
Introduction & Background Modifications Conclusion

Modified Noise for Evaluation on Graphics
Hardware

Marc Olano

Computer Science and Electrical Engineering

University of Maryland, Baltimore County

Graphics Hardware 2005



Introduction & Background Modifications Conclusion

Outline

Introduction & Background

Modifications

Conclusion



Introduction & Background Modifications Conclusion

Outline

Introduction & Background
Noise?
Perlin noise

Modifications

Conclusion



Introduction & Background Modifications Conclusion

Why Noise?

• Introduced by [Perlin, 1985]
• Heavily used in production animation
• Technical Achievement Oscar in 1997

• “Salt,” adds spice to shaders



Introduction & Background Modifications Conclusion

Why Noise?

• Introduced by [Perlin, 1985]
• Heavily used in production animation
• Technical Achievement Oscar in 1997

• “Salt,” adds spice to shaders

+ =



Introduction & Background Modifications Conclusion

Noise Characteristics

• Random
• No correlation between distant values

• Repeatable/deterministic
• Same argument always produces same value

• Band-limited
• Most energy in one octave (e.g. between f & 2f)

1 2 3 4 5 6 7



Introduction & Background Modifications Conclusion

Noise Characteristics

• Random
• No correlation between distant values

• Repeatable/deterministic
• Same argument always produces same value

• Band-limited
• Most energy in one octave (e.g. between f & 2f)

1 2 3 4 5 6 7



Introduction & Background Modifications Conclusion

Noise Characteristics

• Random
• No correlation between distant values

• Repeatable/deterministic
• Same argument always produces same value

• Band-limited
• Most energy in one octave (e.g. between f & 2f)

1 2 3 4 5 6 7



Introduction & Background Modifications Conclusion

Gradient Noise

• Original Perlin noise [Perlin, 1985]

• Perlin Improved noise [Perlin, 2002]

• Lattice based
• Value=0 at integer lattice points
• Gradient defined at integer lattice
• Interpolate between

• 1/2 to 1 cycle each unit

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Original Improved



Introduction & Background Modifications Conclusion

Gradient Noise

• Original Perlin noise [Perlin, 1985]

• Perlin Improved noise [Perlin, 2002]

• Lattice based
• Value=0 at integer lattice points
• Gradient defined at integer lattice
• Interpolate between

• 1/2 to 1 cycle each unit

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Original Improved



Introduction & Background Modifications Conclusion

Gradient Noise

• Original Perlin noise [Perlin, 1985]

• Perlin Improved noise [Perlin, 2002]

• Lattice based
• Value=0 at integer lattice points
• Gradient defined at integer lattice
• Interpolate between

• 1/2 to 1 cycle each unit

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Original Improved



Introduction & Background Modifications Conclusion

Value Noise

• Lattice based
• Value defined at integer lattice points
• Interpolate between

• At most 1/2 cycle each unit
• Significant low-frequency content

• Easy hardware implementation with lower quality

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Linear Interp Cubic Interp



Introduction & Background Modifications Conclusion

Value Noise

• Lattice based
• Value defined at integer lattice points
• Interpolate between

• At most 1/2 cycle each unit
• Significant low-frequency content

• Easy hardware implementation with lower quality

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Linear Interp Cubic Interp



Introduction & Background Modifications Conclusion

Value Noise

• Lattice based
• Value defined at integer lattice points
• Interpolate between

• At most 1/2 cycle each unit
• Significant low-frequency content

• Easy hardware implementation with lower quality

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Linear Interp Cubic Interp



Introduction & Background Modifications Conclusion

Value Noise

• Lattice based
• Value defined at integer lattice points
• Interpolate between

• At most 1/2 cycle each unit
• Significant low-frequency content

• Easy hardware implementation with lower quality

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Linear Interp Cubic Interp



Introduction & Background Modifications Conclusion

Hardware Noise

• Value noise
• PixelFlow [Lastra et al., 1995]
• Perlin Noise Pixel Shaders [Hart, 2001]
• Noise textures

• Gradient noise
• Hardware [Perlin, 2001]
• Complex composition [Perlin, 2004]
• Shader implementation [Green, 2005]



Introduction & Background Modifications Conclusion

Noise Details

• Subclass of gradient noise

• Original Perlin
• Perlin Improved
• All of our proposed modifications



Introduction & Background Modifications Conclusion

Find the Lattice

• Lattice-based noise: must find nearest lattice points

• Point ~p = (~px , ~py , ~pz)

• has integer lattice location
~pi = (⌊~px⌋, ⌊~py⌋, ⌊~pz⌋) = (X , Y , Z )

• and fractional location in cell
~pf = ~p − ~pi = (x , y , z)



Introduction & Background Modifications Conclusion

Find the Lattice

• Lattice-based noise: must find nearest lattice points

• Point ~p = (~px , ~py , ~pz)

• has integer lattice location
~pi = (⌊~px⌋, ⌊~py⌋, ⌊~pz⌋) = (X , Y , Z )

• and fractional location in cell
~pf = ~p − ~pi = (x , y , z)



Introduction & Background Modifications Conclusion

Find the Lattice

• Lattice-based noise: must find nearest lattice points

• Point ~p = (~px , ~py , ~pz)

• has integer lattice location
~pi = (⌊~px⌋, ⌊~py⌋, ⌊~pz⌋) = (X , Y , Z )

• and fractional location in cell
~pf = ~p − ~pi = (x , y , z)

X

Y



Introduction & Background Modifications Conclusion

Find the Lattice

• Lattice-based noise: must find nearest lattice points

• Point ~p = (~px , ~py , ~pz)

• has integer lattice location
~pi = (⌊~px⌋, ⌊~py⌋, ⌊~pz⌋) = (X , Y , Z )

• and fractional location in cell
~pf = ~p − ~pi = (x , y , z)

x

yX

Y



Introduction & Background Modifications Conclusion

Gradient

• Random vector at each lattice point is a function of ~pi

g(~pi )

• A function with that gradient

grad(~p) = g(~pi ) • ~pf

= g x(~pi ) ∗ x + g y (~pi ) ∗ y + g z(~pi ) ∗ z



Introduction & Background Modifications Conclusion

Gradient

• Random vector at each lattice point is a function of ~pi

g(~pi )

• A function with that gradient

grad(~p) = g(~pi ) • ~pf

= g x(~pi ) ∗ x + g y (~pi ) ∗ y + g z(~pi ) ∗ z



Introduction & Background Modifications Conclusion

Gradient

• Random vector at each lattice point is a function of ~pi

g(~pi )

• A function with that gradient

grad(~p) = g(~pi ) • ~pf

= g x(~pi ) ∗ x + g y (~pi ) ∗ y + g z(~pi ) ∗ z



Introduction & Background Modifications Conclusion

Interpolate

• Interpolate nearest 2n gradient functions

• 2D noise(~p) is influenced by
~pi + (0, 0) ; ~pi + (0, 1) ; ~pi + (1, 0) ; ~pi + (1, 1)

• Linear interpolation
• lerp(t, a, b) = (1 − t) a + t b

• Smooth interpolation

• fade(t) =

{

3t2 − 2t3 for original noise

10t3 − 15t4 + 6t5 for improved noise

• flerp(t, a, b) = lerp(fade(t), a, b)



Introduction & Background Modifications Conclusion

Interpolate

• Interpolate nearest 2n gradient functions

• 2D noise(~p) is influenced by
~pi + (0, 0) ; ~pi + (0, 1) ; ~pi + (1, 0) ; ~pi + (1, 1)

• Linear interpolation
• lerp(t, a, b) = (1 − t) a + t b

• Smooth interpolation

• fade(t) =

{

3t2 − 2t3 for original noise

10t3 − 15t4 + 6t5 for improved noise

• flerp(t, a, b) = lerp(fade(t), a, b)



Introduction & Background Modifications Conclusion

Interpolate

• Interpolate nearest 2n gradient functions

• 2D noise(~p) is influenced by
~pi + (0, 0) ; ~pi + (0, 1) ; ~pi + (1, 0) ; ~pi + (1, 1)

• Linear interpolation
• lerp(t, a, b) = (1 − t) a + t b

• Smooth interpolation

• fade(t) =

{

3t2 − 2t3 for original noise

10t3 − 15t4 + 6t5 for improved noise

• flerp(t, a, b) = lerp(fade(t), a, b)



Introduction & Background Modifications Conclusion

Interpolate

• Interpolate nearest 2n gradient functions

• 2D noise(~p) is influenced by
~pi + (0, 0) ; ~pi + (0, 1) ; ~pi + (1, 0) ; ~pi + (1, 1)

• Linear interpolation
• lerp(t, a, b) = (1 − t) a + t b

• Smooth interpolation

• fade(t) =

{

3t2 − 2t3 for original noise

10t3 − 15t4 + 6t5 for improved noise

• flerp(t, a, b) = lerp(fade(t), a, b)



Introduction & Background Modifications Conclusion

Interpolate

• Interpolate nearest 2n gradient functions

• 2D noise(~p) is influenced by
~pi + (0, 0) ; ~pi + (0, 1) ; ~pi + (1, 0) ; ~pi + (1, 1)

• Linear interpolation
• lerp(t, a, b) = (1 − t) a + t b

• Smooth interpolation

• fade(t) =

{

3t2 − 2t3 for original noise

10t3 − 15t4 + 6t5 for improved noise

• flerp(t, a, b) = lerp(fade(t), a, b)



Introduction & Background Modifications Conclusion

Interpolate

• Interpolate nearest 2n gradient functions

• 2D noise(~p) is influenced by
~pi + (0, 0) ; ~pi + (0, 1) ; ~pi + (1, 0) ; ~pi + (1, 1)

• Linear interpolation
• lerp(t, a, b) = (1 − t) a + t b

• Smooth interpolation

• fade(t) =

{

3t2 − 2t3 for original noise

10t3 − 15t4 + 6t5 for improved noise

• flerp(t, a, b) = lerp(fade(t), a, b)



Introduction & Background Modifications Conclusion

Interpolate

• Interpolate nearest 2n gradient functions

• 2D noise(~p) is influenced by
~pi + (0, 0) ; ~pi + (0, 1) ; ~pi + (1, 0) ; ~pi + (1, 1)

• Linear interpolation
• lerp(t, a, b) = (1 − t) a + t b

• Smooth interpolation

• fade(t) =

{

3t2 − 2t3 for original noise

10t3 − 15t4 + 6t5 for improved noise

• flerp(t, a, b) = lerp(fade(t), a, b)



Introduction & Background Modifications Conclusion

Interpolate

• Interpolate nearest 2n gradient functions

• 2D noise(~p) is influenced by
~pi + (0, 0) ; ~pi + (0, 1) ; ~pi + (1, 0) ; ~pi + (1, 1)

• Linear interpolation
• lerp(t, a, b) = (1 − t) a + t b

• Smooth interpolation

• fade(t) =

{

3t2 − 2t3 for original noise

10t3 − 15t4 + 6t5 for improved noise

• flerp(t, a, b) = lerp(fade(t), a, b)



Introduction & Background Modifications Conclusion

Interpolate

• Interpolate nearest 2n gradient functions

• 2D noise(~p) is influenced by
~pi + (0, 0) ; ~pi + (0, 1) ; ~pi + (1, 0) ; ~pi + (1, 1)

• Linear interpolation
• lerp(t, a, b) = (1 − t) a + t b

• Smooth interpolation

• fade(t) =

{

3t2 − 2t3 for original noise

10t3 − 15t4 + 6t5 for improved noise

• flerp(t, a, b) = lerp(fade(t), a, b)



Introduction & Background Modifications Conclusion

Interpolate

• Interpolate nearest 2n gradient functions

• 2D noise(~p) is influenced by
~pi + (0, 0) ; ~pi + (0, 1) ; ~pi + (1, 0) ; ~pi + (1, 1)

• Linear interpolation
• lerp(t, a, b) = (1 − t) a + t b

• Smooth interpolation

• fade(t) =

{

3t2 − 2t3 for original noise

10t3 − 15t4 + 6t5 for improved noise

• flerp(t, a, b) = lerp(fade(t), a, b)



Introduction & Background Modifications Conclusion

Hash

• n-D gradient function built from 1D components

g(~pi )

• Both original and improved use a permutation table hash

• Original: g is a table of unit vectors

• Improved: g is derived from bits of final hash



Introduction & Background Modifications Conclusion

Hash

• n-D gradient function built from 1D components

g(hash(X , Y , Z ))

• Both original and improved use a permutation table hash

• Original: g is a table of unit vectors

• Improved: g is derived from bits of final hash



Introduction & Background Modifications Conclusion

Hash

• n-D gradient function built from 1D components

g(hash(Z + hash(Y + hash(X ))))

• Both original and improved use a permutation table hash

• Original: g is a table of unit vectors

• Improved: g is derived from bits of final hash



Introduction & Background Modifications Conclusion

Hash

• n-D gradient function built from 1D components

g(hash(Z + hash(Y + hash(X ))))

• Both original and improved use a permutation table hash

• Original: g is a table of unit vectors

• Improved: g is derived from bits of final hash



Introduction & Background Modifications Conclusion

Hash

• n-D gradient function built from 1D components

g(hash(Z + hash(Y + hash(X ))))

• Both original and improved use a permutation table hash

• Original: g is a table of unit vectors

• Improved: g is derived from bits of final hash



Introduction & Background Modifications Conclusion

Outline

Introduction & Background

Modifications
Corner Gradients
Factorization
Hash

Conclusion



Introduction & Background Modifications Conclusion

Gradient Vectors of n-D Noise

• Original: on the surface of a n-sphere
• Found by hash of ~pi into gradient table

• Improved: at the edges of an n-cube
• Found by decoding bits of hash of ~pi



Introduction & Background Modifications Conclusion

Gradient Vectors of n-D Noise

• Original: on the surface of a n-sphere
• Found by hash of ~pi into gradient table

• Improved: at the edges of an n-cube
• Found by decoding bits of hash of ~pi



Introduction & Background Modifications Conclusion

Gradients of noise(x,y,0) or noise(x,0)

• Why?
• Cheaper low-D noise matches slice of higher-D
• Reuse textures (for full noise or partial computation)

• Original: new short gradient vectors

• Improved: gradients in new directions
• Possibly including 0 gradient vector!



Introduction & Background Modifications Conclusion

Gradients of noise(x,y,0) or noise(x,0)

• Why?
• Cheaper low-D noise matches slice of higher-D
• Reuse textures (for full noise or partial computation)

• Original: new short gradient vectors
• Improved: gradients in new directions

• Possibly including 0 gradient vector!



Introduction & Background Modifications Conclusion

Gradients of noise(x,y,0) or noise(x,0)

• Why?
• Cheaper low-D noise matches slice of higher-D
• Reuse textures (for full noise or partial computation)

• Original: new short gradient vectors
• Improved: gradients in new directions

• Possibly including 0 gradient vector!



Introduction & Background Modifications Conclusion

Solution?

• Observe: use gradient function, not vector alone

grad = g x x + g y y + g z z

• In any integer plane, fractional z = 0

grad = g x x + g y y + 0

• Any choice keeping projection of vectors the same will work
• Improved noise uses cube edge centers
• Instead use cube corners!



Introduction & Background Modifications Conclusion

Solution?

• Observe: use gradient function, not vector alone

grad = g x x + g y y + g z z

• In any integer plane, fractional z = 0

grad = g x x + g y y + 0

• Any choice keeping projection of vectors the same will work
• Improved noise uses cube edge centers
• Instead use cube corners!



Introduction & Background Modifications Conclusion

Solution?

• Observe: use gradient function, not vector alone

grad = g x x + g y y + g z z

• In any integer plane, fractional z = 0

grad = g x x + g y y + 0

• Any choice keeping projection of vectors the same will work
• Improved noise uses cube edge centers
• Instead use cube corners!



Introduction & Background Modifications Conclusion

Solution?

• Observe: use gradient function, not vector alone

grad = g x x + g y y + g z z

• In any integer plane, fractional z = 0

grad = g x x + g y y + 0

• Any choice keeping projection of vectors the same will work
• Improved noise uses cube edge centers
• Instead use cube corners!



Introduction & Background Modifications Conclusion

Solution?

• Observe: use gradient function, not vector alone

grad = g x x + g y y + g z z

• In any integer plane, fractional z = 0

grad = g x x + g y y + 0

• Any choice keeping projection of vectors the same will work
• Improved noise uses cube edge centers
• Instead use cube corners!



Introduction & Background Modifications Conclusion

Corner Gradients

• Simple binary selection from hash bits
±x ,±y ,±z

• Perlin mentions “clumping” for corner gradient selection
• Not very noticeable in practice
• Already happens in any integer plane of improved noise



Introduction & Background Modifications Conclusion

Corner Gradients

• Simple binary selection from hash bits
±x ,±y ,±z

• Perlin mentions “clumping” for corner gradient selection
• Not very noticeable in practice
• Already happens in any integer plane of improved noise

Edge Centers Corner



Introduction & Background Modifications Conclusion

Separable Computation

• Like to store computation in texture
• Texture sampling 3-4x highest frequency

• 1D & 2D OK size, 3D gets big, 4D impossible

• Factor into lower-D textures
• (e.g. write noise(~px , ~py , ~pz) as several x/y terms)



Introduction & Background Modifications Conclusion

Separable Computation

• Like to store computation in texture
• Texture sampling 3-4x highest frequency

• 1D & 2D OK size, 3D gets big, 4D impossible

• Factor into lower-D textures
• (e.g. write noise(~px , ~py , ~pz) as several x/y terms)



Introduction & Background Modifications Conclusion

Separable Computation

• Like to store computation in texture
• Texture sampling 3-4x highest frequency

• 1D & 2D OK size, 3D gets big, 4D impossible

• Factor into lower-D textures
• (e.g. write noise(~px , ~py , ~pz) as several x/y terms)



Introduction & Background Modifications Conclusion

Separable Computation

• Like to store computation in texture
• Texture sampling 3-4x highest frequency

• 1D & 2D OK size, 3D gets big, 4D impossible

• Factor into lower-D textures
• (e.g. write noise(~px , ~py , ~pz) as several x/y terms)



Introduction & Background Modifications Conclusion

Separable Computation

• Like to store computation in texture
• Texture sampling 3-4x highest frequency

• 1D & 2D OK size, 3D gets big, 4D impossible

• Factor into lower-D textures
• (e.g. write noise(~px , ~py , ~pz) as several x/y terms)

noise(~px , ~py , ~pz) = flerp(z ,xyz-term+xyz-term ∗ z

xyz-term+xyz-term ∗ (z − 1))



Introduction & Background Modifications Conclusion

Separable Computation

• Like to store computation in texture
• Texture sampling 3-4x highest frequency

• 1D & 2D OK size, 3D gets big, 4D impossible

• Factor into lower-D textures
• (e.g. write noise(~px , ~py , ~pz) as several x/y terms)

noise(~px , ~py , ~pz) = flerp(z ,xy-term(Z0)+xy-term(Z0) ∗ z

xy-term(Z1)+xy-term(Z1) ∗ (z − 1))



Introduction & Background Modifications Conclusion

Factorization Details

noise(~p) = flerp(z ,zconst(~px , ~py , Z0)+zgrad(~px , ~py , Z0) ∗ z ,

zconst(~px , ~py , Z1)+zgrad(~px , ~py , Z1) ∗ (z − 1))

• With nested hash,

zconst(~px , ~py , Z0)= zconst(~px , ~py + hash(Z0))
zgrad (~px , ~py , Z0)= zgrad (~px , ~py + hash(Z0))

• With corner gradients, zconst = noise!



Introduction & Background Modifications Conclusion

Factorization Details

noise(~p) = flerp(z ,zconst(~px , ~py , Z0)+zgrad(~px , ~py , Z0) ∗ z ,

zconst(~px , ~py , Z1)+zgrad(~px , ~py , Z1) ∗ (z − 1))

• With nested hash,

zconst(~px , ~py , Z0)= zconst(~px , ~py + hash(Z0))
zgrad (~px , ~py , Z0)= zgrad (~px , ~py + hash(Z0))

• With corner gradients, zconst = noise!



Introduction & Background Modifications Conclusion

Factorization Details

noise(~p) = flerp(z ,zconst(~px , ~py , Z0)+zgrad(~px , ~py , Z0) ∗ z ,

zconst(~px , ~py , Z1)+zgrad(~px , ~py , Z1) ∗ (z − 1))

• With nested hash,

zconst(~px , ~py , Z0)= zconst(~px , ~py + hash(Z0))
zgrad (~px , ~py , Z0)= zgrad (~px , ~py + hash(Z0))

• With corner gradients, zconst = noise!



Introduction & Background Modifications Conclusion

Perlin’s Hash

• 256-element permutation array

• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise



Introduction & Background Modifications Conclusion

Perlin’s Hash

• 256-element permutation array

• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise



Introduction & Background Modifications Conclusion

Perlin’s Hash

• 256-element permutation array

• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise



Introduction & Background Modifications Conclusion

Perlin’s Hash

• 256-element permutation array

• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise



Introduction & Background Modifications Conclusion

Perlin’s Hash

• 256-element permutation array

• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise



Introduction & Background Modifications Conclusion

Perlin’s Hash

• 256-element permutation array

• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise



Introduction & Background Modifications Conclusion

Perlin’s Hash

• 256-element permutation array

• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise



Introduction & Background Modifications Conclusion

Perlin’s Hash

• 256-element permutation array

• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise



Introduction & Background Modifications Conclusion

Alternative Hash

• Many choices; I kept 1D chaining

• Desired features
• Low correlation of hash output for nearby inputs
• Computable without lookup

• Use a random number generator?
• Seed
• Successive calls give uncorrelated values



Introduction & Background Modifications Conclusion

Alternative Hash

• Many choices; I kept 1D chaining

• Desired features
• Low correlation of hash output for nearby inputs
• Computable without lookup

• Use a random number generator?
• Seed
• Successive calls give uncorrelated values



Introduction & Background Modifications Conclusion

Alternative Hash

• Many choices; I kept 1D chaining

• Desired features
• Low correlation of hash output for nearby inputs
• Computable without lookup

• Use a random number generator?
• Seed
• Successive calls give uncorrelated values



Introduction & Background Modifications Conclusion

Random Number Generator Hash

• Hash argument is seed
• Most RNG are highly correlated for nearby seeds

• Hash argument is number of times to call
• Most RNG are expensive (or require n calls) to get nth number
• Should noise(30) be 30 times slower than noise(1)?

permute table hash using seed=X



Introduction & Background Modifications Conclusion

Random Number Generator Hash

• Hash argument is seed
• Most RNG are highly correlated for nearby seeds

• Hash argument is number of times to call
• Most RNG are expensive (or require n calls) to get nth number
• Should noise(30) be 30 times slower than noise(1)?

permute table hash using X th random number



Introduction & Background Modifications Conclusion

Blum-Blum Shub

xn+1 = x2
i mod M

M = product of two large primes

• Uncorrelated for nearby seeds...

• But large M is bad for hardware...

• But reasonable results for smaller M...

• And square and mod is simple to compute!

523*527



Introduction & Background Modifications Conclusion

Blum-Blum Shub

xn+1 = x2
i mod M

M = product of two large primes

• Uncorrelated for nearby seeds...

• But large M is bad for hardware...

• But reasonable results for smaller M...

• And square and mod is simple to compute!

523*527



Introduction & Background Modifications Conclusion

Blum-Blum Shub

xn+1 = x2
i mod M

M = product of two large primes

• Uncorrelated for nearby seeds...

• But large M is bad for hardware...

• But reasonable results for smaller M...

• And square and mod is simple to compute!

523*527



Introduction & Background Modifications Conclusion

Blum-Blum Shub

xn+1 = x2
i mod M

M = product of two large primes

• Uncorrelated for nearby seeds...

• But large M is bad for hardware...

• But reasonable results for smaller M...

• And square and mod is simple to compute!

29*31



Introduction & Background Modifications Conclusion

Blum-Blum Shub

xn+1 = x2
i mod M

M = product of two large primes

• Uncorrelated for nearby seeds...

• But large M is bad for hardware...

• But reasonable results for smaller M...

• And square and mod is simple to compute!

61



Introduction & Background Modifications Conclusion

Modified Noise

• Square and mod hash
• M = 61

• Corner gradient selection
• One 2D texture for both 1D and 2D

• Factor
• Construct 3D and 4D from 2 or 4 2D texture lookups



Introduction & Background Modifications Conclusion

Comparison

Perlin original Perlin improved

Corner gradients Corner+Hash



Introduction & Background Modifications Conclusion

Using Noise

3D noise 3D turbulence

Wood Marble



Introduction & Background Modifications Conclusion

Outline

Introduction & Background

Modifications

Conclusion



Introduction & Background Modifications Conclusion

Conclusions

• Three (mostly) independent modifications to Perlin noise
• Corner gradient: can subset noise

• noise(x) = noise(x,0)
• noise(x,y) = noise(x,y,0)

• Factorization: can superset noise

• build 3D noise out of 2D
• build 4D noise out of 3D

• Computed hash

• lookup-free noise
• avoid potentially costly chained lookups

• Admit a range of choices for texture vs. compute



Introduction & Background Modifications Conclusion

Conclusions

• Three (mostly) independent modifications to Perlin noise
• Corner gradient: can subset noise

• noise(x) = noise(x,0)
• noise(x,y) = noise(x,y,0)

• Factorization: can superset noise

• build 3D noise out of 2D
• build 4D noise out of 3D

• Computed hash

• lookup-free noise
• avoid potentially costly chained lookups

• Admit a range of choices for texture vs. compute



Introduction & Background Modifications Conclusion

Conclusions

• Three (mostly) independent modifications to Perlin noise
• Corner gradient: can subset noise

• noise(x) = noise(x,0)
• noise(x,y) = noise(x,y,0)

• Factorization: can superset noise

• build 3D noise out of 2D
• build 4D noise out of 3D

• Computed hash

• lookup-free noise
• avoid potentially costly chained lookups

• Admit a range of choices for texture vs. compute



Introduction & Background Modifications Conclusion

Conclusions

• Three (mostly) independent modifications to Perlin noise
• Corner gradient: can subset noise

• noise(x) = noise(x,0)
• noise(x,y) = noise(x,y,0)

• Factorization: can superset noise

• build 3D noise out of 2D
• build 4D noise out of 3D

• Computed hash

• lookup-free noise
• avoid potentially costly chained lookups

• Admit a range of choices for texture vs. compute



Introduction & Background Modifications Conclusion

Future Work

• Other computed hash functions?

• Extend to simplex noise

• Extend to other hash-based primitives
• Tiled texture
• Worley cellular textures

• Further explore turbulence & fBm
• Can we pre-bake the octaves together?



Introduction & Background Modifications Conclusion

Questions?

www.umbc.edu/˜olano/noise



Green, S. (2005).
Implementing improved Perlin noise.
In Pharr, M., editor, GPU Gems 2, chapter 26.
Addison-Wesley.

Hart, J. C. (2001).
Perlin noise pixel shaders.
In Akeley, K. and Neumann, U., editors, Graphics Hardware

2001, pages 87–94, Los Angeles, CA.
SIGGRAPH/EUROGRAPHICS, ACM, New York.

Lastra, A., Molnar, S., Olano, M., and Wang, Y. (1995).
Real-time programmable shading.
In I3D ’95: Proceedings of the 1995 symposium on Interactive

3D graphics. ACM Press.

Perlin, K. (1985).
An image synthesizer.



In SIGGRAPH ’85: Proceedings of the 12th annual conference

on Computer graphics and interactive techniques, pages
287–296. ACM Press.

Perlin, K. (2001).
Noise hardware.
In Olano, M., editor, Real-Time Shading SIGGRAPH Course

Notes.

Perlin, K. (2002).
Improving noise.
In SIGGRAPH ’02: Proceedings of the 29th annual conference

on Computer graphics and interactive techniques, pages
681–682. ACM Press.

Perlin, K. (2004).
Implementing improved Perlin noise.
In Fernando, R., editor, GPU Gems, chapter 5.
Addison-Wesley.


	Introduction & Background
	Noise?
	Perlin noise

	Modifications
	Corner Gradients
	Factorization
	Hash

	Conclusion
	Appendix

