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Noise Characteristics
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• Same argument always produces same value
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Gradient Noise

• Original Perlin noise [Perlin, 1985]
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• Value=0 at integer lattice points
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Hardware Noise

• Value noise
• PixelFlow [Lastra et al., 1995]
• Perlin Noise Pixel Shaders [Hart, 2001]
• Noise textures

• Gradient noise
• Hardware [Perlin, 2001]
• Complex composition [Perlin, 2004]
• Shader implementation [Green, 2005]
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Noise Details

• Subclass of gradient noise

• Original Perlin
• Perlin Improved
• All of our proposed modifications
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Find the Lattice

• Lattice-based noise: must find nearest lattice points

• Point ~p = (~px , ~py , ~pz)

• has integer lattice location
~pi = (⌊~px⌋, ⌊~py⌋, ⌊~pz⌋) = (X , Y , Z )

• and fractional location in cell
~pf = ~p − ~pi = (x , y , z)



Introduction & Background Modifications Conclusion

Find the Lattice

• Lattice-based noise: must find nearest lattice points

• Point ~p = (~px , ~py , ~pz)

• has integer lattice location
~pi = (⌊~px⌋, ⌊~py⌋, ⌊~pz⌋) = (X , Y , Z )

• and fractional location in cell
~pf = ~p − ~pi = (x , y , z)



Introduction & Background Modifications Conclusion

Find the Lattice

• Lattice-based noise: must find nearest lattice points

• Point ~p = (~px , ~py , ~pz)

• has integer lattice location
~pi = (⌊~px⌋, ⌊~py⌋, ⌊~pz⌋) = (X , Y , Z )

• and fractional location in cell
~pf = ~p − ~pi = (x , y , z)

X

Y



Introduction & Background Modifications Conclusion

Find the Lattice

• Lattice-based noise: must find nearest lattice points

• Point ~p = (~px , ~py , ~pz)

• has integer lattice location
~pi = (⌊~px⌋, ⌊~py⌋, ⌊~pz⌋) = (X , Y , Z )

• and fractional location in cell
~pf = ~p − ~pi = (x , y , z)

x

yX

Y



Introduction & Background Modifications Conclusion

Gradient

• Random vector at each lattice point is a function of ~pi

g(~pi )

• A function with that gradient

grad(~p) = g(~pi ) • ~pf

= g x(~pi ) ∗ x + g y (~pi ) ∗ y + g z(~pi ) ∗ z
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Interpolate

• Interpolate nearest 2n gradient functions

• 2D noise(~p) is influenced by
~pi + (0, 0) ; ~pi + (0, 1) ; ~pi + (1, 0) ; ~pi + (1, 1)

• Linear interpolation
• lerp(t, a, b) = (1 − t) a + t b

• Smooth interpolation

• fade(t) =

{

3t2 − 2t3 for original noise

10t3 − 15t4 + 6t5 for improved noise

• flerp(t, a, b) = lerp(fade(t), a, b)
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• Original: on the surface of a n-sphere
• Found by hash of ~pi into gradient table

• Improved: at the edges of an n-cube
• Found by decoding bits of hash of ~pi
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Gradients of noise(x,y,0) or noise(x,0)
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• Cheaper low-D noise matches slice of higher-D
• Reuse textures (for full noise or partial computation)

• Original: new short gradient vectors

• Improved: gradients in new directions
• Possibly including 0 gradient vector!
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Solution?

• Observe: use gradient function, not vector alone

grad = g x x + g y y + g z z

• In any integer plane, fractional z = 0

grad = g x x + g y y + 0

• Any choice keeping projection of vectors the same will work
• Improved noise uses cube edge centers
• Instead use cube corners!
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• Already happens in any integer plane of improved noise
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• Like to store computation in texture
• Texture sampling 3-4x highest frequency

• 1D & 2D OK size, 3D gets big, 4D impossible

• Factor into lower-D textures
• (e.g. write noise(~px , ~py , ~pz) as several x/y terms)
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Factorization Details

noise(~p) = flerp(z ,zconst(~px , ~py , Z0)+zgrad(~px , ~py , Z0) ∗ z ,

zconst(~px , ~py , Z1)+zgrad(~px , ~py , Z1) ∗ (z − 1))

• With nested hash,

zconst(~px , ~py , Z0)= zconst(~px , ~py + hash(Z0))
zgrad (~px , ~py , Z0)= zgrad (~px , ~py + hash(Z0))

• With corner gradients, zconst = noise!
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• 256-element permutation array

• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise



Introduction & Background Modifications Conclusion

Perlin’s Hash

• 256-element permutation array

• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise



Introduction & Background Modifications Conclusion

Perlin’s Hash

• 256-element permutation array

• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise



Introduction & Background Modifications Conclusion

Perlin’s Hash

• 256-element permutation array

• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise



Introduction & Background Modifications Conclusion

Perlin’s Hash

• 256-element permutation array

• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise



Introduction & Background Modifications Conclusion

Perlin’s Hash

• 256-element permutation array

• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise



Introduction & Background Modifications Conclusion

Perlin’s Hash

• 256-element permutation array

• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise



Introduction & Background Modifications Conclusion

Perlin’s Hash

• 256-element permutation array

• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise



Introduction & Background Modifications Conclusion

Alternative Hash

• Many choices; I kept 1D chaining

• Desired features
• Low correlation of hash output for nearby inputs
• Computable without lookup
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Random Number Generator Hash

• Hash argument is seed
• Most RNG are highly correlated for nearby seeds

• Hash argument is number of times to call
• Most RNG are expensive (or require n calls) to get nth number
• Should noise(30) be 30 times slower than noise(1)?

permute table hash using seed=X
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xn+1 = x2
i mod M

M = product of two large primes

• Uncorrelated for nearby seeds...

• But large M is bad for hardware...

• But reasonable results for smaller M...

• And square and mod is simple to compute!
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• And square and mod is simple to compute!
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Modified Noise

• Square and mod hash
• M = 61

• Corner gradient selection
• One 2D texture for both 1D and 2D

• Factor
• Construct 3D and 4D from 2 or 4 2D texture lookups
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Comparison

Perlin original Perlin improved

Corner gradients Corner+Hash
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Using Noise

3D noise 3D turbulence

Wood Marble
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Conclusions

• Three (mostly) independent modifications to Perlin noise
• Corner gradient: can subset noise

• noise(x) = noise(x,0)
• noise(x,y) = noise(x,y,0)

• Factorization: can superset noise

• build 3D noise out of 2D
• build 4D noise out of 3D

• Computed hash

• lookup-free noise
• avoid potentially costly chained lookups

• Admit a range of choices for texture vs. compute
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Future Work

• Other computed hash functions?

• Extend to simplex noise

• Extend to other hash-based primitives
• Tiled texture
• Worley cellular textures

• Further explore turbulence & fBm
• Can we pre-bake the octaves together?
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Questions?

www.umbc.edu/˜olano/noise
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