Procedural Primitives in a High Performance, Hardware
Accelerated, Z-Buffer Renderer

Marc Olano, Anselmo Lastra, Jonathan Leech

Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599-3175

Abstract

In the past, very few types of primitives have been
diredly suppated by gaphics acceerators, in spite
of the fad that a grea variety of complex primitives
are routinely used for high-quality rendering. We
explore the isaues aswociated with the suppat of
arbitrary procedural primitives, and describe a
madiine-independent languege & well as an
extension to OpenGL designed to suppat user-
defined procedural primitives. We have aeded a
prototype implementation on PixelFlow, a high
performance graphics accelerator.

1. Introduction

A large variety of different graphicd primitives are
rouwtinely used for high-quality, off-line rendering.
These primitives include polygors, spheres,
superquadrics, spline patches, blobs, and many
others (figure 1 shows examples of several).
Althoughlibraries for interadive rendering, such as
OpenGL [Akeley92], suppat a subset of these
primitives, graphics acceeration herdware can
usually only diredly render paygors. Thus, the
more complex primitives are tessllated to pdygors
before being sent to the graphics hardware.
Unfortunately, this may na be the most efficient
way to render complex primitives becaise rendering
smoath surfaces in this manner can result in a very
large number of palygors (tessllated spheres are a
good example). An dternative is to dredly use the
rasterization hardware.

Using a high-level language, we provide away for
users to creae new procedural primitives that can
render diredly using the accéeration herdware or
indiredly by tessllation into ather primitives. With
extensions to OpenGL, we dlow the programmer to
supgdement the eisting pimitives in a well-
integrated fashion. We have built a prototype
implementation onPixelFlow [Molnar92], a macine
for high-performance interadive 3D graphics. For
generality, we have aoided exposing into the
languege the detail s of the PixelFlow madine itself,
beyondthe fad that it uses Z-buffer rendering. Thus

UNC-CH TR 97-040

.

Figure 1. Examples of several primitivetypes.

this languege is siitable for use with ather hardware
or with software-based renderers.

This primitive-description language is an extension
of the shading languege that we designed for
PixelFlow in an effort to demonstrate user-
programmable procedural shading in red time
[Lastra95). We based the language on Pixar's
RenderMan  shading languege [Hanrahan9Q.
Following the philosophy d the RenderMan design,
we have alded orly the language @nstructs that
seemed necessary to support the task.

The strongest evidence we have for the utility of
procedural primitives lies in ou experience from
Pixel-Planes 5, our last graphics machine. A number
of people wrote ade for their own primitives or for
spedal purpose modifications of standard primitives
on Pixel-Planes 5. All of these primitives were
creged withou the benefit of any higher-level
interface & al. By providing a high-level interface
the task of creaing these primitives will be much
easier on PixelFlow. Many o the aguments used to
justify procedural shading hdd just as well for
procedural primitives. In fad, the first sentence of
[Hanrahan9(, the paper that introduced the
RenderMan shading languege, says, “The gpeaance



transformation

I
clipping
I

scan conversion

I
visibility
I
interpolation

surface shading

fog and atmospheric effects

Figure 2. A typical graphics pipeline. Shaded
portionsareincluded in the procedural primitive.

of objeds in computer generated imagery ... depends
on both their shape and shading.

We ae, of course, nat the first to consider procedural
primitives. There have been a number of papers on
procedural models [Hedelman84 [Amburn86
[Green88 [Upstill90]. These ae procedures for
higher level objeds that generate lower level
primitives. They can provide some alvantages for
high-level culling and changes in the level of detail
of the model.

A number of ray traces allow new primitives to be
added [Rubin8( [Hall83] [Wyvill 85] [Kuchkuda88]
[Kolb9Z. In al of these, adding a new primitive
consists of adding a new ray intersedion function to
the ray trace. None that we ae awvare of use a
separate language to define the new primitives.

There have dso been a handful of scan-line and Z-
buffer systems that have dlowed the addition d new
primitives. [Crow82] treaed primitives as sparate
proceses, whaose result is later composited
separately. [Whitted827 used awell defined interface
in a scan line renderer to alow new primitives to be
easily written in C and added to the renderer.
[Fleischer88] alowed primitives to be defined as
LISP functions defining the surfaces parametricadly
and implicitly. [Glas:er93] defines primitives with
C++ code, which can be linked in fairly arbitrary
ways with the other stages of his renderer.

Finaly, [Perlin89 extended procedural shading to
define one dass of new primitives, which he cdled
hypertexture. Hypertexture primitives are aform of
implicit function primitives, like blobs or metaball s.
They are defined with a speda purpose languege,
with the surfaceof the primitive defined by the zeo-
crossings of the hypertexture function.

In the remainder of this paper, we first examine
requirements that must drive the spedficaion d
procedural primitives on any 3D Z-buffer hardware.

UNC-CH TR 97-040

Next, we discuss the procedura primitive
spedficaion derived from these requirements. Then
we give an example of a procedural primitive written
using ou languege. Finaly, we @mment on
performance and present our conclusions.

2. Requirements

In this £dion, we examine the question d what we
want our procedural primitives to da As much as
posshle, we will make only general observations,
applicable to bah interadive and noninteradive
systems. Concerns abou interadivity will be
deferred to sedion 3 where we define the
specifications for our primitives.

2.1 Procedural primitive

Figure 2 shows a typicd graphics pipeline. What
portions of this pipeline shodd ou proposed
procedural primitive include? Some parts of the
pipeline can be run withou knowing what type of
primitive is being rendered, while others cannd. For
example, RenderMan and aher procedural shading
systems demonstrate that shading daes not require
any information abou the primitive. Even if we ae
using a fixed shading model, say Phongshading with
image textures, the shading dees naot rely on spedal
knowledge of the primitive type. On the other hand,
the scan conversion stage dealy requires
information abou the primitive. It is impossble to
identify which pixels are inside the primitive without
knowing the geometry of the primitive.

Those parts, and orly those parts, of the pipeline that
require information abou the spedfic primitive will
be included in ou procedural primitive. We will now
examine the stages of the pipeline to see which will
be included in the procedural primitive and which
will be left out.

Transformation: Transformationwill (usually) not be
part of the procedural primitive. Most of the time,
we nedl to transform vedors, normals, points, and
planes. In the interest of reducing the ading effort
required, the cde for the procedural primitive need
not be invaved in the transformation beyond
indicaing which things are vedors, which are
normals, etc. Any more mplex spedalized
transformation tasks will be handled by the
procedural primitive. For example, a quadric surface
renderer would have to hand e the transformation o
the matrix that describes the quadric.

Clipping: We caana separate the dipping task from
the domain o the procedural primitive. To see why,
consider clipping a podygon We find the
intersedions of the elges with ead clip plane, and
add a remove vertices to get a new paygon Now
consider clipping a spline patch. One method would



be to find the arrves of intersedion ketween the
patch and clip planes, and to use these to produce a
trimmed petch. Thus, the paygon clipper canna be
used with the spline patch, and the spline patch
clipper cannot be used with the polygon.

Scan conversion and visibility: These ae trivialy
part of the procedural primitive.

Interpolation: By interpolation, we refer to
interpolation o shading perameters aaoss the
primitive. These may be the many arbitrary
parameters used by a procedural shader or the few
spedfic parameters used by some hard-coded shader.
Whatever the shading model, its parameters are
interpolated in just a few ways. The interpoation
stage uses a number of interpolation parameters to
compute the values of each shading parameter.

Interpolation must be part of the procedura
primitive. To see why, compare interpoation
methoss for a triangle aad a sphere. Linea
interpolation aaoss a triangle is natura and makes
sense. On the other hand, linea interpolation acoss
a sphere does nat make much sense — linea
between where and where? Similarly, interpoation
based on sphericd coordinates makes snse on the
sphere but is meaningless on the triangle.

Surface shading, fog and atmospheric effects. As
already mentioned, we need na include shading as
part of the primitive. Similarly, fog and atmospheric
effects will also be excluded.

As we have now seen, to define a procedura
primitive we neal code for the four middle stages of
the pipeline in figure 2: clipping, scan conwersion,
visibility, and interpolation.

2.2 Interface to the application

Not only do we neeal code for the procedural
primitive, but we need some way for the gplicaion
code to access the new primitive. This interface
shoud be something that is easy to use. It shoud
match, or at lesst be similar to the traditional
methods of defining scan conversion and shading
parameters for the built-in primitives. Yet it shodd
not make too many asamptions abou what a new
primitive might require.

There ae two perts to this problem. We neal some
mecdhanism to assgn values for the parameters that
control the scan conversion. One example of such a
parameter is the vertex of atriange. We dso need
some medhanism to control shading parameter
interpolation, for example to control the linea color
interpolation acoss the triangle. We have looked at
some example primitives to gain an understanding o
what is needed for both.

UNC-CH TR 97-040

2.2.1 Scan conversion parameters

What parameters are neeled to control the scan
conversion? For insight, we'll ook at the parameters
used to define palygors, spline patches, spheres, and
implicit surfaces.

Polygons: Polygors are defined by three or more
vertices. The pasitions of the vertices completely
define the geometry of the polygon.

Sline patches: The definition o a spline patch is
based on its control points. Just as the vertex
positions defined the geometry of the palygon, for
some patch types the positions of the ontrol points
completely define the geometry of the patch. Other
patch types also have aweight at ead control point.
Still others also use a knot vector.

Soheres: The geometry of a sphere is defined by a
center and radius.

Implicit Surfaces: Implicit surfaces are defined by an
isosurface of some 3D density function. Sometimes
they are defined throughthe position and parameters
of several density function kernels.

From these examples, we distinguish two kinds of
scan-conversion parameters for the primitive. There
are parameters asociated with a @ntrol paint (we
cdl these per-sequence-point parameters for reasons
described in sedion 31), such as vertex coordinates
or spline weights, and per-primitive parameters that
have asingle value for the whole primitive, such as
the radius of a sphere.

2.2.2 Interpolated values

What parameters are necessry to  control
interpolation? Once ajain, we'll 1ook for insight at
interpolation for palygons, spline patches, spheres,
and implicit surfaces.

Polygons: A natural method d interpdating acossa
poygonis linea interpoation. For this, a different
value is given for the shading parameter at eat
vertex. Other interpdation methods, such as
perspective-correct, are also desirable.

Sline patches: A natural parameter interpolator for
a spline patch wes Pline interpdation from
parameter values at each control point.

Sheres: Unlike palygons and spline patches, thereis
no retural way to interpolate ashading parameter
acaossthe sphere based onavalue & either the center
or aswociated with bah the ceater and radius.
However, there is an implicit interpolation that is
independent of any pdnts on the primitive. Surface
normals on the sphere ae an example of this implicit
interpolation.



I/l declare that my_shading_parameter should use linear interpolation
gIMateriallnterpEXT(my_shading_parameter, GL_TRIANGLES, GL_LINEAR_INTERPOLATOR_EXT);

glBegin(GL_TRIANGLES);

gIMaterialf(GL_FRONT_AND_BACK, my_shading_parameter, shading_value0);

gINormal3f(n0Ox, nOy, n0z);

/I gINormal3f(...) is equivalent to gIMaterial3f(GL_FRONT_AND_BACK, GL_NORMAL, ...)

glVertex3f(v0x, vOy, v0z);
/I similarly for other three vertices
gIEnd();

Figure 4. Example showing extensions to OpenGL for arbitrary shading parameters.

glBegin(my_sphere_primitive);
glRastParamfEXT (radius_name, radius_value);
glRastParam3fEXT(center_name, cx, ¢y, €z);
glSequencePointEXT();

gIEnd();

Figure 3. Example showing sequence point extension to OpenGL.

Implicit Surfaces: There is no retural way to
interpolate a shading perameter based on \alues at
vertices or control points snce the implicit surface
has neither. Nor can we exped a handy coordinate
system such as ghericd coordinates. One posshility
for interpdation is to have the parameter value
defined in space by another function.

From these examples, we see that sometimes the
interpolation  parameters that control  the
interpolation must be boundat the vertex or control
point, sometimes they have asinge value for the
whadle primitive, and sometimes no value & al. To
interpolate a singe shading perameter may take
severalinterpolation parameters

3. Procedural primitives

We have used these reguirements to crede a
spedficaion for our procedural primitives. This
sedion povides me of the detaills of that
spedficaion as well as reasoning for the dedsions
we made that were not mandated by the
requirements.

3.1 Vertices, control points and
sequence points

First, we will addressthe problem of the gplicaion
programmer's interface (APl). The PixelFlow API is
an extension to OpenGL [Akeley92]. Our goal was to
divorce the @strad programmable-primitive
interfface  from the Pixel Flow spedfic
implementation, and to suppat the existing OpenGL
primitives as a spedal case. In OpenGL, there is a
notion o the aurrent state of attributes such as color,
normals, etc. The aurrent attributes are boundto a
vertex at theylVertex call.

We have introduwced a generalized parameter-setting
cdl, gIMaterial (figure 3), to change the airrent

UNC-CH TR 97-040

parameter state of any attribute. One of the
arguments to glMaterial is the name of the dtribute
to change. As with OpenGL, at the vertex cdl, the
current values of al parameters are boundand used
for that vertex.

This mechanism covers most of what we want. We
would also like to have the aility to hind attributes
as with glVertex, but withou an assciated pant.
For example, an implicit surface primitive may be
defined by a series of grouped sets of blob
coefficients. These wefficients must be boundas a
group, but there ae no wertices invalved. To perform
this binding function, we borrow the compil er ideaof
a sequence point. At the glSequencePointEXT cal
(seefigure 4), the aurrent values of al parameters
are bound as with the glVertex cdl. Note that the
OpenGL glVertex cdl is equivalent to setting the
vertex position perameter, then making a
glSequencePointEXT call.

3.2 Special-purpose language

Shodd the procedural primitive be written in a
spedal-purpose languege or a general-purpose
programming language such as C? We have deded
to foll ow the example of Pixar's RenderMan and wse
a speda-purpose languege. The languege can
include feaures gedfic to the writing d procedural
primitives. This reduces the dfort required to write
ead new procedural primitive. The languege dso
alows us to hide the details of the hardware. This
allows a user familiar with graphics, but not familiar
with ou hardware, to write new primitives. It aso
may make the languege and interface portable to
other hardware. Finaly, since we mmpile our
primitives, we can perform optimizaions on the
code, espedally important for hardware-based
interactive rendering.




The main dsadvantage is that some dfort must be
spent leaning the new languege. To minimize this
cost, our language is smilar to ou shading languege,

thus to the RenderMan shading language and to C.

3.3 The pixel-centric view

In addition to adogting a language similar to the
RenderMan shading languege, we have dso adopted
their pixel-centric pant of view. A RenderMan
surfaceshading function is written as if it were
runring on oty a single sample on the surface Its
jobisto determine the wlor of that one sample. The
description for asingle sample is extended to the rest
of the surfaceby the compil er and renderer. Compare
this pixel-centric view to the incremental one where
the shader must describe explicitly how to find the
color of a sample given the mlor of the neighbaing
sample.

Our procedural primitive is also written as if it were
runnng a a single pixel. Its job is to determine
whether that pixel is in the primitive, whether the
pixel is visible, and what value eab shading
parameter takes there. Compare this to the
incremental approach where the procedura primitive
steps from one pixel to the next and ore scan line to
the next. Most scan conwversion agorithms have
traditionally been defined in this incrementa
fashion. One disadvantage of the incremental scheme
isthat the code for the primitive needs to know about
the image sampling.

One example is the traditional incremental paygon
scan conversion algorithm. The dgorithm follows
the elges from ore scan line to the next, and
interpolates depth and shading parameters from one
pixel to the next aadoss the scan line. One such
algorithm was introduced by Pineda [Pineda38], and
has been used by Sili con Graphics [Akeley93]. This
algorithm uses a linea function (ax + by + c) of the
pixel coordinates for ead edge. This function is
positive inside the elge and regative outside. The
values of the alge functions are incrementaly
computed by adding b for eat step from one scan
line to the next and a for ead step from one pixel to
the next in a line. When an edge function changes
sign, we know that we've aqosed ouside the
poygon This algorithm can be cat, instead, in a
pixel-centric form. Then an indvidua pixel is
determined to be in the paygonif all edge functions
are positive. This can aso be thougtt of as the pixel-
centric version d the Pixel-Planes san conversion
algorithm [Fuchs82], where the palygon is defined
implicitly as the region where dl edge functions are
positive.

Some RenderMan surface shaders (natably the wall
paper in Pixar's KnickKnad) operate by drawing
geometric shapes on the surface It is stisfying to

UNC-CH TR 97-040

Figure 5. Primitive independent inter polation of
textur e coor dinates.

note the cnsistency between the pixel-centric view
used by these mini-scan converters in the surface
shader and the pixel-centric view of our procedura
primitives.

3.4 Sharing interpolators

Earlier, we dedded that shading parameter
interpolation shodd be part of the procedural
primitive. This was based on a two examples of
interpolators that work only for a spedfic primitive.
While interpalators that work aaoss the surface of
the primitive typicdly canna be generalized to work
for al primitives, some interpolators can work on
any primitive. We would like to be éle to share
these general interpolators across all primitives.

What alows an interpolator to be shared with any
primitive? It canna depend at al on the parameters
that define the primitive, on the number of sequence
points, or on the per-sequence point parameters. All
that is left are per-primitive parameters. Obviously
these can be used to define constant values, though
that’s nat terribly interesting. They can also be used
to define abitrary value fields in space This is
equivalent to the Ebert's solid spaces [Ebert94].
Using this technique, a surfaceshader can be turned
into a volume shader, as is swown in Figure 5. The
texture mordinates are determined by two functions
which are defined everywhere in space Any surface
can use these texture mordinates, no matter what
primitives generated the surface Note that some of
the shading perameters for the surface may be
generated by pimitive-spedfic interpoators, while
others may be generated by pimitive-independent
interpolators.

4. System accommodations

The previous sdions describe alanguage and an
interfacethat are independent of the fad that, in our
prototype, they are runnng with gaphics
accéeration hardware. There ae a few spedfic
requirements made of the hardware aad d the

software to accommodate hardware-based rendering.



primitive polygon(int vertex_count;
Point vertex(];
interpolator_data interp_dataf];

varying fixed<32,16> X, Y;
inout varying fixed<32,32> 7)

/I check clipping against hither plane
for each vertex
check vertex against hither plane

/I draw triangle fan
for each vertex
if vertex is unclipped
divide by W to get 3D non-homogeneous vertex
add vertex to screen triangle

add interp_data value for this vertex to screen triangle
if there are three vertices in the current screen triangle

call screen_triangle to render it

/I number of vertices

I/ vertices — transformed since they are a point type
/I when this is used, it is really applied to all

/I interpolation parameters

/I screen coordinates (passed into screen_triangle)
/I Z-buffer (passed into screen_triangle)

reset current screen triangle for the next triangle in the fan
if current vertex and next vertex are on opposite sides of hither plane
compute new 3D non-homogeneous vertex at intersection with clipping plane

add this vertex to screen triangle
for linear or perspective_linear interpolators
add new interp_data value at clipping plane

if there are three vertices in the current screen triangle

call screen_triangle to render it

reset current screen triangle for the next triangle in the fan

}

Figure 6. Polygon primitive pseudo-code. Important points: vertices are pre-transformed since they arelisted
with a Point type; any operations performed with the interp_data are applied for all per-vertex interpolation
parameters; further computationsthat should also apply to all per-vertex parametersusethe

interpolator_data type.

Modern interadive graphics hardware must make
heavy use of paralelism in the rasterization stage of
the pipeline to achieve the expeded performance
Our first requirement is that these processors be
programmable. Our second requirement is that they
have eough memory to exeaute interesting
primitives.

We have alded a fixed-point arithmetic construct to
the shading and procedural-primitive language in
order to deaease the time spent in computations. In
addition to the RenderMan float, we have a fixed
data type with length (in hits) and fradional
arguments. The parameters X, Y, and Z in figure 6
are all declared &ixed.

The software framework has also been designed with
procedural primitives in mind. For generality, all
primitives, including the “built-in” ones must
register themselves with the software system at
startup time. All primitives are dso driven by a
general parameter setting mechanism.  This
generdlity is invisible to the user since the standard
OpenGL constructs and primitives are all supplied.

UNC-CH TR 97-040

5. Example primitives

We will show how a generalized pdygon pimitive
might look if programmed using ou languege. We
show two versions of the palygon pimitive. The first
turns the palygoninto screen-space i pped triangles,
demonstrating a primitive that is decompased into
simpler primitives. The second part renders reen-
space triangles directly.

Figure 6 is pseudo-code for the paygon pimitive. It
is asuumed that the vertices are mplanar and the
poaygonis smple and convex. Note that this polygon
handes two kinds of interpdation. It can perform
perspedive @rreded o uncorreded linea
interpolation. The basic dgorithm is to clip the
poygonagainst the hither plane, then split into a fan
of triangles.

Figure 7 is pseudo-code for the screen-spacetriange
primitive. Remember that the procedure exeautes as
if it were running onat a single pixel. The pixel's
locationis foundin the X and Y parameters. As with
the RenderMan shading languege, varying variables
are those that have different values at different




primitive screen_triangle(float screen_vertex[3][3];
interpolator_data interp_data[3];
varying fixed<32,16> X, Y;
inout varying fixed<32,32> 7)

for each pair of vertices
compute edge expression
return if pixel is outside of edge

compute triangle Z
return if triangle Z < Z buffer
Z =triangle Z

for perspective-corrected linear interpolation
compute interpolation value

for uncorrected linear interpolation
compute interpolation value

for all other types of interpolation
execute shared interpolators here

}

Figure 7. Pseudo-code for screen_triangle primitive.

Il vertices — not point type, not transformed
/I shorthand for all interpolation parameters
I screen coordinates

Il Z-buffer

/I declaration
interpolation_data screen_data[3];

11 if vertex is unclipped
/I add interp_data for this vertex to screen triangle

screen_data[screen_vertex_count] = interp_data[current_vertex];

II'if current vertex and next vertex are on opposite sides of the hither plane

/I for linear or perspective_linear interpolators
1 add new interp_data value at clipping plane
interpolation {

perspective_linear:

linear:

screen_data[screen_vertex_count] = (1-t) * interp_data[current_vertex] + t * interp_data[next_vertex];

}

Figure 8. Interpolation details from polygon primitive.

pixels. Only the varying computations need be
performed at every pixel. All other computations are
done once for all the pixels.

The subroutine, screen_triangle, tests the pixel’'s
position against ead of the elges and the Z-buffer.
If the pixel is outside the triangle or fail s the Z-test,
the primitive function returns withou changing the
Z-buffer or interpdating any shading perameters for
that pixel.

5.1 Dealing with interpolated shading
parameters

There ae four main feaures of the language

designed to support shading parameter interpolation.

The first is the interpolation_data type. This type is
used by the primitive in any shading parameter
computations. Any computations using the
interpolation_data type ae gplied to al per-vertex
interpolation perameters. In aher words, for any

UNC-CH TR 97-040

expresson wing this data type, our compiler
generates code to compute the same expresson,
using either fixed pdnt or floating pant as
appropriate, for arbitrary sets of shading parameters.
The pdygon pimitive uses this to compute
interpolation parameter values at the hither clipping
plane. For these omputations, it uses a variable of
the interpolation_data type cdled screen_data.
This can be seen figure 8

The seoond fedure is the magic interp_data
parameter to the primitive. This parameter is of the
interpolation_data type. It holds the interpolation
parameter data for all of the per-vertex shading
parameters. This can be seenin figure 6 and figure 7.
The per-primitive parameters are not mentioned
becaise the primitive itself does not need to do
anything with them.

The third feaure is the interpolation construct. This
looks smilar to a C switch statement, but the
branches are the different kinds of interpolation that




interpolation {
/I for perspective corrected linear interpolation
/I compute interpolation value
perspective_linear:
a = interp_data[0]/vertex[0][2] * (vertex[1][1] - vertex[2][1])
+ interp_data[1]/vertex[1][2] * (vertex[2][1] - vertex[O][1])
+ interp_data[2]/vertex[2][2] * (vertex[O][1] - vertex[1][1]);

b=..
c=..
interpolator_return(@* X + b *Y + c);

/I for uncorrected linear interpolation
/I compute interpolation value
linear:
a = interp_data[0] * (vertex[1][1] - vertex[2][1])
+ interp_data[1] * (vertex[2][1] - vertex[O][1])
+ interp_data[2] * (vertex[0][1] - vertex[1][1]);
b=..
c=..
interpolator_return(@* X + b *Y + c);

/I for all other types of interpolation
/I execute shared interpolators here
default:

interpolator_return;

}

Figure9. Interpolation details from screen_triangle primitive.

interpolator cylindrical_interpolation(float cylinder_transform[4][4] = {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}},
float cylinder_start = 0, cylinder_end = 1;

fixed<32,4> X, Y;
fixed<32,32> 2)

{
float screen_space_point[4] = {X, Y, Z, 1};

float cylinder_space_point[4] = cylinder_transform * screen_space_point;
interpolator_return((cylinder_end - cylinder_start) * atan(cylinder_space_point[1], cylinder_space_point[2]) / 2/ PI

+ cylinder_start);

}
Figure 10. A simple shared interpolator

the primitive handles. For example, in figure 9, there
are branches for linear, and perspective_linear, the
two kinds of interpolation the screen_triangle
primitive supports. There is also a default branch,
which can be used for actions for any kinds of
interpolation not known to the primitive. Figure 8
and figure 9 both show examples of the interpolation
construct in use.

The fina feature is the interpolation_return
statement. It is typically used inside an interpolation
construct to set the interpolated shading-parameter
values. The action of interpolator_return is similar
to the action of the interpolation_data type. When it
executes, it sets the actual values of the shading
parameters for each parameter in the primitive using
that particular kind of interpolation. Figure 9 has
three interpolator_return statements: one for the
shading parameters using perspective-correct linear
interpolation, one for the shading parameters using
uncorrected linear interpolation, and finally one

UNC-CH TR 97-040

(with no value given) for the any shading parameters
using shared interpolators.

5.2 Example of a shared interpolator

Figure 10 shows an example of a simple shared
interpolator. This interpolator produces shading
parameter values based on a cylindrical coordinate
system. It is similar to a primitive, but its only result
is a single value, given in an interpolator_return
statement.




6. Performance

We expect our compiled primitives to be fast enough
for prototyping and low-volume uses. In applications
requiring hundreds of thousands of instances of a
custom primitive, we expect that it will be further
hand-tweaked (or even coded in assembly language)
after prototyping is complete.

Performance of a user-programmable primitive
coded in the high-level language will be directly
related to the optimizations performed by the
compiler. Not all of the optimizations that we plan to
support have been written. We expect to see steadily
increasing performance as the compiler matures.

As mentioned earlier, we currently have PixelFlow
boards in hardware testing and software running in
simulation. Therefore, we do not have performance
numbers at this time. By the final paper deadline, we
expect to have an operational machine to run our
procedural primitives. Procedural primitives have
been a goal of the project throughout its
development. Even our fast, hand optimized
primitives use the same interna interfaces as the
procedural primitives. At system initialization, the
built-in primitives are installed in the same fashion
as user-defined primitives.

7. Conclusions

We have designed extensions to a special-purpose
language and to an existing graphics API for creating
new primitive types and have built a prototype
implementation for the PixelFlow 3D graphics
machine. To design the interface, we examined the
general characteristics required to support a variety
of procedural primitives for a Z-buffer renderer. Our
interface is a direct result of this analysis and of
some concerns mandated by the nature of genera
graphics-acceleration hardware. As a result, we have
an interface that does not require the user to have
detailed knowledge of the underlying graphics
hardware.

UNC-CH TR 97-040



8. References
[Akeley92] Kurt Akeley, K. P. Smith, J. Neider,

OpenGL Reference Manyaddison-Wesley, 1992.

[Akeley93] Kurt Akeley, “RedityEngine Graphics’,
Computer Graphics (SGGRAFH ‘93 Procealings),
volume 27, August 1993, pp. 1-@016.

[Amburn86 Phil Amburn and Eric Grant and Turner
Whitted, “Managing Geometric Complexity with
Enhanced Procedural Models’, Computer Graphics
(SGGRAFH ‘86 Procedalings) , volume 20(4),
August 1986pp.189-195

[Crow82] F. C. Crow, “A More Flexible Image
Generation Environment”, Computer Graphics
(S GGRAMH ‘82 Proceealings) , volume 16(3), July
1982,pp. 9-18.

[Ebert94] David Ebert, F. Kenton Musgrave, Darwyn
Peatey, Ken Perlin and Steven Worley, Texuring
and Modeling: A Procedural Approach, Academic
Press, 1994.

[Fleischer88] K. Fleischer and A. Witkin, “A
Modeling Testbed”, Procealings of Graphics
Interface ‘88, Canadian Inf. Process Society 1988
pp. 137137

[Fuchs82] Henry Fuchs, John Poulton, “Pixel-Planes:
A VLSI-Oriented Design for a Raster Graphics
Engine} VLSI Design2(3),1982, pp20-28.

[Fuchs89] Henry Fuchs and John Poulton and John
Eyles and Trey Grea and Jadk Goldfeaher and
David Ellsworth and Steve Molnar and Greg Turk
and Brice Tebbs and Laura Israd, “Pixel-Planes 5: A
Heterogeneous Multiprocessor  Graphics  System
Using Processor-Enhanced Memories’, Computer
Graphics (SGGRAFH ‘89 Proceedings), volume 23,
1989,pp. 79-88.

[Glas:er93] Andrew S. Glasser, “Spedrum: An
Architedure for Image Synthesis Reseach,
Educaion, and Pradice’, 9SGGRAFRH ‘93
Devdoping Large-scale Graphics Sdtware Toolkits
seminar notes1993

[Green88 Mark Green and Hangiu Sun, “MML: A
languege and system for procedural modeling and
motion”, Procealings of Graphics Interface ‘88,
June 1988pp. 16-25.

[Hall83] R. A. Hall and D. P. Greenberg, “A Testbed
for Redistic Image Synthesis’, IEEE Computer
Graphics And Applications, volume 3, November
1983,pp. 10-20.

[Hanrahan9( Pat Hanrahan and Jim Lawson, “A
Languege for Shading and Lighting Calculations’,
Computer Graphics (SGGRAFH ‘90 Procealings),
volume 24, August 199(@p. 289-298

UNC-CH TR 97-040

[Hedelman84 H. Hedelman, “A Data Flow
Approac to Procedural Modeling”, |EEE Computer
Graphics and Applications, volume 3, January 1984
pp. 16-26.

[Kolb927 Craig E. Kolb, Rayshade User’s Guide and
Reference ManualJanuary 1992

[Kuchkude88] Roman Kuchkuda, “An Introduction
to Ray Tradng', Theoretical Founddions of
Computer Graphics and CAD , volume F40,
Springer-Verlag 198&p. 1039-1060Q

[Lastra95] Anselmo Lastra, Steven Molnar, Marc
Olano and Yulan Wang, “Red-Time Programmable
Shading’, Procealings of the 1995 §mpasium on
Interactive 3D Graphics, ACM SIGGRAPH, 1995
pp. 59— 66.

[Molnar92] Steven Molnar, John Eyles and John
Pouton, “PixelFlow: High-speed Rendering wsing
Image  Compasition”, Computer Graphics
(S GGRAFH ‘92 Procealings) , volume 26, 1992
pp.231-240

[Perlin8g Ken Perlin and Eric M. Hoffert,
“Hypertexture”, Computer Graphics (S GGRARH
‘89 Proceddings) , volume 23, July 1989 pp. 253~
262

[Pineda88] Juan Pineda, “A Paralel Algorithm for
Polygon  Rasterization”, Computer  Graphics
(S GGRAMH ‘88 Procedlings), volume 22, August
1988, pp. 1720

[Rubin8d S. M. Rubin and T. Whitted, “A 3-
Dimensional Representation for Fast Rendering d
Complex Scenes’, Computer Graphics, volume
14(3), July 1980pp.110-116.

[Upstill90] Steve Upstill, The RenderMan
Companion Addison-Wesley 1990

[Whitted82 T. Whitted and D. M. Weimer, “A
Software Testbed for the Development of 3D Raster
Graphics Systems’, ACM Trans. on Graphics (USA),
volume 1(1), January 198@p.43-57.

[Wyvill 85] Geoff Wyvill and Tosiyasu L. Kunii, “A
Functional Model for Constructive Solid Geometry”,
The Visual Computer , volume 1(1), July 1985 pp.
3-14.

10



