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ABSTRACT 
 

Title of Thesis: Perceptually Oriented Patch Based Texture Synthesis 

Patrick Gillespie, Master of Science, 2006 

Thesis Advisor: Dr. Marc Olano 

Patch-based texture synthesis methods work by taking patches of texture and finding the 

best way to “stitch” them together so that the seam between the two patches is hardly 

noticeable.  The color difference along a cut between the two patches is usually used as 

the metric for finding the best seam between the images and traditionally red, green, and 

blue values are used in determining the color difference. 

 

This works well for randomized textures, but can leave artifacts in textures that include 

definite objects within the patches.  We have made use of knowledge of the human visual 

system to find better seams between patches.  We have used perceptually uniform color 

spaces, edge detection, an alternative graph structure, and the contrast sensitivity function 

as factors in graph cuts in order to find better seams between images.  A user study 

showed that the new metric significantly improved seam invisibility in images that were 

spliced together. 
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1 INTRODUCTION 

1.1 MOTIVATION 

In some situations it is necessary to have large amounts of natural looking texture, for 

example, the textures that represent the ground and walls in 3D simulators. Such textures 

could be represented by smaller textures that repeat, however, this leads to an unnatural 

repeating pattern on the object the texture is applied to. To solve this problem one could 

simply use very large textures; however, this could lead to memory issues and one does 

not always have an infinite amount of memory at their disposal. Therefore, a method is 

needed to create large amounts of natural looking texture that is memory efficient.  

1.2 TEXTURE SYNTHESIS 

Texture Synthesis is a way of taking a small sample of a texture and generating more of it 

in an image that is usually larger than the original sample and that looks like a natural 

extension of the original texture.  For example, given a small image of some olives, a 

texture synthesis algorithm should be able to create an infinite amount of texture that 

looks like this. Figure 1 demonstrates an example of this.  Image A is the input and larger 

images B and C are generated outputs.  Image B, the tiling of the sample image, could be 

considered a simple form of texture synthesis, however, this leads to a noticeable 

repeated pattern, which is unnatural and something texture synthesis algorithms strive to 

avoid.  Image C shows the output of a graph cut texture synthesis algorithm. 
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Figure 1: Texture Synthesis Example.  Samples B and C are generated using sample A. B is created 

by tiling the image sample while C is created through graph cut texture synthesis. 

 

Texture synthesis algorithms can be roughly divided into pixel based and patch based 

algorithms.  In pixel based algorithms, an output texture is constructed pixel by pixel.  

This usually works by using feature matching to determine the color of the next pixel or 

by modeling the texture as a Markov Random Field and creating the texture by 

probability sampling [Efros and Leung, 1999; Heeger and Bergen, 1995; Wei and Levoy, 

2000].  These algorithms are generally slow and do not work well for textures with 

noticeable structure in them, such as brick walls.  In patch based algorithms, an output 

texture is constructed by placing patches of the input texture into the output texture and 

then blending it so that the new patch seamlessly fits in as well as possible.  These 

algorithms have the benefits of being quick and good at constructing any type texture.  

Most recent texture synthesis algorithms are patch based.   

 

Xu et al. [2000] presented the first patch based texture synthesis algorithm, known as the 

Chaos Mosaic.  This algorithm works by randomly placing patches of texture and 

blending the edges to avoid artifacts.  This method works well for stochastic textures, but 
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fails when inputs have noticeable structures in them.  Ashikhmin [2001] created a pixel 

based algorithm which encouraged verbatim copying of patches from the input sample. 

This algorithm expanded on an earlier pixel based method put forward by Wei and Levoy 

[2000]. Though this method was very fast, it had the drawback of not working for all 

types of inputs. It narrowed its class of workable textures to those that were quasi-

repeating and naturally occurring, such as grass or pebbles.  Other attempts have been 

made to bridge the gap between pixel based and patch based texture synthesis, such as 

Hybrid Texture Synthesis, put forward by Nealen and Alexa [2003]. This method uses 

patches to maintain the global structure of the texture while using pixel based techniques 

to avoid artifacts along seam edges. This algorithm produces good results, but at the cost 

of speed. 

 

Later patch based texture synthesis algorithms, such as Image Quilting [Efros and 

Freeman, 2001], Wang Tiles [Cohen et al., 2003] and Graph Cut Texture Synthesis 

[Kwatra et al., 2003], have relied on intelligently placing patches of texture and finding 

the best seam between them.  In Image Quilting, an output image is created in raster scan 

order by having new patches overlap old ones slightly, and then using a dynamic 

programming algorithm to figure out the best seam between them.  Wang Tiles generates 

a set of tiles from the input where each tile’s edge will match up with at least two other 

tiles from the set.  These tiles are then used to tile the output texture.  Tile creation is 

done using a novel method of stitching certain patches of input texture together. 
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In Graph Cut Texture Synthesis a texture patch is placed somewhere on the existing 

output texture, pixels in unfilled areas of the output texture are copied over automatically, 

and a cut between the patch and the existing texture determines which pixels from the 

overlapping region are copied over onto the output texture.  Figure 2 gives a visual 

description. The image on the far left shows the initial output texture.  The image in the 

middle shows a second patch being placed onto the output texture.  The discolored area 

represents the area where the two patches overlap, a cut will need to be made to see 

which pixels from which patches go in the final output.  The image on the far right shows 

what the texture looks like after a cut has been made.  The seam is left in this image only 

to show where the cut was made. 

 
Figure 2: An example showing how a cut is determined when a new input sample is placed onto the 

output image. 

 

The Graph Cut Texture Synthesis algorithm uses three different techniques in order to 

find the best place to put a new patch.  The first method is to randomly place a new patch 

anywhere.  This leads to fast output results, but can cause the output to suffer in quality.  

The second method is an exhaustive search of the output texture using the Sum of 

Squared Differences (SSD) metric between pixels in order to find the optimal spot.  This 

works quite well but is time consuming.  A technique using Fast Fourier Transforms has 

been developed to speed up this process [Kilthau et al. 2002; Soler et al. 2002].  The final 
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method is to look at unfilled regions in the output texture and to find the best way to 

place a patch over it.  

 

Image Quilting and Wang Tiles uses a dynamic programming algorithm to find the best 

seam while Graph Cut Texture Synthesis sets up a graph of nodes representing the 

overlapping region where solving its Min Cut [Ford and Fulkerson, 1963] is equivalent to 

finding the optimal seam.  Either method of seam finding could be used in each of these 

algorithms’ creation process.  However, the graph cut method is applicable in any 

dimension and can incorporate old seams into its calculation of the best cut.  Graph Cut 

Texture Synthesis is widely considered the best method for texture synthesis and its 

method of finding the best seam will be the focus of this study. 

1.3 CONTRIBUTION OF THESIS  

• We will use knowledge of the human visual system and a new graph set up to 

develop a new graph cut metric for seamlessly stitching images together.  

• We will carry out a user study to determine the benefits of the new metric over a 

generic RGB metric. 

1.4 ORGANIZATION OF THESIS 

Chapter 1 has introduced texture synthesis, explained why it is important, described the 

different algorithms behind it, and stated the contribution of the thesis.  Chapter 2 will 

survey the related work on graph cut texture synthesis. Chapter 3 will look at work that 

has gone into understanding the human visual system.  Chapter 4 will explain the 

methods used to incorporate knowledge of the human visual system into graph cut texture 
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synthesis.  Chapter 5 will show the results.  Chapter 6 will show the results of a user 

study.  Chapter 7 concludes the thesis and discusses possible future work.  
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2 RELATED WORK ON SEAM FINDING 

2.1 GRAPH CUTS 

In Image Quilting, a dynamic programming algorithm is used to find the best seam from 

one side of the overlap region to the other. This seam determines how each patch 

contributes to the overlapping region. The path it finds is where the colors are the most 

similar between patches.  Figure 3 demonstrates this by showing two patches of texture 

that have an overlapping region, in this region a cut is found that stitches them together. 

 

Figure 3: Two overlapping patches, the best cut is found between them using a dynamic 

programming algorithm. 

 

Graph Cut Texture Synthesis casts this into a graph cut problem by having each pixel in 

the overlapping region represent a node in an undirected graph. The graph is constructed 

such that there are edges between adjacent nodes and these edges represent the color 

differences between the old and new patches. Let A and B represent patches, and let A(x) 

and B(x) represent pixel colors at position x in those patches. The matching cost M 

between adjacent pixels s and t is then described as: 

)()()()(),,,( tBtAsBsABAtsM +=  
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Where x  is an appropriate norm, such as an absolute value, that is to be chosen by the 

programmer. Source and sink nodes are also created.  These are nodes that represent an 

anchor for the two different patches.  Nodes on the boundary to the output texture are 

linked back to the source node, while nodes that border empty regions in the output are 

linked to the sink.  If no such nodes exist, as is the case if a patch is placed over a region 

of pixels that is filled with texture, then the programmer must choose a method for 

determining how the nodes link back to the sink.  Constraining at least a single pixel from 

the new texture is suggested as a possible option.  Once this graph representing the 

overlapping region is created, the min cut / max flow problem [Ford and Fulkerson, 

1963] is solved for it to determine where the cut between the two patches should be 

made.  Figure 4 shows an example graph representing two patches of texture, A and B.  

The nodes between them represent the area where the patches overlap and the red line 

indicates where the cut is made. 

 

Figure 4: Graph Cut Example 

 

2.2 SETTING UP THE GRAPH 

Kwatra et al. [2003] proposed in the original Graph Cut Texture Synthesis paper that 

simple color differences be used in determining the weights for edges in the graph.  In 

addition to the simple color difference metric, Kwatra et al. also proposed a more 
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advanced cost function for setting edge weights that factored in the frequency content of 

the texture patches.  Another perceptual variable they sought to factor in was that of old 

seams.  They accounted for this by adding in “seam nodes” to the graph along the 

locations where old seams existed.  These “seam nodes” then linked to the nodes on both 

sides of the seam and had an extra edge arc back to the incoming patch.  All of the edges 

protruding from a seam node had the same value, the color difference that existed 

between the two nodes on either side of the old seam. This technique worked well for 

covering potentially visible seams in the output texture; Figure 5 shows an example 

where seam nodes are created along an old seam and linked back to the source node so 

that the algorithm takes them into account when finding the best cut between the patches. 

 

Figure 5: Graph cut example with an old seam taken into account. The green lines indicated what is 

added in by the old seam. The red line is the new cut. 

 

Agrawala et al., in their framework for combining multiple photographs to create the 

optimal looking image [2004], introduce another cost function for determining edge 

weights that takes many factors into account such as color gradients, edges, and RGB 

color difference.  No comparisons are given as to how this function compares the simpler 

versions.  This function also has an inertia component that is specific to the creation of a 

photomontage and would not make sense in texture synthesis. 
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3 PERCEPTUAL ISSUES 

Most work in texture synthesis has focused on finding new methods for creating large 

amounts of output textures very quickly.  Accuracy is also an important part of the 

equation, and is dealt with as so, but perceptual techniques are not usually taken into 

account.  For pixel based algorithms, most of the attention to accuracy is based on finding 

neighborhoods of pixels in the input image similar to the neighborhood one is working on 

creating in the output image.  Other than using uniform color spaces, perceptual 

techniques do not pose any obvious advantages for pixel based methods.   

 

For most patch based methods, specifically Graph Cut Texture Synthesis, a seam is found 

between the incoming patch and the rest of the output texture for determining what gets 

copied over.  Since we are dealing with patches of texture that may contain noticeable 

structures, making use of the human visual system can allow one to find a seam that is 

much less noticeable between the patch and output texture.  
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3.1 COLOR SPACES 

The RGB color space combines red, blue and green light to create the different colors a 

user sees.  Though it is simple to use and implement on hardware, it has many drawbacks 

[Hall, 1989].  One of these drawbacks is that it is a device dependent model, meaning 

RGB colors rendered on one device might not necessarily be the same as RGB colors 

rendered on a different device [Johnson and Fairchild, 1999].  Another drawback is that it 

is not a uniform color space.  Color differences between different sets of colors that are 

mathematically the same distance apart in the color space may not be perceived as having 

the same difference [Hill et al., 1997]. 

 

In 1931, the International Commission on Illumination (CIE) created the CIE XYZ color 

space. This color space was based on experiments done by William David Wright and 

John Guild that had participants visually analyze colors and adjust them so that they 

appeared the same. Wright measured the vision of ten subjects in this manner and 

published his results in 1929; while Guild measured the vision of seven subjects and 

published his results in 1931.  The CIE XYZ color space that resulted from these studies 

was special in that it was device independent and based on human observations. The X, 

Y, and Z values correspond approximately to red, green and blue light. 

  

Though the CIE XYZ color space provided an accurate device independent way of 

specifying a color, it did not provide an accurate way to calculate color differences. The 

mathematical distance and perceptual distance between CIE XYZ colors could have a 
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discrepancy of up to 8,000%.  This meant that the non-uniformity of the color space was 

approximately 80:1 [Reddy, 1996]. 

 

Providing a way to accurately measure perceptual distances in a color space was first put 

forward in 1942 by Douglas L. MacAdam.  MacAdam constructed an experiment in 

which a trained observer was shown two colors, one was fixed and while the other was 

adjusted by the observer. The observer was asked to adjust this color until it matched the 

fixed color. MacAdam had the observer do this for 25 different colors [Wyszecki and 

Stiles, 1982]. 

 

Since the human eye is not ideal, the observer did not always correctly in match the two 

colors. However, as one can see in Figure 6, all of the results that came out of this 

experiment fell into elliptical regions surrounding the fixed colors on the CIE 

chromaticity diagram [Wyszecki and Stiles, 1982]. Each ellipse varied in size depending 

on the test color. In the diagram, the ellipses appear as 10 times their actual size in order 

to show variety in sizes and orientations that occurred. 
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Figure 6: CIE 1931 (x,y)-chromaticity diagram with MacAdam Ellipses plotted. Each ellipse appears 

as 10 times its actual size [Wikipedia, 2006]. 

 

These ellipses represent regions of indistinguishable color from that of their center point.  

In the years following these results, several attempts were made at mathematically 

constructing MacAdam ellipses at certain target points. The most successful of these was 

done by Chickering in 1967 and 1971 [Wyszecki and Stiles, 1982]. 

 

In 1976, the CIE introduced two new color spaces that were more perceptually uniform 

than those that had come before, L*a*b* and L*u*v*.  In L*a*b*, the L* component 

represents a luminance value while the a* and b* components represent red/green and 

yellow/blue chrominance, respectfully. In L*u*v*, the L* component also represents 

luminance while the u* and v* components represent chrominance. 

 



14 

 

These color spaces were built on the CIE XYZ color space and incorporate color metrics 

from the MacAdam ellipse study.  The color spaces were a great improvement over the 

perceptual non-uniformity of the CIE XYZ color space, having a perceptual non-

uniformity of around 6:1 [Reddy, 1996].  In addition to this, an improved color difference 

calculation for the L*a*b* color space was later developed.  It was called the CMC Color 

Difference Formula. This formula was developed from information gathered from 

colorant industries and claimed to be more accurate for small color differences [Reddy, 

1996]. Since then, several other formulas for color difference have been developed for 

the L*a*b* color space, such as CIE94 and CIEDE2000 [Sharma et al., 1995], which 

claim to improve upon past results.  These developments in the color difference 

calculation have led L*a*b* to be the most popular uniform color space. 

 

Several studies have used uniform and device-independent color spaces and have shown 

how they generally aid in producing better results [Moroney and Fairchild, 1995; Nischik 

and Forster, 1997; Serup and Agner, 1990; Takiwaki et al., 1994; Weatherall and 

Coombs, 1992].  Weatherall and Coombs [1992] used the L*a*b* color space to measure 

and analyze the skin colors of 81 different people. They found that it could be quite 

useful for identification purposes and speculated that it would be useful in cosmetics, 

genetics, and disease diagnosis.  Moroney and Fairchild [1995] tested a variety of 

different color spaces on JPEG image compression and found they got the best results 

when they used the L*a*b* and L*u*v* color spaces.   
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3.2 CONTRAST SENSITIVITY FUNCTION (CSF) 

Visual acuity is defined as one’s ability to perceive fine details.  One way to measure 

visual acuity is through a contrast grating, which is a set of smoothly alternating white 

and black bars.  Two parameters govern how perceivable the bars are: the contrast 

between them and their spatial frequency. When these parameters are mapped onto a two 

dimensional plain a distinct curve forms between the areas that are distinguishable from 

each other and the ones that aren’t.  Figure 7 shows a visual representation of this.  The y 

axis represents contrast sensitivity, which is simply the reciprocal of contrast.  As y 

increases, the contrast decreases.  The x axis represents spatial frequency.  As x increases, 

so does the spatial frequency.  The mathematical function representing this curve is 

known as the contrast sensitivity function (CSF). 

 

 

Figure 7: A visual representation of the Contrast Sensitivity Function [Ohzawa, 2006]. 
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Since the CSF models how our visual system perceives changes in frequency and 

contrast, it has been used in a variety of areas within graphics to help enhance the results.  

Some examples include image compression [Banerjee and Evans, 2002], visual masking 

[Ferwerda et al., 1997], simplification of polygonal meshes [Williams et al., 2003] and 

artistic rendering [DeCarlo and Santella, 2002]. 

 

3.3 CONTRAST  

Contrast describes how well an object sticks out from its background.  There are two 

main ways of calculating contrast: Weber Contrast and Michelson Contrast.  The 

Michelson Contrast is most commonly used in measuring contrast in repeating patterns 

while Weber Contrast is most commonly used to measure the contrast of an object that is 

up against a background of a uniform color [Peli, 1990].  The two contrast functions also 

have different domains, Michelson Contrast has a domain of [0, 1] and Weber Contrast 

has a domain of [-1, ]. For these reasons, Michelson Contrast is often the choice for 

calculating the contrast parameter in the CSF.  Michelson Contrast is represented 

mathematically as 

minmax

minmax

LL

LL

+
 

Here Lmax is the maximum luminance over a given area and Lmin is the minimum 

luminance over a given area. If your area is a single pixel, it was found through testing 

that using a scaled down version of that pixel’s luminance value in the CSF was a 

reasonable substitute for contrast sensitivity. 
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3.4 SPATIAL FREQUENCY  

Spatial frequency describes how often an object repeats itself over a given interval.  It is 

usually measured in cycles per degree (c/deg), where a degree represents one degree in 

one’s field of vision. In Figure 8, for example, if the contrast grating shown in part (A) 

took up one degree of one’s vision field, then it would be measured as having 3.5 c/deg 

since it represents 3.5 cycles of black and white bars.  The bars in (B) occur at a more 

frequent rate over the same amount of space and would thus be measured as having 7.5 

c/deg. 

 

Figure 8: Two contrast gratings showing different spatial frequencies.  
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3.5  CALCULATING THE SPATAL FREQUENCY OF AN IMAGE  

There are multiple ways one can extract spatial frequency information from an image. 

For this study, we used a method proposed by Reddy [1996] for calculating the c/deg 

parameter for the different locations on the images. Fourier Analysis was not used 

because it returned much more data than needed. Reddy argues that his method is 

advantageous to Fourier Analysis in that it is restricted to the “fundamental features” of 

the image, or the lowest frequencies, instead of being overloaded by every spatial 

frequency in the image. He argues that if these lower frequencies are not visible to the 

human observer, than the high frequencies will not be visible either. His method is also 

easier to interpret and apply. Reddy’s method has three basic steps: 

 

1. Find all of the visual features in an image. 

2. Extract all of the relevant spatial frequencies from each feature in terms of cycles per 

pixel (c/pixel). 

3. Scale the relative frequency values into units of c/deg. 

 

For step 1, each pixel in the image is associated with a boolean value which indicates if it 

has been processed yet. A value of true means it has been processed, a value of false 

means it has not been processed. Once initiated, the algorithm attempts to grow each 

pixel into a feature by associating it with its adjacent pixels if they have a color value 

with a just noticeable difference (JND) of a certain amount. A JND is defined as the 

smallest amount something must be changed in order for it to be visible to a human 

observer. Reddy adopts a JND of 3 for the color difference in L*a*b* space, though he 
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states that this parameter can be tweaked and raised to as much as 10, which would 

represent a substantial difference. Each pixel can only be visited once. After every pixel 

has been processed, the image is successfully segmented into a collection of features. 

 

During step 2, spatial frequency, in terms of c/pixel, is calculated for each feature. Since 

we are dealing with 2D objects, Reddy suggests measuring the feature from different 

orientations and then factoring this information together. To figure out the c/pixel for a 

particular orientation, the longest stretch of contiguous pixels which go from one side of 

the object to the other in that orientation is recorded. Remembering the contrast grating, 

we note that one bar is only half a cycle, therefore, our stretch of contiguous pixels only 

represents half a cycle. So if you have five contiguous pixels at a particular orientation, 

the cycles per pixel is going to be 1/2 * 1/5 = 1/10 c/pixel for that orientation. Reddy 

outlines a function he calls the Relative Spatial Frequency (RSF) function to describe 

this: 

)(*2/1)( =RSF  

Here )(  represents the number of contiguous pixels at an orientation . One can also 

simplify this algorithm and get good results by combining steps 1 and 2. This is done by 

calculating the feature length relative to each pixel at each pixel. Therefore, one simply 

needs to visit each pixel once and measure the different spatial frequencies instead of 

finding all of the different features and then measuring their spatial frequencies. 

Combining the two steps tends to yield better results. 
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During step 3, all of the spatial frequencies that were found in terms of cycles per pixel 

are translated into cycles per degree. In order to do this, one first needs to know how 

much space the display device takes up in the user’s field of view (FOV). This can be 

solved by knowing the size of the display device and the distance the user is from it. 

Once we have this information the size of the device in the FOV can be derived from the 

viewing geometry. This is shown in Figure 9 where the angle of the eye that the display 

takes up is calculated by a simple arctan function which is shown below.  

=
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dist
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horizontal

vertical

5.0*
tan*2
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Figure 9: A user looking at a display device. Simple geometry can be used to determine how much 

space it takes up in his FOV [Reddy, 1996]. 

 

Next we need to compute scaling variables based on the screen’s resolution: 
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Here res_width and res_height are the screen’s resolution in pixels. Finally, if we assume 

we are dealing strictly with just horizontal and vertical frequencies, we can recombine 

them into one absolute spatial frequency using the )(SF function: 

22 )()()(
verticalverticalhorizontalhorizontal

RSFSRSFSSF +=  

This function uses Pythagoras’ theorem to return the absolute spatial frequency for the 

feature. Ways of factoring in the spatial frequencies at other orientations are also given 

by Reddy. 

 

3.6 EXAMPLE CALCULATION OF SPATIAL FREQUENCY 

Let us assume we have a display screen that is roughly 33.3 cm in width and 20.8 cm in 

height. If a viewer is sitting 50 cm away from the screen, then his FOVs are: 

8355.36
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==
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Assuming a resolution of 1250x800, the scaling variables are: 

0426.34
5.23

800

9347.33
8355.36

1250

==

==

vertical

horizontal

S

S

 

Assuming a feature within the image has 1/20 cycles per pixel horizontally and 1/24 

cycles per pixels vertically (a feature that is 10 pixels long and 12 pixels tall), we would 

get the following absolute spatial frequency for that feature: 

2115.2))24/1(*0426.34())20/1(*9347.33()( 22
=+=SF  
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Therefore, the resulting feature would be assigned a spatial frequency of 2.2115 cycles 

per degree. 

 

3.7 PUTTING IT ALL TOGETHER 

Researchers have created several different models for approximating the curve of the 

CSF.  One of the more popular models was developed by Manos and Sakrison [DeCarlo 

and Santella, 2002] and is as follows. 

( )
1.1)114.0(114.00192.01040)( feffA +=  

This function will return the maximum possible contrast sensitivity, defined as one over 

the contrast, which is visible at a particular frequency f. The domain of this function 

forms a smooth curve which is shown in Figure 10. Contrast sensitivity values that rest 

above the curve represent areas where changes are not distinguishable to the human eye. 

Values the rest below the curve, represent areas where changes are visible to the human 

eye. Since the curve represents the border between visible and invisible, the further below 

the curve an area gets, the easier it is to detect changes is that area. In the equation, 1040 

is simply a scaling factor. One can modify this value so that the contrast sensitivity axis 

has a domain of [0, 1] by changing this value to 2.6.   
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Figure 10: The curve of the CSF as given by Manos and Sakrison’s proposed formula [DeCarlo and 

Santella, 2002]. 

 

Therefore, given the contrast and spatial frequency of a given area of an image, one can 

determine if changes in that area are visible to the human eye, and if so, by how much. 
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3.8 EDGES  

Edge detection is a form of feature extraction which tries to highlight the basic structure 

of the objects within an image. Algorithms to do this usually work by looking at the 

luminance intensity changes.  A variety of edge detection algorithms exist that optimally 

process different types of image content. Agrawala et al. [2004] first incorporated edges 

into a seam finding metric by dividing the color difference cost by the edge cost if the 

colors and edges matched in the two images. No specific definition was given for what 

represented a color match or in how this positively affected the output. 

 



25 

 

4 METHOD 

Using knowledge of the human visual system, a new metric was developed to improve 

upon the standard RGB based metric. A uniform color space, edges, the contrast 

sensitivity function, and an alternative way of structuring the graph were used in finding 

a more optimal seam. 

 

4.1 FACTORING IN A UNIFORM COLOR SPACE  

For the color difference, the L*a*b* color space is used. Since the RGB color space is 

device dependent and may vary from computer to computer, an absolute version of this 

color space, known as sRGB was assumed so the color conversions could be consistent. 

The monitors for viewing the images were calibrated and set up to use the “sRGB Color 

Space Profile:” Once an absolute space is defined for the RGB values, they can easily be 

converted into the XYZ color space via a transformation matrix. The conversion from the 

XYZ color space to the L*a*b* color space is slightly more complex. The basic 

equations can be seen in Figure 11. Xn, Yn, and Zn are the values of the reference white 

point in XYZ space. 
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Figure 11: XYZ to L*a*b* conversion equations.  



26 

 

The basic color difference calculation for two colors in L*a*b* space is defined as 

follows [Hall, 1989]: 

( )221

2

21

2

21 )()()( bbaaLLifferencesimpleLABD ++=  

Calculation of the color difference in RGB space can be calculated in a similar fashion: 

( )221

2

21

2

21 )()()( BBGGRRicsimpleMetr ++=  

This simple definition of a color difference for RGB space will be used as the simple 

metric for the user study in chapter 5. As stated in chapter 2, more advanced color 

difference formulas exist for the L*a*b* color space [Sharma, 2005], however, these 

were not used this in study since a beneficial effect was not observed. During 

experimentation it was found that squaring the color difference seemed to aid in finding a 

better path, therefore, this enhancement was added into the new metric. 

 

Figures 12 and 13 demonstrate the power of switching to a more uniform color space 

such as the L*a*b* color space. The same image, in this case an image of the cartoon 

character Waldo hidden within a grassy maze, is laid on top of itself with a 75% overlap. 

Figure 12 demonstrates the cut found by using the RGB cut metric described above while 

Figure 13 demonstrates the cut found by using the L*a*b* cut metric described above. 

Here we find that the cuts found are dramatically different. The RGB cut is a mostly 

horizontal cut that goes through the bottom of the image, leaving many of the maze 

characters mangled over the seam. The L*a*b* cut, on the other hand, takes a much more 

complex path. It moves in an upside down U path, hugging the grassy edge of the maze 

for much of its journey. Some of the maze characters still have limbs that are chopped 

off, but not nearly as many or as egregiously as the RGB cut. 
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Figure 12: Waldo images cut together using the traditional RGB Cut metric. The image overlap is 

75%. The top image is the output while the bottom image shows where the cut was made. 
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Figure 13: Waldo images cut together using a cut metric that involves the L*a*b* color space. The 

image overlap is 75%. The top image is the output while the bottom image shows where the cut was 

made. 
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4.2 FACTORING IN EDGES  

The Sobel edge detection algorithm was used to find the edges in the overlapping images.   

This edge detection algorithm was chosen because it was the same one used by Agrawala 

et al. [2004] in their work with edges and improving seams. The choice to factor edges 

into the metric is based on whether or not the squared color difference between adjacent 

nodes is less than 400.  This choice was made after testing a number of images and seeing 

what threshold they responded best to. When increasing this value it was found that 

factoring in edges with large color differences across the seam could hurt the final image, 

and making this number too small resulted in edges not being factored into images they 

could help.  

 

Once the decision to use edge intensity in the cut is made, it is factored in by looking at 

each image’s “edge map”. The edge map is simply the output of the Sobel edge detection 

algorithm on the image. The minimum intensity between the images at position p is 

scaled down by a factor of 10 and used for position p’s edge intensity. The color 

difference metric is divided by the edge intensity to make it more likely a seam will be 

found on an edge. The choice to scale down the edge intensity was made after testing a 

variety of images and using difference scaling factors to see what best worked. Through 

testing it was also found that using division instead of subtraction on the color difference 

was more beneficial for factoring in edges, therefore, division was used in creating the 

new metric. A value of 1 is used for the edge intensity if the calculated edge intensity 

value is less than 1.  
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Around half of the time this metric appears to have no effect on the seam that is found on 

the image. When applied to the Waldo images shown before, the same seam is found. 

However, there are many cases where it has a positive effect and in almost no cases does 

it seem to have a negative effect. Figures 14 and 15 show an example of how factoring in 

edges has improved the seam. In Figure 14, the seam maneuvers through the crowd, 

cutting a couple of the crowd members into each other and leaving two visible seams in 

the sky. In Figure 15, the seam carefully curves around the different individuals and even 

steps around the US Flag. Figure 16 shows an overlay of the two seams on top of each 

other and of the edge map that was used.  
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Figure 14: A crowd image cut together using a cut metric that involves the L*a*b* color space. The 

image overlap is 75%. The top image is the output while the bottom image shows where the cut was 

made. Due to the images length, the left sides of both images have been truncated since the seam did 

not venture into this area. 
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Figure 15: A crowd image cut together using a cut metric that involves the L*a*b* color space and 

edge maps of the images. The image overlap is 75%. The top image is the output while the bottom 

image shows where the cut was made. Due to the images length, the left sides of both images have 

been truncated since the seam did not venture into this area. 
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Figure 16: The top image shows the overlaying of the two different seams that were found by using 

edges and by not using edges. The bottom image shows the “edge map” that was used for 

determining where the edges were in the picture. Note that the edge map is only a single instance of 

the input image and that the results were truncated on the left hand side for size purposes. 



34 

 

4.3 FACTORING IN THE CSF  

The CSF tells one how well they are able to see change in a given area. Using this 

function can allow us to avoid cutting through areas in an image where a user would be 

able to detect change. To factor in this component, CSF maps of an image were generated 

to show where the user would most likely see the most change. Figure 17 shows some 

CSF maps which were created to show which areas of the image were judged to be high 

areas of change. The brighter the area, the more change is visible, the darker the area, the 

less change is visible. 

 

  

  

Figure 17: Images and their corresponding Contrast Sensitivity Function maps. 

 

Once the CSF information about the image is obtained, the question is left as to how to 

factor it into the cut metric. One can reason that areas deemed invisible in both images 
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would blend well together if the colors also match. One can also reason that areas of 

extreme change in both images would probably not go well together unless they were 

blended together at the edges. Therefore, an additive approach was taken in factoring in 

the intensities of the visible differences in the images at particular locations. The 

maximum distance a value can be away from the CSF curve was taken and scaled down 

to 50.  This was decided by experimenting with different ways of weighing this 

parameter and seeing what had the best effect. It was found if its value was too low, it 

had no effect, and if its value was too high, it could adversely effect the seam, therefore a 

domain of [0, 50] for a CSF value was used and added onto the color difference, since it 

seemed to work well. Through experimentation it was found that the best way to 

incorporate edges into this was to divide the sum of the squared color difference and the 

CSF value by the edge intensity.  This is because the CSF value is often high around 

image edges, and when image edges line up it is often a good place to make a cut. 

 

As with factoring in edges, CSF information does not always have a noticeable effect on 

all images. Many times the cut is simply jittered or slightly improved in certain areas. 

However, there are plenty of cases, just as in factoring in edges, where this information 

helps to find a superior seam. Figures 18 and 19 demonstrated how factoring in CSF 

intensities can improve the cut that is found. Figure 18 shows an image and the 

corresponding CSF map that was generated. Figure 19 shows how factoring this 

information in with the L*a*b* color information improved the cut over simply using an 

L*a*b* difference. The top image in Figure 19, which simply uses L*a*b* color 

information, shows a cut that recklessly cuts through the bottom of one of the two towers 
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shown in the center of the image. The cut slices the building to which the tower is 

attached. The cut that uses CSF information avoids this flaw and instead creates a longer 

seam that merges the two buildings from which the towers stem. 
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Figure 18: An Image and its corresponding Contrast Sensitivity Function map. 
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Figure 19: An image cut together with just L*a*b* color differences (top image and yellow cut) and 

an image cut together with L*a*b* color differences and CSF information (middle image and red 

cut). 
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4.4 AN ALTERNATIVE WAY OF SETTING UP THE GRAPH  

The traditional way of setting the edge values on the graph is defined by the following 

function: 

)()()()(),,,( tBtAsBsABAtsM +=  

Here we’re telling the Max Flow algorithm that we want to find a seam through areas that 

are similar in both image A and B. However, this will not always lead to finding the least 

visible seam since similar areas in both images may not exist all the way along the cut. 

We can alter this concept with a slight change in how we look at the color difference 

between the pixels: 

)()()()(),,,( sBtAtBsABAtsM +=  

In this version of the function we are looking at how the pixels across from each other 

differ in color. Therefore, we are telling the Max Flow algorithm to find a seam where the 

color difference across the seam is the most similar, thus leading to the possibility of a 

least visible cut between the images. 

 

Using this new approach, we get slightly different seams than with the old approach, 

though both seams usually appear equally as useful. Other times, a better cut is found, as 

in Figure 20. Here one can see that near the middle of the cut, the original metric cuts off 

one of the tentacles of one of the sea creatures. In the new metric, a less linear path is 

found leading to a much less noticeable seam. 
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Figure 20: An example of using the old graph set up vs the new graph set up. The top image is cut 

using the old metric and the middle image using the new metric. The bottom image shows the seams 

for each image. The red represents the new metric and the yellow represents the old metric. 
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4.5 PUTTING IT ALL TOGETHER 

With the alternative way of setting up the graph in place, the final improved metric for 

finding the best seam between two images is described by the following equation:  

EdgeWeight

CSFValuerenceColorDiffebaL
newMetric

)***( 2
+

=  

Here we take into account a uniform color space, how things change within the image, 

and the boundaries that exist within the image. Through experimentation with various 

images, it was found that the squared color difference should have the most effect, then 

the edge weight, and then finally the CSF value. This way of setting up the function was 

decided through experimentation.  Some parameters may help some images more than 

other; however, this function was weighted to help improve the overall outcome of the 

images it was tested on.  Using the ideas expressed in this chapter, we can compute seams 

that are much less visible to the human observer.  
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5 RESULTS 

Using techniques that take into account the human visual system, one can find seams 

between images that are much less visible than if one just takes into account the RGB 

values of the pixels.  The following examples will demonstrate this. Each resulting 

picture comprises of an image placed over itself with a horizontal overlap of about 75%. 

The best cut between the images was then found using both the simple metric and the 

new metric. Both cuts are set to start and end at the same place: at the rightmost end of 

the overlap. 

 

Figures 21-25 give examples of where the new metric significantly improves the cut that 

is found. In Figure 21, we see the new metric winds around the fish while the old metric 

leaves a noticeable seam in the fish it splices together at the bottom of its cut. Figure 22, 

23 and 25 show how a more complex route is found via the new metric. In these cases, 

the old metric simply fails to find a good path and noticeable errors can be seen in the 

images. In Figure 24, the old metric finds a good path until it opts to cut through one of 

the sheep, resulting in an image error that sticks out to the human observer. 

 

Figures 26 and 27 show cases where the new metric and old metric find seams that are 

similar to one another. Figure 28 gives an example where the new and old metric end up 

almost agreeing on the same seam to use for the overlapping images.  

 

No cases were found where the old metric finds a good seam and the new metric does 

not.
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Figure 21: An image cut together using the standard cut metric (top) and the new metric (middle). 

The bottom image shows where the cuts were made. The old metric cut is in yellow and the new 

metric cut is in red. 
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Figure 22: An image cut together using the standard cut metric (top) and the new metric (middle). 

The bottom image shows where the cuts were made. The old metric cut is in yellow and the new 

metric cut is in red. 
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Figure 23: An image cut together using the standard cut metric (top) and the new metric (middle). 

The bottom image shows where the cuts were made. The old metric cut is in yellow and the new 

metric cut is in red. 
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Figure 24: An image cut together using the standard cut metric (top) and the new metric (middle). 

The bottom image shows where the cuts were made. The old metric cut is in yellow and the new 

metric cut is in red. 
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Figure 25: An image cut together using the standard cut metric (top) and the new metric (middle). 

The bottom image shows where the cuts were made. The old metric cut is in yellow and the new 

metric cut is in red. 
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Figure 26: An image cut together using the standard cut metric (top) and the new metric (middle). 

The bottom image shows where the cuts were made. The old metric cut is in yellow and the new 

metric cut is in red. 
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Figure 27: An image cut together using the standard cut metric (top) and the new metric (middle). 

The bottom image shows where the cuts were made. The old metric cut is in yellow and the new 

metric cut is in red. 
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Figure 28: Here we see an example of where the old and new metrics find almost the same cut. The 

images cut together with the old metric are on the left and the ones cut together with the new metric 

are in the middle. The images on the right show where the cuts were made. The old metric cut is in 

yellow and the new metric cut is in red. 
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6 USER STUDY 

In order to determine if a seam metric that incorporated knowledge of the human visual 

system made a significant difference over the simple seam metric, a user study was 

conducted. This study consisted of users sitting in front of a computer screen and 

indicating whether or not they saw a seam in the image in front of them. The image they 

viewed consisted of a picture overlapping itself by around 75%, this picture was stitched 

together using either the simple metric or the new metric. To avoid bias in image 

selection, the user would see the image twice during the test: once cut together with the 

simple metric and once cut together with the new metric.  

 

6.1 USER STUDY DESIGN 

The test contained 58 different image pairs, or a total of 116 images for the user to look 

at. The images with seams were divided up into three categories: luminance heavy 

images, scene images, and pseudo-pattern images. Luminance heavy images consisted of 

8 pairs of cloud images. Scene images consisted of 8 pairs of photographs of real life 

scenes, for example, cities or crowds. Pseudo-pattern images consisted of 14 pairs of 

images that had a pattern like structure. The pattern images are the types of images for 

which one would most likely use for texture synthesis. In addition to these, 28 pairs of 

seamless images were put into the test. These images also fell into one the three basic 

categories and were used as a control group. 
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At the start of the test, the user was shown an image with a seam and it was explained to 

them what a seam was and how to tell if they saw one. They were informed on how the 

images were created and they were told to ignore repetition in the image as a sign that 

they had seen a seam. They were also told not to dwell too long on each image, to try and 

see if they could see a seam within 10-20 seconds. This time limit was not enforced, but 

the time a user spent looking at each image was recorded. To avoid image loading 

affecting this, all of the images were preloaded before the test began. Once the test was 

completed, the user was thanked and the results were emailed to an account to be 

assessed later. 

 

6.2 USER STUDY RESULTS – RAW NUMBERS 

A total of 15 people participated in the study.  Users varied in ages ranging from 21 to 60. 

Seven of the users were female while eight of the users were male.  Results varied from 

participants claiming to see as few as seven images with seams to claiming to see as 

many as 46 images with seams. On average, a participant claimed to see 24.07 images 

with visible seams.  

 

This average breaks down on the type of images participants saw seams in is as follows:  

13.47 images cut together with the simple metric (out of the 30 they were exposed to), 

7.2 images cut together with the new metric (out of the 30 they were exposed to), and 3.4 

images that had no seam (out of the 56 they were exposed to).  The average time it took 

before a participant clicked the “yes” button to seeing a seam was 7.76 seconds for 

images cut together with the simple metric, 14.11 seconds for images cut together with 
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the new metric, and 16.87 seconds for images that did not have a seam. The average time 

it took to complete the test was 23 minutes and 27 seconds. 

 

6.3 USER STUDY RESULTS – DISCUSSION 

In general, participants seemed to have an easier time identifying seams in the luminance 

images. Many of the participants claimed they had an easier time finding the seam when 

it was one of the cloud images. Some commented that they thought this was because 

there was less going on in these images. They felt these images were easy to look at and 

that some of the pattern images gave them a headache.  Looking for a seam in the pattern 

images was more of a difficult task rather than something that jumped out at them.  

Figure 26 shows a pair of images where the new and simple metric find a similar seam; 

however, more users saw the simple metric seam in this image. One user commented that 

this was because the simple metric made a mistake in the center of the image, which 

jumped out at them when they viewed the image. 

 

The results also tend to show the participants saw more seams in images cut together with 

the simple metric for the pseudo-pattern and scene images. The majority of the time the 

simple metric’s seam was seen more times than the new metric’s seam in these images, 

though the data was not as striking as that of the luminance images. As for the images 

with no seams, though a typical participant claimed to have seen a seam in a few of these 

images, no particular fake image seemed to confuse users, and the number of false 

positives was always less than the true positives. Only three participants did not have any 

false positives. 
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In the previous Chapter, a number of figures were displayed demonstrating how the new 

metric and the simple metric compared to one another. Below is a table that shows how 

many users saw seams in those images.  

 Number of participants who 

saw a seam in the image 

(simple metric version) 

Number of participants who 

saw a seam in the image 

(new metric version) 

Figure 21 (fish) 3 3 

Figure 22 (radishes) 4 7 

Figure 23 (clouds) 15 5 

Figure 24 (sheep) 4 1 

Figure 25 (old city) 9 3 

Figure 26 (clouds) 15 6 

Figure 27 (peppers) 11 2 

Figure 28 (raspberries) 1 2 

Figure 28 (chains) 0 0 

 

As one expects, with this sample of images, the users tend to see the seam more often in 

the images cut together with the simple metric. There are a few unexpected results 

though. Though the seam in the new metric radishes image is more complex, more users 

claimed to see it than the simple metric version. The fish image results are also a little 

surprising. The same number of users claimed to see the seam in both versions. This 

means that although the simple metric makes a mistake, near the bottom of its cut, the 

mistake is in a place where many users tend not to look. 
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6.4 USER STUDY - SIGNIFICANCE 

In order to access how significant the results were from the user study, a paired t-test was 

performed on the data. A paired t-test tells one if there is a statistical difference between 

two paired groups.  This is shown by the following equations [Mathworld, 1999]: 
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The t-value will indicate if the difference between the groups is most likely caused by 

chance or not. Once computed, one needs to assign an alpha level and the degrees of 

freedom.  In social research, the alpha value is commonly set to 0.05. This value means 

that 5% of the time you would find a statistical difference between the groups even if 

none existed. For a paired t-test, the degrees of freedom is calculated by taking the 

number of people in the group and subtracting one. Once these 3 values have been 

obtained, one needs to plug them into a table of significance for the t-distribution and see 

if the t-value is greater than what is listed. If it is, then there is a significant difference in 

the groups. A table of significance can be found in most statistical text books [Devore, 

2000; Walpole, 1976]. Using an alpha level of 0.05 and 14 for the degrees of freedom, we 

get a value of 1.76 from the table of significance.  Computing the data from the user 

study, we get a t value of 1.8.  1.8 is greater than 1.76, therefore there is a significant 

difference between the two groups, and thus the new metric has shown itself to be an 

improvement over the simple metric.
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7 CONCLUSIONS AND FUTURE WORK 

We have presented a new method for doing graph cuts between images that incorporates 

knowledge of the human visual system.  The new metric utilizes a uniform color space, 

takes into account edges within the images, and extracts and uses information from the 

contrast sensitivity function. In addition to this, a novel way of modifying the graph set 

up is used to create less visible seams. A user study was carried out to compare the 

effectiveness of this system with a simple metric and it shows the new metric is a 

significant improvement. 

 

Improving the seams between images has applications in patch based texture synthesis 

and digital photo modifications. Using techniques that take into account how we see, one 

can find the most optimal way of cutting images together. Future work could look into 

analyzing the images themselves and then selecting an optimal cut metric based on the 

image data. For example, an algorithm could detect that an image, or even an area of an 

image, is luminance heavy, and then do a cut based on luminance or contrast values for 

that area. This would be much more complex then simply relying on a single cut metric, 

but would allow for the specialization of cut metrics for particular types of images or 

image areas. Information on how we see could also possibly be incorporated into the 

placement of texture patches for texture synthesis.
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