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Figure 1: On the left is one frame of an elephant animation visualizing estimated curvature. Blue indicates concave areas, red indicates
convex areas, and green indicates saddle-shape areas. The middle is using surface curvature to approximate ambient occlusion. On the right
is an orange volume with ∼1.5 billion vertices with Lambertian shading and ambient occlusion which we estimate curvature on in 39.3 ms.

Abstract

Surface curvature is used in a number of areas in computer graph-
ics, including texture synthesis and shape representation, mesh sim-
plification, surface modeling, and non-photorealistic line drawing.
Most real-time applications must estimate curvature on a triangular
mesh. This estimation has been limited to CPU algorithms, forcing
object geometry to reside in main memory. However, as more com-
putational work is done directly on the GPU, it is increasingly com-
mon for object geometry to exist only in GPU memory. Examples
include vertex skinned animations and isosurfaces from GPU-based
surface reconstruction algorithms.

For static models, curvature can be pre-computed and CPU algo-
rithms are a reasonable choice. For deforming models where the
geometry only resides on the GPU, transferring the deformed mesh
back to the CPU limits performance. We introduce a GPU algo-
rithm for estimating curvature in real-time on arbitrary triangular
meshes. We demonstrate our algorithm with curvature-based NPR
feature lines and a curvature-based approximation for ambient oc-
clusion. We show curvature computation on volumetric datasets
with a GPU isosurface extraction algorithm and vertex-skinned ani-
mations. Our curvature estimation is up to∼18x faster than a multi-
threaded CPU benchmark.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation; I.3.3 [Computer Graph-
ics]: Three-Dimensional Graphics and Realism—Color, shading,
shadowing, and texture

Keywords: real-time rendering, GPU, geometry shader, curvature,
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1 Introduction
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Surface curvature is used in many areas in computer graphics, in-
cluding texture synthesis and shape representation [Gorla et al.
2003]; mesh simplification [Heckbert and Garland 1999]; surface
modeling [Moreton and Séquin 1992]; and artistic line drawing
methods, such as suggestive contours [DeCarlo et al. 2003], appar-
ent ridges [Judd et al. 2007], and demarcating curves [Kolomenkin
et al. 2008]. These methods operate on a discrete polygonal repre-
sentation of a continuous surface and must estimate curvature.

Recent research has looked at accelerating ambient occlusion
[Zhukov et al. 1998; Landis 2002] for real-time use [Loos and
Sloan 2010; McGuire 2010] even on dynamic models [Kontkanen
and Alia 2006; Kirk and Arikan 2007]. Hattori et al. [2010] use a
quadric surface approximation to analytically solve for ambient oc-
clusion. The quadric approximation requires estimated curvature.

Video games often use vertex-blended animations where a pose
mesh is transferred to the GPU once and then modified each frame
such that the transformed mesh exists only on the GPU. Given the
strict real-time requirements of video games, transferring animated
models to the CPU to estimate curvature is too costly.

GPU Computing has increased the performance of scientific simu-
lation computations and visualizations. When working with volu-
metric data, these applications might run a GPU-based surface re-
construction algorithm that generates an isosurface that only exists
on the GPU. With GPU memory increasing, GPUs can store higher
resolution volumes or more time steps of time-varying datasets. In
situations where an isosurface needs to be computed for every time
step or recomputed interactively, extraction on a GPU can offer im-
proved performance for visualizing the data in real-time.

Algorithms exist to estimate curvature in real-time on deforming
models, but the methods either work in image-space [Kim et al.
2008] or require a pre-processing step to learn the curvature func-
tion with training data [Kalogerakis et al. 2009]. While both tech-
niques are useful, the ability to estimate curvature in object-space
and without pre-processing would provide much greater flexibility.

We introduce a GPU algorithm for estimating curvature that works
in object-space and does not require any pre-processing. Given an
arbitrary triangular mesh in GPU memory, our algorithm can esti-
mate the curvature on the mesh in real-time. Since our algorithm
runs completely on the GPU and works on triangular meshes, it can
be easily adapted to existing rendering systems.

To demonstrate our algorithm, we implement an ambient occlusion



approximation based on Hattori et al. [2010], a vertex-blending an-
imation system [Akenine-Möller et al. 2008] and a GPU-based iso-
surface computation system.

The specific contributions of this paper are:

• A GPU algorithm to compute principal curvatures, principal
directions of curvature, and the derivative of curvature.

• A CUDA marching cubes algorithm that creates fused ver-
tices.

• A demonstration of curvature-based NPR feature lines and
curvature-based ambient occlusion approximation.

The rest of the paper is organized as follows: Section 2 covers back-
ground and related work, Section 3 discusses our algorithm, and
Section 4 presents our results.

2 Background and Related Work

Our system combines curvature estimation, ambient occlusion esti-
mation, line drawing, and isosurface reconstruction.

2.1 Curvature

Below we briefly discuss curvature and refer the reader to O’Neill
[2006] for more detail and relevant proofs of theorems.

At a point p on an continuous, oriented surface M, curvature de-
scribes how the scale of the tangent plane changes around p. An
oriented surface is a surface where a consistent direction for the
normal vector at each point has been chosen. Surface normals are
considered first-order structure of smooth surfaces: at p a normal
vector Np defines a tangent plane Tp(M) to a surface M.

Curvature is typically defined in terms of the shape operator Sp(u),
which is the rate of change of a unit normal vector field, U , on the
surface M in the direction u, which is a tangent vector at p.

Sp(u) = −∇uU (1)

The shape operator is a symmetric linear operator such that

Sp(u) · v = Sp(v) · u (2)

for any pair of tangent vectors u and v to M at p [O’Neill 2006].

Since the shape operator is a symmetric linear operator, it can be
written as a 2×2 symmetric matrix, S, for each p given an orthonor-
mal basis. This matrix has real eigenvalues, λ1 and λ2 (principal
curvatures), and eigenvectors, v1 and v2 (principal directions).

Gauss Curvature, K, and Mean Curvature, H , are then defined as:

K(p) = λ1λ2 = det S (3)

H(p) = 1
2
(λ1 + λ2) = 1

2
trace S (4)

Another way to represent curvature is normal curvature, k(u). A
theorem relates normal curvature to the shape operator:

k(u) = S(u) · u (5)

The maximum and minimum of k(u) at p are principal curvatures,
k1 and k2, and the directions in which the maximum and minimum
occur are principal directions. Normal curvature is second-order
structure and defines a quadric approximation to M at p:

z = 1
2
(k1x

2 + k2y
2) (6)

The second fundamental form is defined using the shape operator:

II(u,v) = S(u) · v (7)

II is also called the curvature tensor and can be written using the
directional derivatives of normals [Rusinkiewicz 2004]:

II(u,v) =
(
Dun Dvn

)
=

(
∂n
∂u
· u ∂n

∂v
· u

∂n
∂u
· v ∂n

∂v
· v

)
(8)

2.2 Curvature Estimation

On a discrete surface curvature must be estimated and there has
been substantial work in estimating surface curvature [Taubin 1995;
Petitjean 2002; Goldfeather and Interrante 2004; Rusinkiewicz
2004; Tong and Tang 2005]. Gatzke and Grimm [2006] divide
the algorithms into three groups: surface fitting methods, discrete
methods that approximate curvature directly, and discrete methods
that estimate the curvature tensor. In the group that estimates the
curvature tensor, Rusinkiewicz [2004] and Theisel et al. [2004] esti-
mate curvature on a triangular mesh at each vertex using differences
of surface normals (Equation 8) and then average the per-face ten-
sor over each adjacent face to the vertex. These algorithms have
been limited to running on the CPU where the algorithm can access
adjacent faces (the one-ring neighborhood of the vertex).

Recently Kim et al. [2008] introduced an image-based technique
that estimates curvature in real-time on the GPU. Their method
traces rays based on the normals at a point to estimate the direc-
tion of curvature. Kalogerakis et al. [2009] also present a real-time
method for estimating curvature specifically on animated models.
Their method requires a mesh with parameterized animations, such
as per-frame transformation matrices. A pre-processing step learns
a mapping from the parameterization to curvature. Given a map-
ping, their algorithm predicts curvature in real-time on an unseen
set of animation parameters.

2.3 Ambient Occlusion

Ambient occlusion (AO) is “shadowing” of ambient illumination
due to local occlusion either by other objects or by self-occlusion.
Introduced by Zhukov et al. [1998] as one part of ambient obscu-
rance, AO has been extensively researched for use in dynamic en-
vironments with static models. The approaches can be divided into
screen-space methods [Mittring 2007; Bavoil et al. 2008; Kajalin
2009; Bavoil and Sainz 2009] or world-space methods [Kontkanen
and Laine 2005; McGuire 2010; Loos and Sloan 2010].

Ambient occlusion is formulated as the integral of a visibility func-
tion over the positive hemisphere at each point on a surface:

AO = 1− 1

π

∫
Ω+

V (x, ω) · (ω̂i · n̂)dω̂i (9)

Screen-space methods are able to compute AO on deforming
meshes simply because the algorithm runs as a post-process on
every frame. Little work exists on real-time computation of AO
directly on deforming meshes. Kontkanen and Aila [2006] use
pre-computed AO values at each vertex for a set of reference pose
meshes. By learning a mapping from animation parameters to AO
values, the algorithm can approximate AO on unseen pose meshes.
Where Kontkanen and Aila learn a linear mapping over the entire
parameterization space, Kirk and Arikan [2007] learn a multilinear
mapping over subsets of the parameterization space using k-means
clustering and principal component analysis.

Building on Hattori et al. [2010], we take a different approach for
computing AO on deforming meshes. Using normal curvature, a



surface can be approximated with a quadric at each discrete point
(Equation 6). We can now analytically solve for AO using this
quadric defined by k1 and k2 and a unit-radius positive hemisphere:

AO(k1, k2) = 1− 1

2π

∫ 2π

0

∫ Θ

0

sinθ̂idθ̂idφ̂i (10)

Θ = arccos

(
−1 +

√
1−A2

A

)
(11)

A = k1cos
2φ̂i + k2sin

2φ̂i (12)

The 1/2π term scales the double integral to the range (0, 1).

2.4 Line Drawing

Line drawing algorithms can be subdivided into two classes: image-
based and object-based. Image-based techniques rasterize the scene
and use image processing techniques to find surface properties, find
feature lines, and to estimate curvature. Image-based algorithms are
easier to implement than object-based methods but have some de-
ficiencies. First, image-based algorithms must handle neighboring
pixels that are not part of the same object. Second, the algorithms
are limited to the resolution of the image and cannot account for
sub-pixel detail. Temporal coherence can also be an issue and the
shower-door effect must be managed. Finally, stylization can be
difficult as feature lines are not represented with geometry.

Object-based methods typically use second- and third-order surface
properties to extract feature lines directly from a polygonal model in
world-space. Object-based techniques such as suggestive contours
[DeCarlo et al. 2003], apparent ridges [Judd et al. 2007], and de-
marcating curves [Kolomenkin et al. 2008] can be divided into two
groups: view-dependent and view-independent. View-dependent
methods include the viewing direction when extracting feature lines
while view-independent methods do not. These techniques must es-
timate curvature on a mesh in object-space.

2.5 Isosurface Reconstruction

Surface reconstruction is one of the most frequently used meth-
ods to analyze and visualize volumetric data. Marching cubes
[Lorensen and Cline 1987] is the most widely used algorithm for
computing a triangular surface or model from volumetric data.
Treece et al. [1999] use a variation of marching cubes, marching
tetrahedra, that is easier to implement and handles non-gridded
data. Geiss [2007] introduces a marching cubes implementation
using the programmable graphics pipeline. To improve the speed
of his implementation, he introduces a method for pooling vertices
and creating an indexed triangle list. Our parallel algorithm does
require shared vertices, but we also want to support varying voxel
sizes and Geiss’ method is limited to a fixed voxel size. We intro-
duce (Section 3.3) a CUDA marching cubes algorithm that uses a
hash map to fuse vertices.

3 Parallel Algorithm

Our algorithm is based on the CPU algorithm by Rusinkiewicz
[2004]. Rusinkiewicz creates a set of linear constraints to solve for
curvature over a single face. The constraints use the differences be-
tween normals along edges (Equation 8) and are solved using least
squares. To find the curvature at a vertex, the per-face curvatures of
each adjacent face are averaged together.

The algorithm is composed of several iterative steps that can be
grouped based on the type of input to each step: per-face or per-
vertex. Each step builds on the computation from the previous step,

but within each step the computation is independent over the input.
Our parallel algorithm exploits this computational independence to
parallelize the work within each step. The steps are:

1. Normals. Normals at each vertex are computed by averaging
the per-face normals of the one-ring.

2. Areas. A weighting is calculated to determine how much a
face contributes to each of the three vertices.

3. Initial Coordinates. An orthonormal basis is generated at
each vertex to rotate the curvature tensor.

4. Curvature Tensor. An over-specified linear system for the
tensor of a face is created using Equation 8 and solved using
LDLT decomposition and least squares fit. The tensor is ro-
tated into a local coordinate system at each vertex using the
orthonormal basis and weighted by the area of the vertex. The
weighted tensors are summed across the one-ring to compute
the averaged curvature tensor at each vertex.

5. Principal Directions. The curvature tensor is diagonalized by
the Jacobi method and estimates eigenvalues (principal curva-
tures) and eigenvectors (principal directions).

6. Curvature Differential. The principal curvature differential
at each vertex is estimated using linear constraints based on
principal curvatures and averaging across the one-ring.

3.1 Computational Primitives

Based on the previous discussion, we define two computational
primitives to implement our algorithm: a per-vertex primitive and
a per-face primitive with the output averaged or summed over the
one-ring. In a parallel algorithm, the data parallel threads will be
distributed across both processors and time. Data written by one
thread that will be read in another thread must force a barrier for
all threads to complete. Our per-vertex computations are indepen-
dent and need no barrier, but our per-face computations, which are
averaged or summed, require synchronization.

3.2 Primitive Implementation

There are two possibilities for implementing our computational
primitives on the GPU: with the general purpose APIs such as
CUDA or with shaders in the graphics pipeline. Functionally, either
choice is equivalent, as they both execute on the same hardware.
The primary differences in the approaches relative to this work are
more flexible shared memory access in CUDA and special purpose
hardware for blending in the graphics pipeline.

The algorithm needs to sum across several threads, which could be
accomplished with a CUDA atomic add or graphics pipeline blend-
ing. In either case a pass or kernel barrier must be introduced be-
fore using the results. The writes to the output buffers cannot be
constrained to a single thread block, so a CUDA implementation
would need a full kernel synchronization point, not just the lighter-
weight syncthreads barrier. In contrast, GPUs have special hard-
ware for blending to output buffers (render targets) with dedicated
Arithmetic Logic Units (ALUs) optimized for throughput.

Curvature estimation is a geometric problem. Treating it as such,
i.e. using the geometric pipeline, allows use of the more efficient
blending hardware to synchronize access instead of atomic opera-
tions accompanied by an immediate kernel end. Additionally, when
the geometry already exists in a format that the graphics pipeline
expects, i.e. indexed vertex buffers, using the pipeline automatically
handles setting up the geometry for the shader instances.
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Figure 2: The contribution of the one-ring neighborhood of a ver-
tex is averaged by blending into a single pixel of a render target. A
single vertex with the one-ring of faces is indicated by the dashed
circle. The same vertex from each face is mapped as a point primi-
tive to a single pixel of a render target.

There are cases, however, when a general purpose API is the better
choice. We describe in Section 3.3 a marching cubes CUDA imple-
mentation where there is no benefit to using the geometric pipeline.
In fact, we implement a hash map to fuse vertices while extracting
the isosurface using the atomic operations in CUDA.

Given our choice to compute curvature using the graphics pipeline,
the per-vertex primitive is implemented in a vertex shader and the
per-face primitive is implemented in a geometry shader that outputs
a set of point primitives for each vertex of the face. Note that ad-
jacency information provided as input to a geometry shader does
not provide access to the one-ring of a vertex. Since the operation
across the one-ring is either averaged or summed, the computation
can be accomplished by using additive blending into a render target.

Figure 2 shows how each vertex in a mesh is mapped to a single
pixel in a render target. Inside a geometry shader, the per-face com-
putation is output as a point primitive. The point primitives are then
written to a render target in a pixel shader program using additive
blending, where the current value in the shader is added to the ex-
isting value in the target. Using this technique, the algorithm can
easily average or sum values of the one-ring neighborhood around
a vertex. This mapping technique requires input meshes with fused
vertices. In Section 3.3 we describe a GPU vertex fusing algorithm
applied to GPU marching cubes.

3.3 Input Transformations

We support two types of input: volumetric datasets and skinned
animation. Isosurface Extraction computes an isosurface for a
volumetric dataset and Skin transforms vertex-skinned animations.

Isosurface Extraction. For a volumetric dataset we first compute
an isosurface using a CUDA marching cubes implementation that
outputs an indexed, fused triangle list to support mapping the one-
ring around each vertex in our curvature algorithm.

After classifying the voxels and determining the number of ver-
tices per voxel, two sequential kernels are run: a triangle kernel and
an index kernel. The triangle kernel generates the vertex buffer, a
“full” index buffer with each vertex separately indexed, and a hash
buffer with each vertex separately hashed. We sort the hash and in-
dex buffers as key/value pairs using radix sort [Satish et al. 2009].
Figure 3 shows the buffers both before and after sorting.

To fuse vertices, the index kernel uses the hash buffer to locate the
first index of a vertex in the vertex buffer and outputs that index to
the fused index buffer. After generating a reference vertex and hash,
the kernel uses binary search to find the reference hash in the hash
buffer. As Figure 3 shows, there will be duplicate hash keys due to
both duplicate vertices and hash collisions. The binary search will
terminate somewhere within the set of duplicate hash keys (thick

a b c b d c e f g b c h i f j k c Vertex Buffer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Index Buffer

V Q T Q Q T Y Q Z Q T S U Q R W T Hash Buffer

1 3 4 7 9 13 14 11 2 5 10 16 12 0 15 6 8 Sorted IB

Q Q Q Q Q Q R S T T T T U V W Y Z Sorted HB

Binary Search

Collision Resolution

Figure 3: Vertex, index, and hash buffers before and after radix
sorting used in Isosurface Extraction. The yellow columns are one
set of duplicate vertices. The blue columns are a second set of dupli-
cate vertices. The red columns are a third set of duplicate vertices
where the hash collides with the blue columns. The green column
is also a hash collision with the blue and red columns.
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Figure 4: Algorithm flowchart. See Section 3.4 for discussion.
black line in the figure). Once the binary search completes, the
algorithm iterates backwards in the hash buffer (thick brown line)
to find the first instance of the hash code. The index of this hash
instance is returned from the binary search algorithm.

After the binary search, the index kernel must deal with hash col-
lisions. As the blue, green, and red columns in Figure 3 show, the
collisions are not guaranteed to be sorted. The binary search returns
the position of the first hash code in the hash buffer. To resolve
collisions, the index kernel iterates forward in the hash buffer, de-
referencing the value in the vertex buffer and comparing it to the
reference vertex (green and red lines in the figure). Once the ver-
tices match, the forward iterative search terminates and the corre-
sponding value in the index buffer is output as the vertex index.

Skin. For an animated or static model we use a vertex shader to
skin each vertex based on a set of keyframe matrices. The deformed
vertices are written to a new buffer via stream out.

3.4 GPU Curvature Algorithm

Figure 4 is a flowchart of our parallel algorithm. Since each step of
the algorithm described in Section 3 builds on the computation from
the previous step, synchronization points between each step of our
algorithm are necessary. Given our implementation choice of the



graphics pipeline blending hardware, the synchronization barrier
between each step is a pass through the pipeline.

Each pass, shown on the left in Figure 4, is an instance of one of
the computational primitives described in Section 3.1. The passes
with square-corners average or sum the output over the one-ring
neighborhood, while the passes with round-corners do not. Render
targets are shown on the right in italics font.

Normals & Areas. The curvature algorithm requires high quality
vertex normals. Since the input data may be changing every frame,
this pass recomputes vertex normals and areas for each face in a
geometry shader. Each vertex normal is the weighted average of
face normals across the one-ring. Like Rusinkiewicz [2004], vertex
area is the Voronoi area described by Meyer et al. [2003]. Using the
one-ring computation technique described in Section 3.1, the face
normals of the one-ring at a vertex are averaged together and the
areas of the one-ring are summed. The vertex normals and areas
are packed into a single four-channel render target.

Initial Coordinates. An orthonormal basis for each vertex is re-
quired to transform the curvature tensor of a face into a local coor-
dinate system. If the bases were computed as needed, then different
faces sharing a vertex would use a different basis. This pass com-
putes a single constant basis at each vertex in a geometry shader
which writes each vector to a separate four-channel render target.

Curvature Tensor. To estimate the curvature tensor at each vertex,
a geometry shader uses least squares to solve a linear system created
with the differences of normals along the edges of a face (Equation
8). Using the one-ring computation technique, the weighted tensor
at each face is averaged across the one-ring to estimate the curvature
tensor at a vertex. The tensor is three floating-point values and is
stored in a four-channel render target.

Principal Directions. This pass computes minimum and maximum
curvatures and principal directions in a vertex shader with no aver-
aging. The minimum curvature and principal direction are packed
into one four-channel render target and the maximum curvature and
principal direction are packed into a second render target.

Curvature Differential. The derivative of principal curvatures is
estimated in a geometry shader. The derivative is essentially a third-
order property, incorporating information from a two-ring around
the vertex (i.e. a one-ring of data computed on a one-ring around
a vertex). Thus, the differences of principal curvatures along the
edge of a face are used in Equation 8 instead of the differences of
normals. The per-face differentials are averaged over the one-ring
of faces. The derivative of principal curvatures is represented with a
four-component floating-point value and the Tensor & Differential
render target is reused.

3.5 Approximating Ambient Occlusion

One application of estimated curvature is to approximate ambient
occlusion. Like Hattori et al. [2010], we pre-compute ambient oc-
clusion using Equation 11 for values of curvature where the quadric
is concave in both directions. We then create a lookup texture in-
dexed by minimum and maximum principal curvatures that can be
used directly in a pixel shader. To save a texture lookup, however,
we take the diagonal of the lookup texture and fit a second-degree
polynomial to the values:

AO = 1.0− 0.0022 ∗ (k1 + k2) + 0.0776 ∗ (k1 + k2) + 0.7369

The ambient term in a lighting equation is then multiplied by the
ambient occlusion term AO to darken the ambient illumination.
Equation 11 used a unit-radius hemisphere, but we can approxi-
mate varying the radius of the hemisphere by scaling the minimum

Figure 5: Four frames of a vertex-blended animation of an ele-
phant. The top row and right column are close-ups of the elephant’s
front legs. Notice the shadow behind the front knee in the top-left
frame disappears in the top-right frame as the leg straightens. In
the bottom-right frame the shadow begins to lightly reappear.

and maximum principal curvatures. Scaling the curvature values
makes the quadric approximation more or less flat, which has the
same effect as decreasing or increasing hemisphere radius.

3.6 Drawing Lines

Another application of estimated curvature is to extract and stroke
occluding and suggestive contours on the input data. Feature lines
are extracted in segments that are created per-face in the geometry
shader as line primitives that are rasterized by the hardware. The
extracted line segments do not have a global parameterization so
any stylized stroking of the segments cannot rely on a parameteri-
zation. We leave stylized strokes for future work.

4 Results

4.1 Performance

Tables 1 and 2 and Figure 6 show that our parallel curvature algo-
rithm achieves real-time performance for small- to medium-sized
models, even on an older-generation consumer GPU. Results are
shown for three different NVIDIA GPUs. To benchmark our algo-
rithm, we took an existing CPU algorithm and threaded it to run
in parallel. The CPU algorithm was run on a Core2 Quad Q8200
workstation with 8GB of RAM and each core running at 2.33GHz.
The implementation used one thread per core, for a total of four
threads on the workstation, to execute the algorithm.

Table 1 shows extraction and algorithm times for various volumet-
ric datasets on the Quadro FX5800. Even on a surface with ∼1.5
billion vertices, our curvature algorithm runs in 39.3 milliseconds,
although the surface extraction does take considerably longer.

Table 2 shows memory usage and frame times for models. The
GeForce 9800GT and Quadro FX5800 results are at 1200×1600
resolution and the GTX480 results are at 1920×1200 resolution.
All results use hardware 8×MSAA.



Fr
am

e
Ti

m
e

(m
s)

0

70

140

210

280

350

Vertices (1K)
0 100 200 300

R
el

at
iv

e
Sp

ee
du

p

0
2
4
6
8

10
12
14
16
18
20

Vertices (1K)
8.4 35.9 42.3 131 286.7

Figure 6: Frame times and relative speedup for curvature estima-
tion on the non-animated models. Red is a multi-threaded CPU
algorithm at 1280×1024 resolution, yellow is an NVIDIA GeForce
9800GT, blue is an NVIDIA Quadro FX5800 both at 1600×1200,
and green is an NVIDIA GTX480 at 1920×1200.

Model Vertices Iso Extraction AO Lines S+L Alg
value (ms) (ms) (ms) (ms) (ms)

bucky 47,208 0.095 32.375 3.4 3.7 3.7 3.3
H atom 113,256 0.095 78.750 4.1 4.6 4.6 4.1
spheres 436,668 0.110 284.875 12.8 15.0 15.0 12.8
orange 1,558,788 0.150 924.125 39.4 46.9 46.9 39.3

Table 1: Frame times for different volumes on the NVIDIA Quadro
FX5800. AO is the ambient occlusion approximation. Lines is
drawing line primitives. S+L is Lambertian shading with ambient
occlusion and drawing lines. Alg is only the curvature algorithm.

For the largest animated model, our curvature estimation algorithm
runs in 2.9 milliseconds (344 frames per second) on the GTX480.
Even on the GeForce 9800GT, our algorithm still runs in 11.9 mil-
liseconds (84 frames per second). The frame times on the Quadro
FX5800 and GTX480 indicate that our curvature algorithm scales
well with increasing hardware resources. Even on the largest model
with ∼286,000 vertices, our curvature algorithm runs in 18.3 mil-
liseconds (54 frames per second) on the GTX480.

The RAM column in Table 2 lists the memory usage for the geom-
etry buffers and render targets for each model. The memory usage
is independent of the screen resolution or anti-aliasing quality.

4.2 Curvature Estimation Error

To verify the accuracy of our parallel algorithm, we compare our
results to a baseline CPU estimation algorithm on a torus model.
Table 3 lists the maximum absolute error over the entire torus mesh.

Rusinkiewicz [2004] compares the robustness and accuracy of his
CPU algorithm to other estimation algorithms. Our parallel algo-
rithm is based on his CPU algorithm, so the error we report here
is the error introduced by our GPU implementation. As Table 3
shows, the absolute errors are very small. To visualize where the
errors are occurring, we have scaled the absolute error and mapped
the error at each vertex to the torus mesh (Figure 7).

FX5800 9800GT FX5800 9800GT
Max Error Max Error Max Error Max Error

Max Dir 1.406×10−6 4.34×10−7 Deriv 1 9.512×10−5 7.07×10−5

Max Crv 7.391×10−6 3.34×10−6 Deriv 2 3.198×10−5 3.47×10−5

Min Dir 1.281×10−6 4.17×10−7 Deriv 3 2.933×10−5 2.67×10−5

Min Crv 4.053×10−6 2.50×10−6 Deriv 4 4.163×10−5 4.13×10−5

Gauss 1.574×10−5 1.10×10−5 Mean 5.007×10−6 1.91×10−6

Table 3: Maximum absolute error in the curvature attributes.

5 Conclusions and Future Work

We have presented a GPU algorithm for estimating curvature in
real-time on arbitrary triangular meshes along with results show-
ing real-time performance in a vertex-skinned animation and GPU
isosurface extraction system. We demonstrate the use of real-time
curvature estimation for approximating ambient occlusion and ex-
tracting silhouette and occluding contours.

Including additional types of contours, such as apparent ridges
[Judd et al. 2007], is an obvious extension of our work. Because
the algorithm outputs line primitives from the geometry shader, it
can coexist nicely with the algorithm of Cole et al. [2009] for line
visibility and stylization. Finally, the extracted line segments do
not have any global parameterization, so stroking stylized lines is
another area of future work.
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Figure 7: Scaled absolute error in the curvature attributes on the Quadro FX5800 compared to a CPU estimation ground truth.

Figure 8: On the left, a hydrogen atom volumetric data set with Lambertian shading and ambient occlusion. In the middle, is the orange
mesh on which our curvature algorithm runs in 39.3 ms (25 fps) and our GPU surface extraction runs in 928 ms. On the right, is a bucky ball
with Lambertian shading and ambient occlusion.
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Figure 9: The bucky ball volume with two iso values and principal curvatures. On the right, is a color map for the visualization of principal
curvatures. Blue represents concave areas, red represents convex areas, and green represents saddle-shape areas.

Figure 10: On the left, the camel model with principal curvatures. In the middle, the horse model showing the principal directions of
minimum (blue lines) and maximum (brown lines) curvature. On the right, is the heptoroid model. The top image shows occluding and
suggestive contours with Lambertian shading, while the bottom image shows values of principal curvature.


