enforcing the smoother filter. 53

ix

5.4 Cracks caused by the 16-bit floating point weight values in our compressed

volume format. 54

5.5 Various reconstructions of the Marschner and Lobb test data set. On the

left is the ground truth result from Marschner & Lobb (1994),with our re-

sult using the 24 tetrahedronκ-partition on the right. The top row is for

B-Spline reconstruction, while the bottom row shows Catmull-Rom recon-

struction. For these results, we usedC0 continuity. 56

5.6 Four isosurface reconstructions of a Buckyball data set. From upper left

clockwise, marching cubes, BT volume B-Spline, BT volume Catmull-

Rom, BT volume gaussian with st. dev. of 0.7. All BT volume recon-

structions used 24 tetrahedraκ-partition andC0 continuity. 57

5.7 Test data sets rendered using our method. From top to bottom, left to right:

simulation of electron density of a protein molecule, scan of a teddy bear,

scan of an engine block, and a scan of a foot rendered for density of skin

and bone. 58

x

LIST OF TABLES

5.1 Squared error for all the filters we performed fitting on.C0 continuity con-

straints cause less absolute error thanC1 constraints. In general, moving to

a more-expressiveκ-partition reduces error in the fitting (although it does

increase complexity of the BT volume). 49

5.2 Rendering performance and data sizes for our test volumes. Volumes

marked with a† remove tetrahedra which only contributed to very small

isosurfaces. All size and performance measurements are forthe 6-

tetrahedronκ-partition rendered on a1600x1200 resolution desktop. 55

xi

Chapter 1

INTRODUCTION

1.1 Volume Rendering

Volume rendering is the process of converting volumetric data into meaningful 2D

images with the goal of conveying specific information aboutthe data to the viewer. Ap-

plications of volume rendering cover a wide range of disciplines including hurricane vi-

sualization, medical diagnosis and planning, and smoke andparticle simulations. Volume

rendering is differentiated from other areas of computer graphics and visualization by the

fact that the actual primitive to be rendered is 3D. Computergraphics traditionally deals

with 2D surfaces, usually triangular meshes, embedded in 3Dspace, but volume rendering

truly deals with rendering 3D data.

The purpose of volume rendering is to produce images or videoof the data which

help someone to understand it better. This is contrasted with computer graphics, where

generally the task is to appear realistic or artistic but notto convey specific information.

Unfortunately, it is very difficult, if not impossible, to generate a quantitative measure for

how well information is conveyed which works across many application domains. This is

because different applications have very different types of information which it is impor-

tant to convey, and a rendering method which satisfies the requirements of one application

may fail to satisfy the requirements of another. For this reason, it is important to provide

1

2

rendering techniques which are flexible enough to apply to different applications.

Within volume rendering there are many different data typesand formats. In the phys-

ical world, data is a continuous 3D distribution (e.g. a human body) but, in order to effi-

ciently deal with such data on a computer, it must be descritized into a finite set of samples.

Although there are many different ways of sampling continuous data, the most common

for medical volume acquisition is the regular 3D grid, whichstores samples along regular

intervals in each dimension. Although some applications ofvolume rendering require com-

plex sample elements such as vectors or tensors, medical volumes generally have samples

which are scalar real numbers. Scalar volume data is particularly useful because it can be

used to naturally represent volumes of electron density or the resonant response of hydro-

gen atoms to RF pulses, which are exactly the values producedby Computed Tomography

(CT) and Magnetic Resonance Imaging (MRI) scans, respectively. Many scientific simula-

tions also produce volume data sets of density or electron density, which would also benefit

from effective visualization. Because of the prevalence ofdata which is naturally avail-

able in the scalar-valued regularly sampled 3D grid, it is reasonable to focus on generating

high-quality renderings of this specific format in real-time.

1.2 Reconstruction Filtering

All volume rendering methods have to performreconstruction filteringto produce a

continuous function of the discrete sample points. A large body of research deals with

filters for reconstruction of continuous volume data, and the level of quality attained by

this step plays a huge role in the efficiency with which the resulting image will perform its

task of conveying information to the user. This process is generally expensive, however,

and most real-time volume rendering methods perform the simplest possible reconstruction

filtering: linear blending in each dimension (tri-linear blending).

3

Tri-linear filtering is almost ubiquitous throughout real-time graphics because of its

speed, but the quality disadvantages of such poor filtering are significant. Figure 1.1 shows

a comparison of linear and Gaussian reconstruction filtering of an image, pointing out the

artifacts of linear reconstruction. Most real-time volumerendering methods not only use

tri-linear reconstruction, but require it in order for the method to work. This tight coupling

between the reconstruction filter and the rendering method is an unfortunate one, and is

difficult to break and maintain high performance.

FIG. 1.1. Two reconstructions of a small texture. Bilinear on the left, an approximation
of a 3x3 Gaussian with standard deviation .5 on the right. Note the high-frequency linear
artifacts on the left, which may hide important informationby distracting the user.

The poor quality of linear filtering was demonstrated by Marschner & Lobb (1994),

who evaluated a large number of reconstruction filters in thecontext of volume rendering.

They presented evaluation criteria for filters specificallydesigned for volume rendering,

and measured how well several common filters performed in their tests. In their results

they mention that linear reconstruction is the least expensive, but also that it is poor quality,

and recommend cubic polynomial filters for good quality and windowed sinc filters for high

4

quality. In the end their recommendation was to choose a filter for a specific application

based upon the requirements of that application, since no single filter works best in all

situations. For this reason it is desirable for our rendering method to support a wide variety

of reconstruction filters in order to work well within a largeset of applications.

1.3 Isosurface Rendering

Finally, we have to decide the properties of the actual images which the rendering

will produce. Our application domain of medical imaging helps us to determine that we

want isosurface rendering, which is the display of the locus of points of the volume (under

reconstruction filtering) which are equal to a target value.For example, consider a contin-

uously reconstructed volume of the density of the human body. If we could identify and

display as opaque only the points in that 3D function which had the same density value as

bone, we would have an effective visualization of a skeleton. If we were to then change

this isovalue density to the density of muscle, our rendering would depict the muscular and

skeletal systems of the body. Every density value which is set as the target will produce

a continuous surface around all areas in the volume which have at least that high density.

This is similar to the way that a contour map in 2D draws a line around all heights greater

than the value of the contour. See Figure 1.2 for an example ofisosurface rendering.

1.4 Graphics Hardware

The tremendous computational power ofgraphics hardware, which is a special class

of computer hardware designed to accelerate rendering tasks, is what allows isosurface

rendering to be possible in real-time at all. The amount of data required to be processed

in any volume rendering application is tremendous, far outpacing the memory bandwidth

available to the traditional CPU. Even if that amount of datacould be passed through the

5

FIG. 1.2. Three isosurface renderings of (from left to right) a molecular simulation, a 3D
scan of a foot, and a 3D scan of a mechanical part. The foot (middle image) shows two
different isosurfaces corresponding to the density of skinand the density of bone.

CPU, it could not possibly finish the massive amount of computation required to perform

rendering in real-time. It would be possible to execute volume rendering on a cluster of

CPUs, but, because of low demand, such clusters are expensive and difficult to maintain.

Graphics hardware does not have any of these disadvantages.In order to avoid

the memory bandwidth problems, graphics hardware has an internal memory store large

enough to hold the problem data set which typically has an order of magnitude greater

bandwidth than the CPU. Graphics hardware also has literally hundreds of individual pro-

cessors which run in parallel, resulting in several teraflops of processing power for current

models. Even all of this would not be enough to solve the rendering problem efficiently,

however, so the real power of graphics hardware is to executelatency hiding.Latency is

the time required by the memory system to fetch a piece of datafrom the memory store

and pass it to the processor. The GPU architecture is designed to hold literally tens of

thousands of independent computing tasks all executing at the same time, so when one task

needs to fetch memory there is a very high chance that anothertask is ready to execute

while that memory is being fetched, making memory access virtually free (assuming there

is enough computing work to hide the latency of the memory system). Finally, because

6

of high demand from the video game market, these processors are inexpensive, usually

costing a few hundred dollars, and fit into standard computers without requiring special

software or maintenance. Any isosurface rendering technique will have to be able to run

on graphics hardware in order to have the possibility of real-time performance.

1.5 Preconvolution

In Section 1.2 we showed that no single reconstruction filterworks for all applications

of isosurface rendering, and therefore a rendering method for use across many application

domains will have to support a wide variety of filters. However, developing a single ren-

dering algorithm to support many or all of these different filters is a difficult problem. The

reason for this is that convolution is very computationallyexpensive, and not reasonable to

compute on-the-fly for large and/or complex filters. All current real-time isosurface render-

ing methods use filters of the smallest possible size, and many of them require poor-quality

linear filtering.

It seems that what we want in this situation is to separate theconvolution step, which

is very expensive, from the actual rendering step. If we had some intermediate format to

store the volume between these two stages, we could perform the convolution step as a

pre-process and only deal with the intermediate form duringthe rendering step. We refer to

this process of storing the convolved data set in an intermediate format aspreconvolution,

since the process of generating the intermediate, orpreconvolved, form of the data can be

performed before the actual rendering. In addition, we should be able to support multiple

reconstruction filters with the same rendering technique, as long as the preconvolved format

is capable of representing the volume data under different reconstructions. If we are able to

render the preconvolved format quickly, then we can get a large performance benefit from

preconvolution as well.

7

In order for a particular preconvolved format to be useful, it will have to satisfy a

range of different criteria. First, we will have to render the preconvolved data quickly, so it

will need to be designed to work efficiently with graphics hardware. Second, it should be

possible to generate the preconvolved data as the result of convolution with a wide range of

filters. This would give us the ability to support multiple applications which prefer different

reconstruction filtering without changing how the rendering algorithm works. If we can find

a preconvolved format which provides this level of speed andflexibility, it would greatly

extend the usefulness of the core rendering algorithm for it.

1.6 A Generalized Preconvolved Volume Format

In this thesis we present a preconvolved volume format, called theBT volume, which

is easy to generate through convolution, fast to render using graphics hardware, and able

to represent volumes reconstructed with many different filters. The BT volume format is

a 3D superspline, which means that it is composed of many adjacent 3D splines primi-

tives which have been constrained in order to provide continuity across the whole volume.

The spline primitive we use is the cubic Bézier tetrahedron, which is a 3D spline with 20

weights defined within a bounding tetrahedron. We found thatthe cubic spline gave the

best balance between computational efficiently and representative power, although all of

our work could be generalized up to fourth-order splines. BTvolume data sets exist in the

same cuboid space of the scalar volume data that they represent, dividing each unit cube of

this domain into a number of tetrahedra which exactly partition it. Every pair of adjacent

Bézier tetrahedra in the volume are constrained to have a level of continuity in order to

prevent cracks.

We will present several algorithms for creating and rendering BT volume data. First,

we will show how to create a BT volume representation of an arbitrary data set using a least-

8

squares method. Although this is useful for approximating volumes directly, we would

prefer to use the convolution framework, so next we show thatif we have a reconstruction

filter already approximated as a BT volume, then convolutionof that filter with a scalar

volume data set produces a BT volume. It is important to note that this process is not an

approximation, but exact convolution. This fact, when coupled with the least-squares direct

fitting method, give us a powerful generalized framework forgenerating BT volumes as

the result of convolution - first approximate a reconstruction filter with a BT volume using

least-squares, then perform convolution with a volume dataset to produce the final BT

volume for rendering. We will present several common reconstruction filters for volume

data and their BT volume approximations, evaluating the quality of approximation for each.

Finally, we will describe an optimized rendering algorithmwhich can render a complete

volume at around ten frames a second.

Chapter 2

RELATED WORK

Many isosurface rendering techniques have been developed to cover a wide range

of applications. Making images from 3D data is a fundamentalproblem for computer

graphics applied to scientific or medical visualization. All of the different techniques can

be classified into two categories based upon the speed with which they operate; Offline

methods are too slow for the user to directly interact with, while interactive techniques are

designed to generate more than three or four frames a second to enable user interaction.

Offline rendering techniques have been around longer than interactive techniques,

mainly because it has only been in the last ten years that computer hardware has been fast

enough for any type of volume rendering. They can be divided into two main categories

according to the high-level description of the algorithm: Techniques which useray-tracing

(described in Section 2.1) follow a single viewing ray through the volume to determine if

and where it intersects the isosurface, whilesurface constructionmethods (Section 2.3)

focus on extracting a single isosurface in a 2D representation which can then be rendered

using standard techniques. The most important of these methods, calledMarching Cubes

(Lorensen & Cline, 1987), is still one of the most popular isosurface rendering methods

used today.

As computers have gotten faster and special-purpose graphics hardware has become

9

10

more popular, volume rendering methods have been developedwhich take advantage of

this speed. Most interactive isosurface rendering methodscan be viewed as acceleration

of ray-tracing (Section 2.2) or marching cubes (Section 2.4) in order to allow user in-

teraction. There is a third category, which we refer to ashybrid methods (Section 2.5),

which can be viewed as a combination of surface extraction and ray-tracing. The main

advantage of surface-based algorithms is speed - an extracted isosurface triangular mesh

can be rendered very quickly using standard graphics hardware. Ray-tracing, on the other

hand, generally gives better quality results because triangular meshes are not exact repre-

sentations of the isosurface. Hybrid methods work by extracting a coarse boundary of the

isosurface (like surface extraction), but then perform per-pixel refinement on each primitive

of this coarse representation to produce high-quality results (like ray-tracing). This can be

viewed as dividing the rendering process into two phases: a coarse surface extraction phase

which generates the mesh, and a high-quality refinement phase, generally some form of

ray-intersection for each pixel, which generates the final image.

2.1 Ray-Tracing

One of the first methods which rendered surfaces from volumetric data directly was

developed by Levoy (1988), who described a method for computing opacity at each voxel

depending on the density values at the voxel and how close they were to the target density.

He then accumulated the opacity values along each viewing ray to generate the final surface,

and computed lighting using a normalized gradient as the normal vector. Danskin & Han-

rahan (1992) presented several hierarchical accelerationmethods for volume ray-tracing

algorithms, showing that efficient volume ray-tracing requires efficient data structures to

allow skipping of empty space. More recently, Sramek & Kaufman (2000) introduced the

distance transformto allow even more efficient traversal of regular volume data.

11

2.2 Interactive Ray-Tracing

Many real-time applications of ray-tracing have been developed in the last few years,

so only a few of the most important methods will be discussed here. The first interactive

isosurface rendering methods were made possible by the advent of supercomputers, and

focused on the problem of efficient computation on specific computing systems (Parkeret

al., 1999a,b). DeMarleet al. (2003) extended this method to render very large data sets

interactively across a cluster of supercomputers. Their system showed how to organize

processing nodes in the system to efficiently balance memoryand processing power, and

worked with data sets up to several gigabytes.

The bulk of interactive ray-tracing techniques have been designed to work on Graphics

Processing Units (GPUs) which are in the general consumer market. Unlike specialized

supercomputers, GPUs are mainstream processors which are relatively inexpensive and

provide acceleration of standard graphics libraries.

2.3 Surface Extraction

As opposed to ray-tracing, where the volume data is being rendered directly, surface

extraction algorithms attempt to find an approximation of a particular isosurface in a form

which is easier to render. Even though all the algorithms being presented in this section

were developed for offline rendering, performance can stillbe critical: a rendering time of

seconds is greatly preferred to one of hours. In a typical application a single isosurface

is rendered many times, so it is worth while to generate a fastintermediate form for the

isosurface of interest. Surface extraction methods attempt to do exactly this by extracting

the surface in a more compute-friendly format than a full volume render would be. Because

triangles are easy to render quickly, most methods use triangular meshes as the intermediate

form.

12

Marching Cubes (Lorensen & Cline, 1987) is the most important algorithm that be-

longs to this category. It is still very widely used, either directly or in one of its derivative

forms, even today. The basic idea of marching cubes is to divide the input volume into

discrete cubes between sample positions. By assuming linear reconstruction filtering, each

cube which contains a piece of a given isosurface can easily be identified because the sam-

ple values at the cube vertices must span the target isosurface value. For each of these cubes

independently they create a triangle mesh, but in such a way that they all align correctly at

boundaries. The original method precomputed all possible configurations of inside/outside

along with triangulations which would stitch all adjacent cubes together without any holes,

and, from a single cube which straddled the target density value, began to “march” through

the volume, constructing the mesh one cube at a time.

Although Marching Cubes generates the lowest quality isosurfaces of any of the tech-

niques discussed here, it has several advantages which haveprolonged its usefulness. First,

it is very fast and relatively easy to implement. Second, it produces a triangle representa-

tion of the isosurface which can be rendered quickly using traditional methods. There have

been many extensions to the basic method, including Marching Tetrahedra (Treece, Prager,

& Gee, 1999) and Marching Diamonds (Anderson, Bennett, & Joy, 2005), among others.

One interesting modification of marching cubes by Gerstner &Rumpf (1999) extended

marching tetrahedra by using a recursive nested tetrahedravolume which allowed them to

arbitrarily subdivide the extracted mesh, eventually reaching a smooth reconstruction.

Triangle meshes are the most common isosurface representation format, but others

also exist. Theisel (2002) pointed out that, from a filteringperspective, Marching Cubes

is very irregular and the triangular meshes it produces introduce severe linear artifacts. To

fix this, they generate a mesh of rational cubic Bézier patches which exactly represent the

isosurface generated from tri-linear reconstruction.

13

2.4 Real-Time Surface Extraction

Surface extraction methods which are fast enough to allow user interaction have been

developed recently. Acceleration of these methods refers to accelerating the process of ex-

tracting the triangle mesh of the isosurface, and not rendering the extracted mesh (which is

a trivial problem). Pascucci (2004) presented a method for extracting an isosurface from a

tetrahedral mesh by exploiting the transform capabilitiesof thevertex shaderon graphics

hardware. The vertex shader is a programmable stage in the graphics pipeline which has

the capability of transforming vertices which they use to transform a polygonal represen-

tation of the isosurface intersection with each tetrahedron into the correct position. Every

isosurface intersection with a tetrahedron can be approximated by either one or two trian-

gles without changing the overall topology of the surface. Because the graphics hardware

performs all of these steps in parallel this technique is fast. He also presented a nested

tetrahedral decomposition to allow refinement by subdividing the tetrahedral mesh before

extracting the isosurface, which effectively increased the resolution of the extracted mesh.

Klein, Stegmaier, & Ertl (2004) presented an extension of this work which allowed the

resulting tetrahedral mesh to be stored for future frames orpost-processing. They achieved

this by exploiting the then-new hardware capability of multiple views of data buffers. They

render the isosurface vertices into a render buffer as colors, and then re-interpret the buffer

as a vertex array. By storing the render buffer they can render a single isosurface many

times without recalculating the mesh, and by reading the texture back and extracting the

vertex data they can recover the vertex buffer on the CPU for further processing or storage.

Reck et al. (2004) presented a similar method which used aninterval tree to speed up

isosurface extraction. Because the range of vertex values for each tetrahedron must contain

the isosurface value in order for that tetrahedron to participate in the isosurface, they store

a tree data structure of these intervals. This allows them tovery quickly determine only

14

the set of tetrahedra which participate in the isosurface and then extract the triangle mesh

from them. Because participating tetrahedra are usually a very small percentage of the total

number of tetrahedra, their method provided large speedups.

This idea was extended by Goetz, Junklewitz, & Domik (2005) to work with cubes

instead of the more simple case of tetrahedra. Their contribution was to develop efficient

ways of generating the triangular approximation of the isosurface within contributing cubes

on graphics hardware, which is a non-trivial problem. This method was later extended

(Johansson & Carr, 2006) to include correct normal generation for the mesh as well as a

higher-quality intersection approximation and acceleration using an interval tree. Finally,

Tatarchuk, Shopf, & DeCoro (2007) presented an enhanced version of this basic technique.

Their method is a hybrid between tetrahedron- and cube-based extraction techniques. First,

they create a cubic grid of values. Using the latest hardwarecapability ofgeometry shaders

(which allow addition of new geometry in the middle of the graphics pipeline) they use

interval methods to extract only the contributing tetrahedra. Finally, they perform triangular

isosurface extraction from this tetrahedral grid. In orderto reduce linear artifacts in the

extracted mesh, they perform cubic interpolation between sample points instead of linear.

2.5 Hybrid Methods

Hybrid methods have been developed in order to exploit the advantages of both sur-

face extraction and ray-tracing. Graphics hardware is optimized for rendering triangular

meshes, so surface extraction methods which produce such mesh representations of an iso-

surface can take advantage of this speed. However, trianglemesh approximations of isosur-

faces have visible discontinuities at reasonable resolutions, while higher resolution meshes

become large and slow to render. Ray-tracing methods do a great job of producing smooth,

artifact-free images because each pixel is traced independently. However, tracing each ray

15

through the volume is a non-trivial task which can take a significant amount of time, even

when spatial data structures are employed to accelerate theprocess. Hybrid methods try

to capture the advantages of both these methods, while avoiding their disadvantages. The

process is to have surface extraction of high-level primitives, which are then refined further

using a pixel-exact method such as ray intersection. Because not as many hybrid methods

exist, we will discuss several techniques which do not specifically render isosurfaces.

One of the first examples of a hybrid volume rendering method (Shirley & Tuchman,

1990) created a tetrahedral representation of the volume. They noted that the 2D projection

of tetrahedra onto the screen space is a set of one to four triangles, and that, for orthog-

onal view transformations, they could interpolate values across these triangles for each

intersecting viewing ray instead of recomputing them. Specifically, the length of a spe-

cific ray through a position on the tetrahedra can be calculated by computing the lengths

at each vertex and interpolating the values across the triangle faces. They exploit this by

pre-integrating the volume at the vertex positions and interpolating across the triangles to

fill the remainder of the pixels. Because each integral only has to be computed within a

given tetrahedra, computing the vertex values is much faster than trying to trace through a

larger volume, and does not require any acceleration data structures. Further, the interpo-

lation step allows them to fill all the pixels which intersecta given tetrahedra with a small

number of integration steps.

More recently, Sadowsky, Cohen, & Taylor (2005) presented amore advanced hybrid

technique based upon similar ideas. They also create a tetrahedral grid and interpolate

values across screen-space triangle faces, but, instead ofdirectly interpolating the integral

result, they interpolate coordinates which allos them to calculate the integral even under

perspective projection. They also extended the representative power of each tetrahedral

primitive by using a Bézier tetrahedron spline primitive instead of linear interpolation.

This gave their method the ability to render very smooth results even on low-resolution

16

data. In order to extend this idea to isosurface rendering, Loop & Blinn (2006) developed

a closed-form expression for ray-intersection with any isosurface of a Bézier tetrahedron.

They also created screen space triangles and interpolate the depth values, evaluating the

isosurface formula at each pixel. They were able to render quadratic, cubic, and quar-

tic Bézier tetrahedra, but any higher order primitives would not work because there is no

closed-form solution for the roots of quintic and higher polynomials. Although their ren-

dering algorithm produces very high quality isosurfaces for any mesh of Bézier tetrahedra,

they did not present any way of generating volume data in their format, so their work has

seen limited application.

Finally, Rosslet al. (2003) presented an offline rendering method which used a spe-

cific tetrahedral decomposition of quadratic Bézier tetrahedra to render smooth isosurfaces

of volumetric data. Their method used the idea of asuper spline, which is a mesh of

splines with continuity constraints across spline boundaries. Although the number of free

parameters is very large with an unconstrained spline grid,adding continuity constraints

greatly reduces the number of legal splines in the grid. Theyshowed how all the spline

weights in a specific tetrahedral grid could be completely determined from a small subset,

which could be set to approximate the volume. The referred tothis method asrepeated

averaging, since the continuity constraints provided enough information to reconstruct all

of the weights through repeated averaging of the initial subset. They used interval culling

to select only tetrahedra which intersected a given isosurface, rendering them with direct

ray-intersection equations. Because of the spline smoothness properties, their method gen-

erated higher quality isosurfaces than most surface extraction methods, but their repeated

averaging scheme was a heuristic and did not represent a common reconstruction filter.

Chapter 3

BACKGROUND

This section provides some background information necessary to describe the BT vol-

ume rendering method presented later. First, Section 3.1 gives a formal definition of the

regularly sampled scalar field volume format which is used through the rest of this thesis.

Section 3.2 provides a description of discrete convolution, which is the basic mathematical

tool used to perform reconstruction filtering.

3.1 Regular Scalar Fields on the Integer Lattice

For the purposes of this paper, we will discuss only regularly sampled scalar-valued

3D fields. Each data point in these volumes is called asample pointand contains a single

real number, usually interpreted as density at that point. Each volume has adomain, de-

notedD, which is the smallest cuboid containing all the samples. Each volume also has a

size, represented as a triple(Nx, Ny, Nz), which is the number of unique sample positions

in each dimension. The set of sample values isI = {Iijk : 0 ≤ i < Nx, 0 ≤ j < Ny,

0 ≤ k < Nz}, where(i, j, k) is an integer identifier for each sample.

In order to simplify our notation, we will implicitly transform each volume so thatD

overlaps the cuboidC := (0, 0, 0) × (Nx − 1, Ny − 1, Nz − 1). Under this transformation

theidentifiertriplet (i, j, k) for each sampleIijk is also thepositionof that sample. We will

17

18

call this theinteger latticeof the volume, since it corresponds to a subset ofZ
3. Under this

transformation a scalar volumeA is defined as a mappingI → R. For the rest of this thesis

when we refer to avolumewe will be refering to this definition, unless specifically stated

otherwise.

3.2 Discrete Convolution

Reconstruction filteringis the process of creating a continuous function from a discrete

volume. Reconstruction requires blending sample points from the volume using afilter

kernelto define how the sample points should be blended together. The mathematical tool

which we use to perform reconstruction filtering is calleddiscrete convolution, which, in

the context of volumes, is a function of 3D space that sums thereversed filter kernel with a

volume. For some volume with domainC and integer latticeI (see section 3.1), the formula

for the convolution of volumeA : I → R by a kernelG : R
3 → R at the pointP ∈ R

3 is

the summation overI given by

(A ∗ G) (P) =
∑

i ∈ I
A(i) · G (P − i)

(3.1)

The specific filter used can determine properties about the final reconstruction. For

example, Gaussian and B-Spline filters are blurring filters,while Bilinear and Catmull-Rom

filters produce aliasing. For a thorough examination of reconstruction filtering for volume

data, including an examination of different reconstruction filters, we refer the reader to the

work of Marschner & Lobb (1994).

19

3.3 Bézier Tetrahedra and Supersplines

Our method will heavily use a specific type of 3D polynomial called the Bézier Tetra-

hedra (BT for short). The cubic BT are a set of cubic polynomial solids represented in the

Bernstein basis where each element of the family is defined within a bounding tetrahedron

domain by a set of weights on the twenty basis polynomials. Let the pointsvi : {i ∈ [1, 4]}

be the vertices of a tetrahedraT ∈ P (R3) (three-dimensional Euclidian projective space),

and the set of20 weightsw = {wijkl : i + j + k + l = 3}. Note that the weightposi-

tionsare fixed relative to the bounding tetrahedron and only theirvalue, which is a scalar,

changes. Together,w andT define a Bézier Tetrahedron,τ .

In order to actually evaluate the BT, we must go through a little more work. The

matrixMT = [v1,v2,v3,v4]
T is an affine transform into thebarycentric spaceof T (Loop

& Blinn, 2006). Given a pointP = (x, y, z, 1) ∈ P (R3) transform it into the barycentric

space ofT by r = (r, s, t, u) = P · (MT)−1. The formula for evaluation ofτ := {T,w} is

bt(P) =
∑

i+j+k+l=3

wijkl





3

ijkl



 risjtkul (3.2)

where





3

ijkl



 is themultinomial functiondefined by
(

d!
i!j!k!l!

)

for all i + j + k + l = d.

3.3.1 Properties of B́ezier Tetrahedra

Bézier tetrahedra have several properties which make themvery intuitive to work with.

Weight Positions Every weightwijkl is associated with position(iv0 + jv1 + kv2 + lv3)

in the barycentric space defined byT. Each weight associated with a vertex of the bound-

ing tetrahedra is equal to the evaluation of the BT at that point, so it is relatively easy to tell

20

what the general topology of a BT is by looking at the corner values.

The Bounding Property All of the weights follow thebounding property, which

gives limits on the range of the solid based on the weight set.For a given BT with weights

w, any value resulting from evaluation of the BT will have to bebetween the highest and

lowest weight values. In other words, for any pointP in the domain of a BT with weights

w the resulting valueQ = bt(P) must be between the maximum and minimum values in

w. Therefore, one can determine easily if a given BT has an isosurface of a specific level

by computing the min and max weights.

Addition of B ézier Tetrahedra Because Bézier tetrahedra are polynomials, we can

add them as long as their domain tetrahedra are the same. BT are closed under addition, so

the result is another BT which is computed by adding all co-located weight values. This

follows directly from the definition in equation 3.2, so we omit a proof.

Total Degree Consider anyn-variate polynomial

P (x) =
∑

i,j,...,k

Cij...k xi
1x

j
2...x

k
n

Thetotal degreeof this polynomial is given bysup(i+j+...+k) for all i, j, ..., k. According

to definition of cubic Bézier Tetrahedra from equation 3.2,the total degree of these splines

is also cubic. This fact, which does not hold for tensor product splines, is what allows us

to find closed-form ray-intersection equations in Section 3.5.1, which is what allows us to

maintain high-performance and achieve interactive rates.Trying to modify our method to

work with cubical domain Bézier patches would incur a largeperformance penalty, since

ray-intersection would have to be performed using an iterative method which does not map

as well to graphics hardware.

21

3.3.2 Continuity Constraints

Bézier tetrahedra have constraints which will enforce continuity between anyadjacent

pair. For our purposes a pair of tetrahedra are adjacent whenthey share a common trian-

gular face but have no overlapping volume, and two BT are adjacent if and only if their

bounding tetrahedra are adjacent. Since cubic BT are cubic polynomials we can enforce

up toC3 continuity between any pair, but this would over-constrainthe tetrahedra and limit

it’s usefulness. For this reason, we limit ourselves toC0 andC1 continuity since they will

help prevent gaps and ensure basic smoothness without limiting the representative power

of the splines.

EnforcingC0 continuity is simple: each pair of co-located weights across the shared

face must have equal value. Consider a pair of BTτ and τ ′ defined by{w,T =

[v1, v2, v3, v4]} and{w′,T′ = [v1, v2, v3, v
′
4]}, respectively.C0 Adjacency across the com-

mon face(v1, v2, v3) is ensured by enforcingwijk0 = w′
ijk0 for all i+ j +k = 3. The center

of Figure 3.1 shows an example of this.

C1 continuity is slightly more complex. It can be helpful to think of the weights of a

BT in levelsdepending on how far away they are from a given face. For example, weights

in τ are at levell from face(v1, v2, v3) if they have the formwijkl. The left of Figure

3.1 shows a BT with weights in the same level connected, with the far left showing levels

counted from the bottom face and the one next to it showing levels counted from the front-

right face. In general,Cn continuity across a common face involves weights in the firstn

levels in each BT relative to the common face. Specifically,C1 continuity acrossτ andτ ′

in achieved by enforcing that

w′
i,j,k,1 =

(

[i, j, k, 1]

3
× M′

TMT
−1

)

· [wi+1,j,k,0, wi,j+1,k,0, wi,j,k+1,0, wi,j,k,1]

22

The middle term of this equation
(

[i,j,k,1]
3

×M′
TMT

−1
)

represents the barycentric posi-

tion of w′
ijk1 relative toT. The intuitive explanation is that this equation enforces that all

“diamonds” formed by five adjacent weights across the commonface - three on the face

and one in each of the tetrahedra - lie on the same hyperplane.The bottom right of figure

3.1 shows two adjacent cubic BT with one of these “diamonds” marked with close-dotted

lines.

3.3.3 B́ezier Tetrahedra in Super Splines

Although individual splines can represent simple shapes, in order to perform useful

work we will have to construct a set of splines which all contribute to representing a larger,

more complex volume. In order to maintain coherence across the larger volume it is nec-

essary to enforce some level of continuity constraints as described in section 3.3.2. For our

application this means eitherC0 or C1 constraints across all BT boundaries, without mixing

continuity levels. This construction is called asuper spline(Rosslet al., 2003), and will be

the basis for our intermediate volume format.

3.4 Graphics Programming

The nature of the rendering problem has pushed the design of graphics hardware

towards massively parallel stream processing systems. These processors, referred to as

Graphics Processing Units(GPUs), have a high-level sequential order called the graphics

pipeline which defines how individual rendering primitivesare processed into pixels. Each

stage of the pipeline is implemented in very wide parallel processors which have built-in

scheduling for each compute unit. Each stage in this processhas akernelprogram which

takes one or more primitives from the previous stage and produces primitives of the next

stage. The data between stages is referred to as adata stream, and each kernel program

23

FIG. 3.1. On the left are two diagrams showing a cubic Bézier tetrahedron with the twenty
weight positions as black dots. Note that weights can be divided into “bands” which are
co-planar - top shows division according to bottom face, bottom shows division according
to front-right face. The right-top image is of two adjacent Bézier tetrahedra, slightly sep-
arated for clarity. Co-located weights are connected with dashed lines - constraints forC0

continuity across the splines requires that co-located weights have equal value. The image
on the bottom-right shows a singleC1 continuity constraint for the same two tetrahedra -
all weights connected with the close dashed lines have to lieon the same hyperplane.

24

processes the minimum number of elements on its input data stream in order to allow it to

produce the primitives on its output stream. Although thereare many different stages in the

graphics pipeline, several of them have the ability to load user-defined kernels and perform

custom operations on them. The three programmable stages are called thevertex stage, the

geometry stage(Blythe, 2006), and thepixel stage, and custom kernel programs in these

stages are calledshaders. The left of Figure 3.2 shows the pipeline in full.

The Vertex Stage The first programmable stage in the graphics pipeline, the vertex

stage, takes one vertex as input and sends one vertex as output. Individual vertices need to

have a position, but can also have other data associated withthem, such as color. The stan-

dard use of this stage is to transform the vertex into the finalposition given a transformation

defined by a camera. Although each execution instance of a vertex shader only has access

to one vertex, small amounts of extra data can be passed into the shader through the use of

constant buffers, which are available to all of the programmable stages. Thisallows custom

transformations or other data to be passed into every execution instance of the shaders, and

can be changed very quickly for every frame rendered.

The Geometry Stage The transformed vertices are then marshaled by the hardware

into triangles, which are then passed into the geometry stage. This stage can output zero or

more triangles, although the maximum number of triangles which it can output is relatively

low (generally a few dozen or less). If the data output from the vertex shader does not

define the connectivity required to determine triangles, the geometry shader can input single

vertices as well.

The Pixel Stage The triangles output by the geometry shader are then passed to the

rasterizer, which is a fixed piece of hardware that determines which pixels the triangle cov-

ers. These pixel locations are then passed to the pixel stage, which is responsible for either

25

computing a final color or discarding the pixel so that no color is output. Attributes from

the vertex data can be interpolated across the triangle for input to each execution instance

of the pixel shader. See the left of Figure 3.2 to see a flow diagram of this process. Bold

elements represent a single instance of input to the next stage, with grayed-out elements

shown for context.

3.5 Rendering B́ezier Tetrahedra

Although BT and supersplines of BT are a nice formulation of 3D polynomials into

a format which is easily controlled by the input weights, it is really only of use to us if it

can be rendered quickly to the screen. It turns out that rendering of BT is a problem which

can be solved very quickly using a method presented by Loop & Blinn (2006) which takes

advantage of the parallel processing power of graphics hardware. In order to describe this

method, it is necessary to introduce a way of representing BTas tensors.

3.5.1 The Tensor Formulation

Tensors provide a generalized understanding of matrix multiplication and dot prod-

ucts through the notion ofcontraction. We will use Einstein Index Notation as described

by Blinn (2003) to represent tensor contraction. To summarize, when the same symbol

appears as both a superscript and subscript in the same equation, an implied summation is

performed at that index, where the superscript represents contravariant indices (a column

of a matrix) and subscripts represent covariant indices (a row of a matrix). Consider the

BT defined by a tetrahedronT and weight set{w}. We can construct a43 tensor of control

pointsB by

Bijk = wei+ej+ek
(3.3)

26

FIG. 3.2. On the left is the generic programmable graphics pipeline. Bold elements rep-
resent a single instance of input to the next stage, with greyed-out elements shown for
context. Boxes on the left show the components of each element at each stage.Vertex
shaderstransform single vertices. Triangles are then re-assembled as input to theGeom-
etry shader, which can output zero or more triangles. The fixed-functionrasterizercom-
putes pixel coverage for each triangle and passes them to thepixel shader, which produces
a color. Vertex elements are interpolated before being passed to the pixel shader. The
middle diagram shows how Loop & Blinn (2006) render Bézier tetrahedra on the pipeline
by pre-computing screen-space tensors, as well as screen-space triangles which interpolate
the depth of each viewing ray. They skip the vertex and geometry stages, computing ray-
intersection in the pixel shader. Finally, the right shows how they suggest changing their
method when geometry shaders are available. In this case only a single vertex is stored for
each tetrahedron, which is expanded into screen-space triangles in the geometry shader.

27

whereex is a four component vector with a 1 at positionx and all other components equal

to 0. Cubic BT have a tensor form defined as the three contractions

bt(P) = rirjrkBijk (3.4)

with P, r from equation 3.2. Although this equation is mathematically equivalent to equa-

tion 3.2, sinceB is much larger thanw (it contains64 components instead of20), it will be

much less efficient to evaluate. This is because the tensor form contains much redundancy

in the weight tensorB when compared to the weight setw. The reason for using the tensor

formation is to take advantage of some useful properties of tensor contraction.

Tensor-ray Intersection Tensor notation also allows efficient calculation of ray-

intersection with the zero isosurface of a BT in tensor form,which is defined by setting

equation 3.4 equal to zero. Consider a univariate cubic polynomial in Bernstein basis that

corresponds to a single ray through a BT, given by

3
∑

i=0





3

i



 (1 − v)3−i
viai = 0

wherev ∈ [0, 1] corresponds to the portion of the ray inside the tetrahedronbounds. Find-

ing the roots of this equation will tell us where the ray intersects the zero-isosurface of the

spline, but first we have to calculate the coefficientsai from the tensor form. Consider two

pointsp, q which both lie on the bounding tetrahdron of a given BTτ and form the line

(1 − v)p + vq through the tetrahedron. The coefficientsai can then be written

28

a0 = pipjpkB̄ijk

a1 = pipjqkB̄ijk

a2 = piqjqkB̄ijk

a3 = qiqjqkB̄ijk

(3.5)

Since this equation is in Bernstein form it conforms to the same bounding property that

Bézier Tetrahedra have, namely that if all coefficients arethe same sign then the polynomial

cannot have any roots in the[0, 1] range. This allows us to perform early-termination tests

to avoid the expensive root finding algorithm.

In order to actually find the roots we use the method developedby Blinn (2006),

which, although not the fastest root-finding algorithm available, is the most numerically

stable algorithm we are aware of. Numerical stability is very important for our applica-

tion since we will be performing this calculation on graphics hardware, which does not

efficiently support double-precision floating point representations.

Tensor Transformation While T is in 3D projective Euclidean space,w andB are

in the barycentric space defined byT, so evaluation of any point requires first transforming

the point into barycentric coordinates and then evaluatingequation 3.2 or 3.4 with the

transformed point. It turns out that we can actually transform the weight tensor into the

space of the evaluation point and perform the evaluation in that space without transforming

the point. The weight tensorB after transformation into Euclidean space, denotedB̄, can

be calculated by

B̄ijk = Wl
iW

m
j Wn

kB
lmn (3.6)

whereW = M−1
T (see equation 3.2).

29

Intersecting Arbitrary Isosurfaces We can use tensor transformation of Bézier

Tetrahedra to simplify ray-intersection with any isosurface level. In Section 3.5.1 we

showed how to efficiently render the zero-isosurface of a tensor-form BT. It turns out that

we can transform a BT so that any level isosurface is equal to the zero-isosurface under

the transformation. Consider the case where we set Equation3.4 equal to a constantc. In

order to perform this transformation we need to identify a space where one of the polyno-

mial basis functions is a constant term which can “absorb”c, and transform the resulting

weights back into the original space. By inspection, Euclidian space will serve this purpose

well since the polynomial basis functions will be in power basis, which has a constant term

corresponding to position(i, j, k, l) = (0, 0, 0, 3).

Consider the tensor form BTB which we want to transform intôB so that thec-

isosurface ofB becomes the0-isosurface of̂B. We can evaluate equation 3.6 to get the

Euclidian space tensor, where Equation 3.3 shows us that theonly value in the which con-

tains the weight from position(0, 0, 0, 3) is B̄3,3,3, so we can subtractc from that term to

get the new tensor, which can be transformed back into the original space.

3.5.2 Rendering B́ezier Tetraherda

Now that we have developed the mathematical basis required to perform ray-

intersection with any isosurface of a BT spline solid, we have to design an actual ren-

dering pipeline which executes the intersection efficiently on graphics hardware. Our con-

tributions in this area are extensions of a method first described by Loop & Blinn (2006),

which we will describe in detail here. Because there was no hardware support for geometry

shaders when they published their paper, they presented twomethods - one for hardware

which they had access to and one looking forward to upcoming hardware. These two meth-

ods are depicted as the center and right columns of Figure 3.2, respectively.

30

Screen-Space Triangles The basic idea of both methods is to create screen-space

triangles with depth information at each vertex which is then interpolated across the trian-

gles, similar to previous tetrahedron-based methods (Shirley & Tuchman, 1990; Sadowsky,

Cohen, & Taylor, 2005). The simplest method for decomposinga tetrahedron into screen-

space triangles contains two cases: the three-triangle case when one vertex is contained

(in 2D screen space) within the convex hull of all four vertices, and the four-triangle case

where all four vertices contribute to the convex hull. Although some tetrahedron orienta-

tions will produce one or two screen-space triangles, they can be expressed as degenerate

versions of these two cases. Since these cases are very rare,it is reasonable to ignore them.

Example three- and four-triangle orientations can be seen in Figure 3.3.

FIG. 3.3. Three- and four-triangle screen-space projections of tetrahdera. Two four-triangle
orientations appear on the top left, with two three-triangle orientations on the top right. Be-
low them are the screen-space triangle projections, along with a visualization of depth in-
terpolated across each triangle from vertex values. Individual triangles have been separated
slightly to clearly differentiate them.

The purpose of this construction is to allow each instance ofthe pixel shader to deter-

mine the pointsp, q from Equation 3.5 for ray-intersection calculation, whichis performed

in screen-space.

31

Transforming the BT Tensor to Screen-Space The transformation into screen

space is defined by a 4x4 transformation matrix called the World-View-Projection matrix,

denotedWVP. Because the vertices of the bounding tetrahedronT are in Euclidean space

already, applying the World-View-Projection transformation directly will transform them

into screen space. The BT weights, however, are in the barycentric space defined for Equa-

tion 3.2 above, so we will need to multiply the transformation from barycentric coordinates

into Euclidean space (MT) with the World-View-Projection transformation. The inverse of

this composite transformation provides us with an Equationfor the barycentric coordinates

r of a screen space pointPs given by

r = Ps · (MT · WVP)−1 = Ps · W

whereW is the inverse composite transform. We can calculate the transformed weight

tensorB̄ by equation 3.6.

Hardware Mapping Loop and Blinn presented two different ways of mapping these

steps onto hardware. The first technique, which is the one they implemented, pre-computes

the screen-space weight tensors on the CPU. They also pre-computed the screen-space

triangles on the CPU and passed the tensor information into the GPU through vertex data

for the ray-intersection calculations. The pixel shader isable to reconstruct the points

p, q for ray-intersection from the current position (which is interpolated from the vertex

positions) and the depth position, givingp = [x, y, z, 1] andq = [x, y, z + depth, 1]. Since

these values are in screen-space and the tensor values are inscreen-space, they are able to

evaluate the ray-intersection (Equation 3.5) directly. The disadvantage of this method is that

a lot of computation has to be done on the CPU as a pre-process,limiting the scalability

of their method. This makes it more of a proof-of-concept than a reasonable rendering

architecture.

32

Their second method, which they did not implement for lack ofhardware support,

stored a single vertex with all of the BT coefficients as user data. The performed no pre-

processing on the CPU, transforming the tensor into screen-space and generating the depth-

interpolating screen-space triangles in the geometry stage. The pixel stage was the same.

In theory this method is much preferred to the first one because it does not perform any

pre-process on the CPU and therefore scaled much better. Both of these methods, however,

transform the weight tensor every frame, which is an expensive operation for the CPU or

the GPU.

Chapter 4

METHOD

The foundational construction of this work, theBT volume, is a continuous 3D func-

tion representation based upon the concept of tetrahedral super-splines introduced in Sec-

tion 3.3.3. It is described in detail in Section 4.1, followed in Section 4.2 by a description

of how to generate a BT volume as the best least-squares approximation of a given func-

tion. One of the most important features of BT volumes is thatthe set of BT volumes is

closed under convolution with a scalar-valued volume data set. In other words, if we have

a BT volume (approximating, for instance, a reconstructionfilter) and any scalar-valued

volume data set, their convolution will also be a BT volume. Using this fact, we can com-

pute a BT volume which is the exact reconstruction of an arbitrary data set as long as the

reconstruction filter we use is also represented as a BT volume. This property of the BT

volume format, which is described in detail in Section 4.3, is what allows us to separate

the convolution and rendering steps in our algorithm. Finally, Section 4.4 describes how

to actually render a BT volume efficiently using graphics hardware. Most of this work has

was published in 2007 (Kloetzli, Olano, & Rheingans, 2008).

33

34

4.1 BT Volumes

This Section presents a formal definition of the BT volume, along with some justi-

fication for the usefulness of its design. Section 4.1.1 describes how we divide a volume

domain into unit cubes, which we callvoxels. This is followed in section 4.1.2 by a descrip-

tion of general tetrahedral partitions and the more specificsubset ofκ-partitions, along with

some useful properties ofκ-partitions. The formal definition of a BT volume as a super-

spline on aκ-partition is given in section 4.1.3.

4.1.1 Voxels and Shift Invariance

Given a volumeA with domainC and integer laticeI, avoxelAi,j,k of the volume is

defined as any cube(i, j, k) × (i + 1, j + 1, k + 1) of A ∗ G for some reconstruction filter

G. We would like to have similar definition of a voxel for a BT volume, but BT volumes

are continuous functions and not discrete volumes, so we would prefer to have a definition

which does not require the reconstruction filterG. Therefore we forget the reconstruction

filter and define a voxelVi,j,k of a BT volumeV as the cube(i, j, k)× (i+1, j +1, k+1) of

the volume. This may seem like a simplistic definition, but itturns out that voxels will help

us to capture the idea ofshift invariance, which will be needed later to perform convolution

with BT volumes.

4.1.2 Tetrahedral Partitions andκ-partitions

BT volumes are comprised of individual Bézier splines on tetrahedra. Since each of

the spline primitives is defined only within its bounding tetrahedron, we need to have a

way of dividing the domainC of the BT volume into tetrahedra. This type of division is

called atetrahedral partitionof C, and is commonly used in volume rendering (Gerstner

& Rumpf, 1999; Loop & Blinn, 2006; Treece, Prager, & Gee, 1999; Anderson, Bennett,

35

& Joy, 2005; Rosslet al., 2003). Notation in this section was developed by us to formally

define partitions which are applicable to our method. Usefultetrahedral partitions will

be coveringsandpackings; that is, every point in the domain will be covered by at least

one tetrahedron, and no two tetrahedra will have overlapping volume (note that adjacent

boundaries must overlap). In the general case tetrahedral partitions may be completely

unstructured, but in general regular patterns of tetrahedra are found to be more useful.

Carr, Moller, & Snoeyink (2006) presented an overview of regular tetrahedral partitions.

Our method will require a special type of regularity in the partition which has not been

formally defined in previous work.

We introduce the notation of aκ-partition as a special class of tetrahedral partition

which meets the extra constraints imposed by our method. In addition to covering and

packing,κ-partitions must meet two additional constraints: they must be validvoxel exact

partitions and they must beshift invariant. Exact partitions are covering partitions that

are contained within the bounds of the volume; every point inthe volume has at least

one tetrahedron covering it and every tetrahedron in the partition is contained inside the

domain space. Visually, this means that no tetrahedra are “sticking outside” of the domain.

Voxel exactpartitions must include as subsets exact partitions of eachvoxel cube in the

domain. Finally, shift invariance requires that all voxelshave partitions that are the same

when shifted so that the voxel domains are coincident. Figure 4.1 shows several examples

of triangular partitions in order to demonstrate these properties in 2D, as well as a valid

κ-partition.

Shift-Invariance Examined Shift invariance is an essential property for our pur-

poses which will be used later, so this section provides a more rigorous examination of its

implications. Define thecannonical mappingof a κ-partition, denotedκijk : Vijk → H

(whereH is a set of tetrahedra which partition the voxelV0,0,0), to be

36

FIG. 4.1. Three example triangular partitions of a square domain. Voxel boundaries are
dotted grey lines. Left:Coveringandpackingtriangular partition. Center: A partition
which is regular, exact(coveringandcontained), andvoxel exact(each voxel is has an
exactsub-partition), but is notshift invariant and so not aκ-partition. Right: A valid
κ-partition.

κijk(p) = Th : (p− bpc) ∈ Th ∈ H

The purpose of the canonical mapping is to demonstrate that each unique tetrahedron

in the canonical voxelV0,0,0 has a related tetrahedra in every other voxelVijk which differs

only by the translation[i, j, k]. Consider a tetrahedralκ-partition5 where5Th

ijk denotes the

Bézier tetrahedron in voxelVijk which is related in this way to tetrahedronTh in the canon-

ical setH. We will use this notation later to perform summations over Bézier tetrahedra

which only differ by a translation.

Test κ-partitions Many common tetrahedral partitions areκ-partitions. We will

limit our attention to the three specificκ-partitions shown in Figure 4.2,freudenthalwith

six tetrahedra per cube, two equivalent orientations offace-dividedwith 12 tetrahedra per

cube, andface-centeredwith 24 tetrahedra per cube. Note that the minimal5-tetrahedra

partition of a cube is not a validκ-partition because adjacent cubes have to be inverted in

37

order to make their triangle faces align correctly, which makes the resulting partition not

shift invariant.

There are several desirable properties which make certain tetrahedral partitions better

than others (Carr, Moller, & Snoeyink, 2006). Of relevance to our application aresymme-

try, minimality, anderror (which Carr, Moller, & Snoeyink (2006) refer to asexactness).

Symmetric partitions are invariant under cardinal rotation and mirroring transformations,

and ensure that directional artifacts are not present in thefinal output. The freudenthal and

face-divided partitions are not symmetric, although the artifacts introduced by the freuden-

thal partition are much more severe than face-divided partitions.

Minimal partitions contain a small number of tetrahedra, and are desirable because

they reduce further processing required later in the method. Freudenthal partitions have

the smallest number of tetrahedra possible forκ-partitions, while face-centered and face-

divided contain twice and four times that number, respectively. Finally, error determines

how closely a BT volume based on a given partition can approximate a given function.

As you would expect for our three partitions, this is mainly determined by the number of

tetrahedra in each, because this determines the resulting representative power of the BT

volume.

FIG. 4.2. The three partitions used in our work. Image from Carr,Moller, & Snoeyink
(2006). From left to right: Freudenthal with 6 tetrahedra, the two different face-divided
orientations with 12 tetrahedra each, and face-centered with 24 tetrahedra.

38

4.1.3 The BT Volume Definition

Given all of the background material we have presented, the definition of a BT volume

is simple: associate a cubic Bézier spline with every tetrahedron of aκ-partition5. As a

notational shortcut, we will represent evaluation of the BTvolume5 as

5(p) = 5
κbpc(p)

bpc (P)

whereκ is the canonical mapping from section 4.1.2. Figure 4.3 shows an example BT

volume approximating a 3D Gaussian, with wireframe drawn todistinguish tetrahedral

boundaries.

4.2 Approximating Continuous Volumes as BT Volumes

In order to generate a BT volume5 to approximate an arbitrary continuous scalar-

valued volumetric functionG : D ∈ R
3 → R we have to create aκ-partition for D as

described in section 4.1.2. The specific partition used willdetermine how close our approx-

imation can be to the original function, since it will determine the number and distribution

of weights per voxel (We assume thatG has already been scaled so thatD aligns to the

desired integer lattice).

Once we generate our tetrahedral partition, we have to complete the definition of5 by

determining the optimal weights so that5 approximatesG as closely as possible. Since BT

are collections of polynomials, a simple least-squares approach works well. We determine

a set of sample points distributed evenly in the barycentriccoordinates of each bounding

tetrahedron, transforming the points into Euclidean spaceand evaluate the target function

value. In our experience a single sample at each weight location (ten per tetrahedron)

is sufficient to produce good results. We then construct a least-squares matrix with one

element per matrix, computing the optimal weights.

39

There are several boundary conditions which can be enforcedto help make the result-

ing BT volume well-behaved. First, we can ensure that the volume goes to zero smoothly

around its entire border by forcing the first two rows of weights along the border to be zero.

We can ensureC0 continuity by performing one large least-squares system which contains

one unknown for each weight in5. Finally, each pair of adjacent tetrahedra introduce six

new constraints to ensureC1 continuity. Since each of these constraint types is linear,we

use standard linearly-constrained least-squares. Because the number of terms in the least

squares matrix can get very large for even small volumes, we used an iterative least-squares

technique instead of singular value decomposition.

FIG. 4.3. An isosurface rendering of a BT Volume with the6-tetrahedra freudenthalκ-
partition approximating a Gaussian reconstruction filter,where lines denote tetrahedron
boundaries. Note that tetrahedra which would not contribute to this particular isosurface
are culled before rendering. This volume enforced smooth borders andC0 continuity.

40

4.3 BT Volume Convolution

Although the least-squares method performs reasonably well for approximating ar-

bitrary 3D functions, it also has several drawbacks. First,it takes a long time to solve the

least-squares matrix, especially when the smooth boundaryconstraints are enforced, taking

a few minutes for a volume as small as6x6x6. Also, least squares error reduction does not

fit into the convolution framework easily since it does not allow many different reconstruc-

tion filters. It might be possible to minimize a different error metric to support this, but

it would undoubtedly be very slow as well. What we really wantis a new framework for

creating BT volume data which does fit the reconstruction filtering model, which, it turns

out, is possible.

Our goal is produce a BT volume� as the result of convolution of a scalar-valued

discrete volumeA and a reconstruction filter5 (which is already approximated as a BT

volume). Since a volumetric reconstruction filter is simplya scalar-valued volume function,

we can create a BT Volume approximation by the method from theprevious section. We

can substitute5 into the formula for discrete convolution given in Equation3.1 to get

(A ∗ 5) (P) =
∑

i∈I

A(i) · 5 (P − i)

SinceI is the set of samples on the integer lattice,P− i will be shifted by integer amounts

in each direction fromP. Therefore, for allP − i for a givenP,

κijk(P− i) = Th

This means that every evaluation of5 in the summation will fall in the same barycentric

position(r, s, t, u) of a tetrahedron which is a shifted version ofTh. Substituting Equation

3.2 for5 in Equation 4.1 gives

41

(A ∗ 5) (P) =
∑

i∈I

A(i)
∑

i+j+k+l=3

wi
ijkl





3

ijkl



 risjtkul

Since only the weightswi depend on the outer summation (see Section 3.3.1 about addition

of Bézier tetrahedra), we can re-arrange the order of the summations, leaving only the terms

which depend on the summation overi inside the summation, to get

=
∑

i+j+k+l=3





3

ijkl



 risjtkul

(

∑

i∈I

A(i)wi
ijkl

)

(4.1)

By inspection this is the equation of a BT with the weight component equal to the entire

second summation, so we have achieved our goal of deriving�. Note that� and5 will

both have the sameκ-partition, although they can have different dimensions.

FIG. 4.4. We model convolution as a summation of BT solids. In order to convolve one
tetrahedron of a BT volume, pictured above in red, with a BT volume filter with the same
κ-partition, we need to sum together the contributions of overlapping BT in all possible
translations of the filter, each scaled by the sample value atthat filter position.

The intuitive explanation behind this derivation is to consider the view of convolution

42

as a sum of kernel functions centered on each sample point andweighted by the sample

value. Since the volume samples are evenly spaced andκ is the same for each voxel,

each tetrahedron in the result will be covered by one and onlyone tetrahedron fromeach

piecewise BT kernel in the sum (see Figure 4.4). So each tetrahedron of the full volume

can be expressed as a sum of BT from the kernels. BT are closed under addition, so the

result of the convolution is a single BT for each tetrahedronin the full volume.

This is the main result from our work and allows us to represent a volume convolved

with a BT volume filter as a BT volume. The power of this result lies in the fact that BT

volumes can be rendered in real time, thus allowing us to render high quality convolved

volumes exactly, assuming we can represent the reconstruction filter as a BT volume.

4.4 Rendering BT Volumes

Our rendering algorithm is a modification of the second method proposed by Loop

& Blinn (2006), which we have described in Section 3.5.2. Thebasic idea is to store

each Bézier tetrahedron in the super spline as a single vertex, expanding it to screen-space

triangles in the geometry shader and calculating ray-intersection in the pixel shader. Figure

4.6 shows the entire rendering pipeline, which consists of three stages.

Since our goal is to make the rendering as fast as possible, weperform some steps as

a pre-process in order to minimize the work required per frame. Assume that we start with

a BT �. First, we compute the tensor form for each Bézier tetrahedron (Equation 3.3) and

transform into Euclidian space (Equation 3.5.1). We compress the transformed splines back

into the tetrahedral indexed form, storing them as custom data in a single vertex buffer. The

position of each vertex is set to the center of the voxel that the tetrahedron belongs to. The

following sections describe how we use graphics hardware inthe three accelerated passes

of our rendering algorithm.

43

FIG. 4.5. Several shots in a zoom animation of a323 volume reconstruction show the
resolution independence of the BT Volume format.

44

FIG. 4.6. Our BT volume rendering pipeline. Pass1 removes all tetrahedra, which are
stored as single vertices, that do not contribute to the current isosurface, storing the result-
ing set of contributing tetrahedra in an intermediate buffer. Pass2 expands each tetrahe-
dron into screen-space triangles, interpolating depth across the triangles to the pixel shader,
which calculates ray-intersection and surface normals. Pixels which do not hit an isosurface
are discarded. Pass3 generates the final shading in another pixel shader.

45

4.4.1 First Pass: Culling

The first accelerated rendering pass uses thestream-outcapability of geometry

shaders. This hardware feature allows the output stream from the geometry shader stage

to be stored in a buffer to be passed into later rendering passes. We use this capability

to determine the subset of tetrahedra which actually contribute to a given isosurface value

by using the bounding property of BT (Section 3.3.1). Our geometry shader for this stage

checks the largest and smallest weight values, and passes the vertex to the output stream if

and only if the target isosurface is between them. Before outputting the resulting vertex,

however, it also adds the offset to the BT so that the zero-isosurface is transformed to the

desired isosurface (Equation 3.5.1). Because each BT has already been transformed into

Euclidian space, this is a single addition to the constant term. The resulting output stream

is stored in a second buffer, which is used for all subsequentsteps. Because the contents

of this buffer will only change when the isosurface changes,we re-use this buffer until the

user decides to change the isosurface level. This pass is depicted in the leftmost column of

Figure 4.6.

4.4.2 Second Pass: Rendering

The rendering pass generates the actual pixel coverage and surface normal information

in a screen-space buffer. It works from the culled buffer from the previous stage, so only

BT which contribute to the current isosurface are processed. The geometry shader is re-

sponsible for creating the screen-space triangles to ensure correct pixel coverage, while the

pixel shader calculates the actual ray-intersection and normal vectors. This pass is depicted

in the center column of Figure 4.6.

Geometry Shader Our system uses the geometry shader to generate screen-space

triangles to cover each tetrahedron, interpolating depth information across each triangle for

46

use by the ray-intersection. We accelerate the process of creating screen-space triangles in

the geometry shader by precomputing triangle coverage. Consider the problem of generat-

ing screen-space triangles for two tetrahedra which differonly by a translation. Although

this problem is reasonable to calculate in a shader (Cohen, 2006), we choose to precompute

the triangle breakdown in order to accelerate this stage. Wecompute the screen-space trian-

gle coverage for each tetrahedron in the voxelV0, 0, 0, translating the appropriate triangles

into the correct position during rendering. Note that this does not work under perspective

projection, since the triangle breakdown is not constant across translated tetrahedra in this

case. Since scientific applications frequently use isographic cameras, we feel that this is a

reasonable restriction.

Pixel Shader Finally, we use the pixel shader to determine if each pixel which hits

the tetrahedron also hits the isosurface we are trying to render. Since our BT are stored in

tetrahedral indexed form, we first have to expand them out to full tensor form. We can com-

pute the equation of the viewing ray inside the tetrahedron to be the line between[x, y, n, 1]

and[x, y, f, 1], where(x, y) is the screen position of the pixel andn, f are the near and far

intersections of the viewing ray with the tetrahedron. We can compute this from the depth

information interpolated across each triangle. Before we can compute the intersection,

however, we have to translate this line into Euclidian space(since it is currently in screen

space), which is a simple matrix multiplication.

Actually computing the intersection points is performed bysolving for the roots of the

cubic in equation 3.5 and choosing the solution with the smallest positive value which is

inside the tetrahedron. If no valid root is found, the pixel shader discards (terminates) the

pixel, and no data is output. If an intersection is found, theshader continues to find the

surface normal at that intersection (Blinn, 2006) and stores that in the screen-space buffer

at that pixel location.

47

4.4.3 Third Pass: Shading

The last pass of our algorithm generates the final pixel color. Our pixel shader detects

if an intersection was found for each pixel, generating a background color for each empty

pixel and evaluating our lighting model for each pixel with an intersection. Our lighting

model is a simple cool-to-warm model (Goochet al., 1998). Final rendered images can be

seen in Figures 1.2, 4.3, 4.5, and 5.7.

Chapter 5

RESULTS

This section presents the results we have obtained for our system. We present results

for the three differentκ-partitions from Section 4.1.2 - freudenthal, face-divided, and face-

centered. First we present results for least-squares fitting of several reconstruction filters

consisting of timing results and error analysis. Next we present analysis of the convolution

step in our algorithm and space constraints, followed by rendering performance.

5.1 Least-Squares Approximation

We tested our least-squares approximations for three different filters: Gaussian with

standard deviations0.5, 0.6, and0.7, B-Spline polynomial, and Catmull-Rom polynomial.

We tested bothC0 andC1 continuity for all threeκ-partitions from section 4.1.2, which

consist of6, 12, and24 tetrahedra per voxel, respectively. We fit all of the filters to a6x6x6

BT volume. Table 5.1 shows the error from each of these least-squares fitting operations.

As we would expect, more tetrahedra in ourκ-partition results in lower error in the

fitting. Doubling the number of tetrahedra in the partition decreases the error substan-

tially. The less stringentC0 continuity constraints also introduce much less error thanthe

more demandingC1 constraints, although the resulting volume may have high-frequency

discontinuities.

48

49

Filter Freudenthal (6) Face-Divided (12) Face-Centered (24)
C0 C1 C0 C1 C0 C1

Gauss. 0.5 1.25x10−6 1.18x10−4 2.24x10−7 4.60x10−5 1.29x10−8 3.04x10−6

Gauss. 0.6 1.74x10−7 3.11x10−5 2.71x10−8 9.01x10−6 2.35x10−9 2.64x10−7

Gauss. 0.7 3.35x10−8 8.42x10−6 5.10x10−9 1.80x10−6 6.19x10−10 3.50x10−8

B-Spline 1.42x10−7 3.21x10−5 2.04x10−8 8.64x10−6 1.94x10−9 2.08x10−7

Catmull-Rom 7.56x10−6 6.53x10−4 1.30x10−6 2.86x10−4 5.94x10−8 2.28x10−5

Table 5.1. Squared error for all the filters we performed fitting on.C0 continuity constraints
cause less absolute error thanC1 constraints. In general, moving to a more-expressive
κ-partition reduces error in the fitting (although it does increase complexity of the BT
volume).

The Bézier spline form also limits how closely higher-frequency functions can be

approximated. This can be seen in the gaussian function by examining the error as the

standard deviation changes. As it gets larger, producing a wider filter with lower frequency

content, the error decreases. Standard deviation 0.7 produces the lowest error of any of our

filters, while 0.5 produces almost the highest error.

Anisotropic κ-partitions Figures 5.1 and 5.2 show all of the filter approximations

which we used on all threeκ-partitions enforcingC0 andC1 continuity constraints, respec-

tively. Note that freudenthal, which is not a mirroring tetrahedral partition, produces highly

anisotropic artifacts in the resulting volume due to the direction bias of weight points. The

face-divided partition with 12 tetrahedra introduces lesssevere anisotropic bias, while the

24 tetrahedra face-centered partition, which is the only mirroring partition which we exam-

ined, does not produce any anisotropic error. The large biasintroduced byC1 continuity

fitting for the Freudenthal partition suggests that this combination partition/continuity level

should not be used in practice, as the artifacts it will introduce under reconstruction will be

severe.

50

FIG. 5.1. From left to right, each column shows isosurfaces of fitting results for Gaussian
with standard deviation0.7, B-Spline, and Catmull-Rom reconstruction filters, all using
C0 continuity constraints. The sharp discontinuities, whichappear obvious in the filter,
are not as distracting in a volume reconstructed using the filter. Top row is the freudenthal
partition, the middle row face-divided, and the bottom face-centered.

51

FIG. 5.2. From left to right, each column shows isosurfaces of fitting results for Gaussian
with standard deviation0.7, B-Spline, and Catmull-Rom reconstruction filters, all using
C1 continuity constraints. The directional bias of some isosurfaces is due to the anisotropic
distribution of spline weights in those partitions. Top rowis the freudenthal partition, the
middle row face-divided, and the bottom face-centered.

52

Artifacts from Continuity Constraints κ-partitions composed of few tetrahedra

also suffer from low-frequency artifacts which are not present in the original data set. This

is because theC1 fitting is over constraining the system, resulting in much higher error

than the equivalentC0 fitting. Figure 5.3 shows a comparison of the artifacts present when

our fitting is constrained to obeyC0 vs. C1 constraints with the B-Spline filter. Since our

goal in this case is to approximate the target B-Spline filterso that reconstructions with the

approximation are visually as close as possible to using theB-Spline, the raw RMS error

data has limited usefulness. However, this image clearly shows the difference betweenC0

andC1 continuity constraint fitting in terms of how they affect thefinal reconstruction:C0

fitting produces high-frequency discontinuities, while fitting the additionalC1 constraints

trades this for smooth lower-frequency constraints. Giventhe fact that many applications

have been using linear reconstruction, which has similar although much more pronounced

artifacts thanC0, we believe that the higher-frequency artifacts are less distracting and thus

C0 fitting is adequate for most applications. This is a preliminary result, and would have to

be verified by a formal user study.

5.2 BT Volume Convolution

We performed convolution on several common test volume datasets, listed in Table

5.2. The limiting factor of our method was found to be the amount of graphics memory

available, which is due to the fact that each Bézier tetrahedron must be stored indepen-

dently. In addition, the first rendering pass to cull out tetrahedra which do not participate

in a given isosurface requires a second buffer which, in the worst case, contains the en-

tire volume, and thus effectively doubles the memory required by our system. Finally, the

two 1600x1200 backbuffer/textures that we use to actually display on the screen take up

memory, along with various smaller buffers and loss due to alignment issues.

53

FIG. 5.3. On the left is a reconstruction using the six tetrahedra κ-partition withC0 con-
straints, while the left enforcesC1 continuity. In this case it seems thatC0 would be
preferable to the smootherC1 version because the small sharp discontinuities are less dis-
tracting in the large image than the lower-frequency artifacts introduced by enforcing the
smoother filter.

This leaves us with around 300MB of space for the actual volume data, given the

graphics memory space in 32-bit Vista. In order to fit as largevolumes as possible into

that space, we perform several space optimizations for large volumes. First, we remove

all tetrahedra which only contribute to isosurfaces very close to zero, which saves from

%5 to almost %50 depending on the particular volume. Second,we store large volumes

with 16-bit floating point weights instead of 32-bit. This gives us another %50 storage

54

savings, but does introducecrackartifacts in the rendering where the precision loss affects

the ray-intersection at the boundaries between tetrahedra. Figure 5.4 shows this artifact.

FIG. 5.4. Cracks caused by the 16-bit floating point weight values in our compressed
volume format.

Figure 5.5 shows several reconstructions of the Marschner and Lobb data in our sys-

tem using the24 tetrahedraκ-function as compared to their ground-truth results using B-

Spline and Catmull-Rom splines approximated withC0 continuity. Although our system is

only generating approximations which are not even guaranteed to be continuous, the results

are visually almost identical.

Figure 4.5 shows four reconstructions of a Buckyball data set with Gaussian (st. dev.

0.7), B-Spline, and Catmull-Rom BT volume reconstructionsand marching cubes. The

marching cubes reconstruction shows severe linear artifacts which are not present in the

55

BT volume reconstructions.

Data Set foot† engine† teddy† bucky M&L Test Signal neghip
Size 1283 1282x64 1282x62 323 413 643

MB 230 157 330 21 37 165
FPS 10 10 8 80 44 14

Table 5.2. Rendering performance and data sizes for our testvolumes. Volumes marked
with a † remove tetrahedra which only contributed to very small isosurfaces. All size and
performance measurements are for the6-tetrahedronκ-partition rendered on a1600x1200
resolution desktop.

5.3 Rendering

We ran our system on a quad-core Intel processor with 2 gigabytes of RAM and an ATI

4870x2 graphics card with 2 gigabytes of RAM. All tests were run at 1600x1200 resolution

on 32 bit Windows Vista. Due to the memory limitations of the 32-bit OS, we only had one

gigabyte of graphics RAM available to us. Table 5.2 shows a summary of performance and

size requirements for several volumes at 1600x1200 screen resolution. Volumes marked

with a † used 16-bit floating point weight values to reduce size. Figure 5.7 shows several

volumetric data sets rendered in our system.

5.3.1 Scalability and Bottleneck Identification

In order to determine if the system is pixel limited or memorybandwidth limited, we

performed several performance tests at different resolutions. Changing the resolution of

the renderer leaves the memory bandwidth requirements unchanged (because the volume

data is not changing) but increases the number of pixels which have to be filled, testing

whether the pixel shader is the bottleneck in the rendering algorithm. On all of the volumes

which we tested, there was a maximum of one frame-per-seconddifference between the

56

FIG. 5.5. Various reconstructions of the Marschner and Lobb test data set. On the left is the
ground truth result from Marschner & Lobb (1994), with our result using the 24 tetrahedron
κ-partition on the right. The top row is for B-Spline reconstruction, while the bottom row
shows Catmull-Rom reconstruction. For these results, we usedC0 continuity.

640x480 resolution, which was the smallest that we tested, and the full-screen1600x1200

resolution. This means that, even though we are performing expensive root finding in the

pixel shader, the bottleneck of our rendering is internal data bandwidth on the GPU, so

reducing the amount of data passed around would be beneficial.

57

FIG. 5.6. Four isosurface reconstructions of a Buckyball data set. From upper left clock-
wise, marching cubes, BT volume B-Spline, BT volume Catmull-Rom, BT volume gaus-
sian with st. dev. of 0.7. All BT volume reconstructions used24 tetrahedraκ-partition and
C0 continuity.

58

FIG. 5.7. Test data sets rendered using our method. From top to bottom, left to right:
simulation of electron density of a protein molecule, scan of a teddy bear, scan of an engine
block, and a scan of a foot rendered for density of skin and bone.

Chapter 6

CONCLUSION

We have presented the BT volume as a volume representation which provides a so-

lution to the difficult problem of rendering high-quality isosurfaces. The BT volume is

defined as a 3D super spline on a special type of tetrahedral partition which we call a

κ-partition. As a proof of concept, we have implemented threedifferent κ-partitions in

our work, consisting of6, 12, and24 tetrahedra, respectively. Because they are piecewise-

continuous polynomials, BT volumes can approximate arbitrary 3D functions, and we have

demonstrated how to generate such approximations using a least-squares technique.

We also demonstrated how to produce a BT volume as the result of convolution of

a BT volume-format reconstruction filter and an arbitrary regular scalar-valued volume.

We compute BT volume-format filters using the least squares technique, showing that the

convolution result is exactly another BT volume. We have demonstrated this technique

for several example volumes and filters, including Gaussian, Catmull-Rom, and B-Spline

reconstruction filters. We showed the advantages of this system as compared to many other

volume rendering systems, including the facts that BT volumes are continuous, smooth

representations and that they have the ability to representmany different reconstructions,

including large footprint reconstruction filters, with little additional cost.

BT volumes can also be rendered efficiently on current graphics hardware. We pre-

59

60

sented a complete rendering algorithm, along with performance results from our proof-of-

concept implementation. First, all spline primitives in the super spline which actually in-

tersect the desired isosurface are extracted. Each extracted spline is represented as a single

vertex, which is expanded into screen-space triangles which cover all possible contribution

from this spline. Finally, all pixels covered by the primitive are filled by performing ex-

act ray-intersection and outputting the normal if there wasan intersection for that pixel.

Shading is performed in a deferred manner in a separate pass.

The BT volume format achieves a balance between rendering speed and rendering

quality which has not been achieved before for isosurfaces.Our results are flexible because

we support multiple reconstruction filters and fast becausewe can map efficiently onto

graphics hardware. Finally, because we separate the rendering and convolution steps of

volume rendering, we can achieve very high quality results.

Bibliography

Anderson, J. C.; Bennett, J.; and Joy, K. I. 2005. Marching diamonds for unstructured

meshes. InIEEE Visualization 2005, 423–429.

Blinn, J. 2003.Jim Blinn’s Corner. Morgan Kaufmann.

Blinn, J. F. 2006. How to solve a cubic equation, part 1: The shape of the discriminant.

IEEE Comput. Graph. Appl.26(3):84–93.

Blythe, D. 2006. The direct3d 10 system.ACM Trans. Graph.25(3):724–734.

Carr, H.; Moller, T.; and Snoeyink, J. 2006. Artifacts caused by simplicial subdivision.

IEEE Transactions on Visualization and Computer Graphics12(2):231–242.

Cohen, J. D. 2006. Projected tetrahedra revisited: A barycentric formulation applied to

digital radiograph reconstruction using higher-order attenuation functions.IEEE Trans-

actions on Visualization and Computer Graphics12(4):461–473. Student Member-Ofri

Sadowsky and Fellow-Russell H. Taylor.

Danskin, J., and Hanrahan, P. 1992. Fast algorithms for volume ray tracing. InVVS

’92: Proceedings of the 1992 workshop on Volume visualization, 91–98. New York, NY,

USA: ACM.

DeMarle, D. E.; Parker, S.; Hartner, M.; Gribble, C.; and Hansen, C. 2003. Distributed

interactive ray tracing for large volume visualization. InPVG ’03: Proceedings of the

61

62

2003 IEEE Symposium on Parallel and Large-Data Visualization and Graphics, 12.

Washington, DC, USA: IEEE Computer Society.

Gerstner, T., and Rumpf, M. 1999. Multiresolutional parallel isosurface extraction based

on tetrahedral bisection. Inin Proc. VolVis99, 267–278. Press.

Goetz, F.; Junklewitz, T.; and Domik, G. 2005. Real-time marching cubes on the vertex

shader. InEurographics 2005 short presentations. Eurographics Association.

Gooch, A.; Gooch, B.; Shirley, P.; and Cohen, E. 1998. A non-photorealistic lighting model

for automatic technical illustration. InSIGGRAPH ’98: Proceedings of the 25th annual

conference on Computer graphics and interactive techniques, 447–452. New York, NY,

USA: ACM.

Johansson, G., and Carr, H. 2006. Accelerating marching cubes with graphics hardware. In

CASCON ’06: Proceedings of the 2006 conference of the Centerfor Advanced Studies

on Collaborative research, 39. New York, NY, USA: ACM.

Klein, T.; Stegmaier, S.; and Ertl, T. 2004. Hardware-accelerated reconstruction of polyg-

onal isosurface representations on unstructured grids. InPG ’04: Proceedings of the

Computer Graphics and Applications, 12th Pacific Conference, 186–195. Washington,

DC, USA: IEEE Computer Society.

Kloetzli, J.; Olano, M.; and Rheingans, P. 2008. Interactive volume isosurface rendering

using bt volumes. InSI3D ’08: Proceedings of the 2008 symposium on Interactive 3D

graphics and games, 45–52. New York, NY, USA: ACM.

Levoy, M. 1988. Display of surfaces from volume data.IEEE Comput. Graph. Appl.

8(3):29–37.

63

Loop, C., and Blinn, J. 2006. Real-time gpu rendering of piecewise algebraic surfaces. In

SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers, 664–670. New York, NY, USA: ACM

Press.

Lorensen, W. E., and Cline, H. E. 1987. Marching cubes: A highresolution 3d surface

construction algorithm. InSIGGRAPH ’87: Proceedings of the 14th annual conference

on Computer graphics and interactive techniques, 163–169. New York, NY, USA: ACM

Press.

Marschner, S. R., and Lobb, R. J. 1994. An evaluation of reconstruction filters for volume

rendering. InVIS ’94: Proceedings of the conference on Visualization ’94, 100–107. Los

Alamitos, CA, USA: IEEE Computer Society Press.

Parker, S.; Martin, W.; pike J. Sloan, P.; Shirley, P.; Smits, B.; and Hansen, C. 1999a.

Interactive ray tracing. InIn Symposium on interactive 3D graphics, 119–126.

Parker, S.; Parker, M.; Livnat, Y.; Sloan, P.-P.; Hansen, C.; and Shirley, P. 1999b. Interactive

ray tracing for volume visualization.IEEE Transactions on Visualization and Computer

Graphics5(3):238–250.

Pascucci, V. 2004. Isosurface computation made simple: hardware acceleration, adaptive

refinement and tetrahedral stripping. InIn Joint Eurographics - IEEE TVCG Symposium

on Visualization (VisSym, 293–300.

Reck, F.; Dachsbacher, C.; Stamminger, M.; Greiner, G.; andGrosso, R. 2004. Realtime

isosurface extraction with graphics hardware. InEurographics 2004 - short presentations

and interactive demos. Eurographics Association.

Rossl, C.; Zeilfelder, F.; Nurnberger, G.; and Seidel, H.-P. 2003. Visualization of volume

64

data with quadratic super splines. InVIS ’03: Proceedings of the 14th IEEE Visualization

2003 (VIS’03), 52–60. Washington, DC, USA: IEEE Computer Society.

Sadowsky, O.; Cohen, J. D.; and Taylor, R. H. 2005. Renderingtetrahedral meshes with

higher-order attenuation functions for digital radiograph reconstruction. InIn Proc. of

IEEE Visualization, 303–310.

Shirley, P., and Tuchman, A. 1990. A polygonal approximation to direct scalar volume

rendering.SIGGRAPH Comput. Graph.24(5):63–70.

Sramek, M., and Kaufman, A. 2000. Fast ray-tracing of rectilinear volume data using dis-

tance transforms.IEEE Transactions on Visualization and Computer Graphics6(3):236–

252.

Tatarchuk, N.; Shopf, J.; and DeCoro, C. 2007. Real-time isosurface extraction using

the gpu programmable geometry pipeline. InSIGGRAPH ’07: ACM SIGGRAPH 2007

courses, 122–137. New York, NY, USA: ACM.

Theisel, H. 2002. Exact isosurfaces for marching cubes. InComputer Graphics Forum,

19–31. Blackwell Publishers for Eurographics Association.

Treece, G. M.; Prager, R. W.; and Gee, A. H. 1999. Regularisedmarching tetrahedra:

improved iso-surface extraction.Computers and Graphics23(4):583–598.

