
Eurographics Symposium on Parallel Graphics and Visualization (2008)
J. Favre, K. - L. Ma, and D. Weiskopf (Editors)

Parallel Longest Common Subsequence using Graphics
Hardware

J. Kloetzli1 B. Strege1 J. Decker2 M. Olano1

1UMBC ({jk3,bstreg1,olano}@umbc.edu)
2US Naval Research Lab (decker@ait.nrl.navy.mil)

Abstract

We present an algorithm for solving the Longest Common Subsequence problem using graphics hardware accel-
eration. We identify a parallel memory access pattern which enables us to run efficiently on multiple layers of
parallel hardware by matching each layer to the best sub-algorithm, which is determined using a mix of theoreti-
cal and experimental data including knowledge of the specific hardwareand memory structure of each layer. We
implement a linear-space, cache-coherent algorithm on the CPU, usinga two-level algorithm on the GPU to com-
pute subproblems quickly. The combination of all three running on a CPU/GPU pair is a fast, flexible and scalable
solution to the Longest Common Subsequence problem. Our design method is applicable to other algorithms in
the Gaussian Elimination Paradigm, and can be generalized to more levels ofparallel computation such as GPU
clusters.

1. Introduction

Dynamic programming (DP) algorithms solve a vast set of
optimization problems in computer science. This class of al-
gorithms is based upon the principle of the time/space trade-
off, and typically leans towards using more space in order
to reduce the asymptotic complexity of an algorithm. The
fundamental observation about DP algorithms is that they
recursively break the problem up into overlapping subprob-
lems, storing the answer to the subproblems for later refer-
ence. If the subproblems overlap enough, then the time com-
plexity can be reduced drastically, typically from exponen-
tial to polynomial. Some of the most efficient of these al-
gorithms for single processors belong to the cache-oblivious
model [CR06], in which algorithms do not need knowledge
of cache and memory sizes to perform efficiently.

Computer graphics hardware, specifically the consumer
available Graphics Processing Unit (GPU), is a massively
parallel processor used in conjunction with the CPU which
provides substantial computing power. In addition, the cost
for GPU processors is significantly lower than comparable
CPU clusters. These advantages have lead to the popularity
of General-Purpose GPU (GPGPU) applications, or those
which apply the power of the GPU to solve non-graphics

problems. NVIDIA has recently released a software devel-
opment kit called CUDA specifically to support GPGPU
applications [NVI07]. Research in this area consists of de-
vising parallel algorithms specifically for GPU architecture
[OLG∗05] in an attempt to minimize the constant factors in
running time.

Although specific DP algorithms have been implemented
in graphics hardware, little or no work has been done to de-
scribe a general mapping of DP algorithms (or a significant
subset therof) onto GPU-style architectures. Our concurrent
goals in this paper are to describe our Longest Common
Subsequence algorithm as an efficient GPGPU solution to a
specific problem on NVIDIA hardware, and also to present
an algorithmic design pattern for creating GPGPU solutions
for a class of DP algorithms called the Gaussian Elimination
Paradigm on any graphics hardware.

2. Related Work

Dynamic programming is a powerful theoretical technique
for solving a certain class of optimization problems in poly-
nomial time. However, if greater practical efficiency is de-
sired, acceleration can be achieved by creating parallel DP
solutions. While such solutions do not improve asymp-

c© The Eurographics Association 2008.

J. Kloetzli, B. Strege, J. Decker & M. Olano / Parallel LCS using Graphics Hardware

totic performance, reductions in algorithmic constant fac-
tors can lead to nontrivial performance improvements. Galil
and Park designed parallel versions of four algorithms for
a CREW (Concurrent Read Exclusive Write) PRAM (Par-
allel Random Access Machine) model of parallel computa-
tion [GP91], reporting optimal sublinear-time for three of the
four resulting algorithms. Canto et al. implemented parallel
dynamic programming algorithms on a network of worksta-
tions enabled with message passing capability [CdMB05].
They reported that their system was able to scale to 12-15
processors, but noted that unavoidable load balancing issues
hindered system performance.

There has also been work in developing GPU-accelerated
versions of specific dynamic programming algorithms. Liu
and Schmidt [LSVMW07] compare a large number of very
short sequences efficiently on the GPU by computing multi-
ple sequences in parallel. Because they have multiple unre-
lated tasks to perform, they are able to achieve very high uti-
lization of the GPU processors and report speedup of over an
order of magnitude. Since they are only interested in finding
similar sequences, they only reconstruct the actual match-
ing subsequences for a small number of the comparisons.
Schatz et al. [STDV07] presented a GPU accelerated se-
quence alignment software package called MUMmerGPU.
They pre-process a single long sequence millions of base
pairs (bp) long into a suffix-tree data structure which allows
them to process many small sequence (800 bp or less) align-
ments in parallel. They achieve a 3-4x speedup for their en-
tire application runtime.

Another important research direction for dynamic pro-
gramming is the development of linear-space DP algorithms.
Solving for the LCS of large sequences, such as genetic data
which can consist of millions of characters, is not practical
given theO(n2) memory requirement of the naïve DP al-
gorithm. Hirschberg [Hir75] proposed the first linear space
dynamic programming algorithm for LCS, making genomic-
length comparisons possible. However, Hirschberg’s linear
method was susceptible to cache thrashing, resulting in sub-
optimal performance. Chowdhury and Ramachandran pre-
sented a cache-oblivious framework for algorithms within
a subset of DP algorithms they termed the Gaussian Elim-
ination Paradigm (GEP). This paradigm describes all algo-
rithms with similar construction to the method for solving
Gaussian Elimination without pivoting [CR06]. The GEP in-
cludes dynamic programming algorithms such as Edit Dis-
tance, LCS and Matrix Multiplication. By efficiently using
memory cache, Chowdhury and Ramachandran were able to
achieve faster performance on LCS than Hirschberg.

In addition, Chowdhury et al. have presented a parallel
implementation of their cache-oblivious GEP framework.
They define the maximum number of processors which can
be used efficiently in parallel as a function of the input size.
Unfortunately, this function scales poorly with sequence
length, and thus the maximum amount of parallelization is

fairly low, even for large sequences. Given this, it would
not be reasonable to implement their method on the GPU
without modification, as the massively parallel GPU archi-
tecture would not be used effectively. Instead, we implement
a highly parallelizable algorithm for solving subproblems of
their framework. This enables us to retain their high perfor-
mance on the CPU while fully exploiting the highly parallel
GPU hardware.

The GPU architecture has unique benefits and challenges.
First, the GPU was designed to fit a very specific paral-
lel application (rasterized rendering of computer graphics
images) and so does not fit exactly into one of the com-
mon parallel architecture categories. Recently, GPU manu-
facturers have released programming APIs which expose the
underlying processors of the GPU without having to work
through a graphics-oriented interface. Our work is based on
one of these frameworks, called the Compute Unified De-
vice Architecture (CUDA), from NVIDIA [NVI07]. We use
the documentation released with the CUDA API heavily to
determine how to efficiently program on their hardware.

3. Background

In the following section, we provide some explanation about
the concepts and problems behind our work.

3.1. Longest Common Subsequence

Longest Common Subsequence is a problem that has appli-
cations in a number of fields. Given two sequences X and Y
of lengths n and m respectively, the solution is the longest
ordered series of elements that X and Y have in common.
Note that this definition does not require that elements be
contiguous in either sequence, simply that they be in order.
The recursive definition of LCS is:

LCS(X1...i ,Y1··· j)

=



















0 if i = 0 or j = 0

LCS(X1...i−1,Y1··· j−1)+1 if xi = yi

MAX

(

LCS(X1...i−1,Y1··· j),

LCS(X1...i ,Y1··· j−1)

)

otherwise

(1)

LCS is sometimes used in biology to determine similarity
between genetic sequences. Our main focus is to use LCS
as a representative problem from the Gaussian Elimination
Paradigm in order to have a concrete problem to study. In
theory, many problems from the GEP could be accelerated
by our method, although the amount of acceleration may
vary. We choose to solve this particular problem because it
is simple to implement, easy to understand, and has practical
applications.

The Cache-Oblivious Model of computation is similar to

c© The Eurographics Association 2008.

J. Kloetzli, B. Strege, J. Decker & M. Olano / Parallel LCS using Graphics Hardware

the Turing model, except it introduces a finite-size cache
tape between the processor and the turing tape. The func-
tion of this cache is similar to a cache in the RAM model
which most computers follow, acting as a buffer between the
turing tape and the machine. Cache-Oblivious algorithms are
designed to work efficiently without knowledge of the cache
tape length, removing the need to tweak parameters based
upon the specific architecture on which code is being exe-
cuted. Although the Cache-Oblivious model assumes fully-
associative cache, which is generally not implemented in ac-
tual hardware, and perfect cache replacement policy, which
is impossible, Cache-Oblivious algorithms are still efficient
on real processors.

3.2. The NVIDIA G80 Architecture

NVIDIA recently released a new parallel graphics hard-
ware architecture called the G80, along with a framework
for General Purpose GPU (GPGPU) programming called
the Compute Unified Device Architecture (CUDA). The
G80 we used has 16 processing units, which each have
8 cores clocked at 1.3GHz, and has 768MB of onboard
DDR3 RAM. In order to meet the memory requirement for
each processor, GPU hardware has several memory spaces
with different attributes. Our fundamental design strategy in-
volves determining algorithms to run efficiently in each of
these memory spaces, so understanding their performance
characteristics is crucial to our design.

The Global memory space is read-write, allocated from
the onboard RAM, and accessible from any processor at
any time. In order to avoid conflicts global memory is not
cached, making it the slowest type of memory to access.
Constantmemory is read-only, resides in a special mem-
ory block which can be read by any processor at any time,
and is cached in each processor independently. This mem-
ory must be set by the CPU before executing GPU code, and
has very limited size (around 64kb). The final type, called
Sharedmemory, is very fast read-write memory located on
each multiprocessor chip and only accessible by the cores of
that particular multiprocessor. The purpose of shared mem-
ory is to hold frequently used data close to the multiproces-
sor for as long as possible before writing back out to the
global memory.

4. Algorithm Description

The method which we developed accelerates the linear space
method by Chowdhury et al. by solving fixed-sized subprob-
lems very quickly on the GPU. One advantage this approach
has over parallelizing their algorithm directly is that we can
use any algorithm which maps well onto the GPU instead of
being limited to a specific algorithm. As long as the maxi-
mum size subproblems solved is a constant we still achieve
linear space with potentially significant acceleration. This
gives us the freedom to find a design which maximizes the
potential of graphics hardware architectures.

4.1. Basic Structure

One possible approach to solving the LCS recurrence from
Equation1 is to view alogical matrix for all the solutions
of the recurrence, where each element of the matrix is refer-
enced by the valuesi and j on the left hand side of the equa-
tion. The solution to the problem then requires two steps: a
memoizationphase which loops over every element of the
matrix to fill in the solutions, and areconstructionphase
which uses the values in the matrix to trace out the longest
subsequence. The memoization stage gives the length of the
LCS, but reconstruction must be performed in order to ob-
tain the actual subsequence values. Formulated in this way
the entire logical matrix would have to be stored in memory
at the same time, which requiresO(n2) space. This method
is very fast for small sequences, and more advanced algo-
rithms (including the Chowdhury algorithm) use it as a base
case for small subproblems. The pseudocode for solving the
LCS problem in this way is given in the SIMPLE-LCS
pseudocode as follows:

SIMPLE-LCS(subsequencesaax...ay, bbx...by, input boundaryB)
1 Store input boundary in physical matrixm
2 r← ay−ax
3 for i← 1 to r
4 do for j← 1 to r
5 do execute Equation1 onm[i][j]
6 return output boundary of physical matrixm

The Chowdhury et al. algorithm, which is represented by
the pseudocode CH-LCS , is the current fastest sequential
linear-space LCS algorithm. The main idea is to divide the
logical matrix into quadrants in a specific way to allow de-
termination of the longest subsequence path while only re-
taining a linear number of cells in memory at a given time.

CH-LCS(subsequencesaax...ay, bbx...by, input boundaryB)
1 r← ay−ax
2 if r ≤CUTOFF
3 then run SIMPLE-LCS on input subsequences
4 else CH-LCS on input subsequences inTOP LEFT
5 CH-LCS on input subsequences inTOP RIGHT
6 CH-LCS on input subsequences inBOTTOM LEFT
7 CH-LCS on input subsequences inBOTTOM RIGHT
8 return output boundary from quadrant output sections

Note the calls to SIMPLE-LCS to solve subproblems
which fall below a certain cutoff size, which they determined
experimentally to be between 28 and 210 depending on the
specific architecture used. Our accelerated version of their
algorithm is shown in GPU-LCS as:

GPU-LCS(subsequencesaax...ay, bbx...by, input boundaryB)
1 r← ay−ax

c© The Eurographics Association 2008.

J. Kloetzli, B. Strege, J. Decker & M. Olano / Parallel LCS using Graphics Hardware

Figure 1: The three levels of parallelism present on the
GPU, and levels of the logical LCS matrix mapped to each
one. GPU Level 1 parallelism is stored in the global memory
of the GPU according to a quadratic-space matrix folding
technique. GPU Level 2 parallelism is stored in the shared
memory of one multiprocessor on the GPU, and is computed
with a linear space method. Each base case is computed by
one of the threads (cores) of the multiprocessor.

2 if r ≤CUTOFF
3 then run SIMPLE-LCS on input subsequences
4 else if r ≤ GPUCUTOFF
5 then GPU-LEVEL-ONE on input subsequences
6 else GPU-LCS if in TOP LEFT
7 GPU-LCS if in TOP RIGHT
8 GPU-LCS if in BOTTOM LEFT
9 GPU-LCS if in BOTTOM RIGHT

10 return output boundary from quadrant output

The difference between our algorithm and theirs at this
level of abstraction is that we have introduced a second way
to solve subproblems below a certain size very quickly on
the GPU. The maximum size problem which we can cur-
rently solve this way is 216, which is large enough to let us
offload significant portions of the algorithm. If the algorithm
needs to solve a very small problem, however, it is still more
efficient to use the CPU with the original SIMPLE-LCS
algorithm.

In the following subsections we discuss our CPU-
optimized linear space algorithm, followed by the GPU al-
gorithms and how they map onto NVIDIA hardware to max-
imize performance.

4.2. CH: CPU Linear Space DP

Our linear space implementation for calculating the LCS of
a pair of sequences on the CPU was based on the pseudocode
in [CR06] describing their Cache-Oblivious LCS algorithm.
They use 4-way partitioning to break what is called the "out-
put boundary" problem down into smaller and smaller pieces

Figure 2: On the left, order of element computation in a
4x4 logical submatrix for the output boundary problem. At
every level (i.e. 2x2, 1x1), first the upper left quadrant is fully
computed, then the upper right, lower left, and lower right.
On the right, an image of the required storage to find the
LCS for a 16x16 logical matrix. The input boundary (top
and left edges) has a space complexity ofΘ(2n+ 1). The
dark shaded regions represent the required intermediate out-
put boundaries that must be stored, with space complexity of
Θ(6n−6−3lg(n)). Total storage required for the computa-
tion of an LCS isΘ(8n−5−3lg(n)), which is linear.

until the base case size or smaller, and memoizes enough
data along the way to reconstruct the sequence once the out-
put boundaries have been computed.

4.2.1. Output Boundary

Computing the output boundary for particular subsequences
is essentially the computation of the leading edges of the
logical LCS matrix. Since the storage of intermediate LCS
matrix data is not needed for our reconstruction algorithm,
the output boundary can be computed instead from the entire
submatrix. Our algorithm for computing the output bound-
ary requires only linear space, and follows from the method
described in [CR06] as it uses 4-way partitioning. Comput-
ing the output boundary for certain subsequences requires
the input boundary – the trailing edges – of the logical LCS
matrix. As can be seen in the first image of Figure3, the in-
put boundary can easily be stored in linear space. From this
point, a sequence of "pushing" the values of the input bound-
ary in the order shown on the left side of Figure2 leads us to
the output boundary, and this never increases the size of the
physical array used to store these boundaries. At each point
that must be pushed, the generic algorithm for computing
values in the logical LCS matrix is applied. Figure3 shows
a few snapshots that an input boundary will take before be-
coming an output boundary with our algorithm.

4.2.2. Reconstruction

The output boundaries initially required to reconstruct the
LCS are shown in Figure2. Once these output boundaries
have been calculated and memoized, the reconstruction of
the LCS can begin. This works by retracing the optimal path

c© The Eurographics Association 2008.

J. Kloetzli, B. Strege, J. Decker & M. Olano / Parallel LCS using Graphics Hardware

Figure 3: Montage of four stages in computing the output boundary of a 4x4 logical submatrix with input boundary shown.
The lightened blocks show what is currently stored in physical memory, with the subscripts corresponding to their respective
array positions. The first image shows the initial state when the output boundary computation function is called. The second
image shows the first "push," where the new value is calculated based upon the standard LCS formula for the corresponding
subsequences (not shown). The third image shows an intermediate stateof the output boundary computation. The fourth and
final image shows the result of computation of the output boundary, where the output boundary is comprised of the highlighted
blocks within the original 4x4 matrix space.

back through the logical LCS matrix, and since we do not
have all of the values in the matrix recorded – which would
require quadratic space – the intermediate values must be re-
computed as the optimal path is found. Much like the com-
putation of the output boundary, our method uses 4-way par-
titioning to accomplish this retracting. We follow the algo-
rithm as described in [CR06] where the reconstruction works
by computing a small section of the optimal path, then find-
ing which adjacent quadrant this path intersects and moving
on to that quadrant. Following this method, quadrants that
do not contain a piece of the optimal path are ignored while
retracing.

The amount of space required for the initial output bound-
aries has been computed to beΘ(6n− 6− 3lg(n)). Com-
bined withΘ(2n+ 1) space which is required for the initial
input boundary, this algorithm initially requiresΘ(8n−5−
3lg(n)) space. As the retracing moves back through the log-
ical LCS matrix, we will never need to increase this amount
of space since we can store the newly computed output
boundaries in the same memory locations as the ones that
we can now discard. Therefore this algorithm also requires
only linear space, and since all of the space ever needed by
the output boundary problem is given to it by this algorithm,
our entire process of computing the LCS for two sequences
requires only linear space.

5. GPU Algorithm Description

Once the4.2 algorithm has broken the logical matrix into
subproblems below a constant threshold our GPU opti-
mized method is used to determine the output boundary very
quickly. The GPU is essentially a hierarchical processor,
since it contains processors which consist of cores. Thus,
we again break the subproblem down further, creating an al-
gorithm optimized for each specific layer of hardware. This

section provides an overview of the parallel memory access
pattern our method is based upon, followed by a discussion
of the specific optimizations performed.

5.1. Parallel Memory Access in LCS

One of the main bottlenecks of any parallel algorithm is data
access. In order to perform parallel LCS computations ef-
ficiently, we have identified a specific parallel data access
method for the logical matrix which the GPU relies upon to
avoid memory contention. Consider an×n block inside the
logical matrix divided up intom×mpieces, wheren is divis-
ible by m, forming a grid of subproblems. In order to deter-
mine how the subproblems can be solved in parallel, it is im-
portant to notice that each block(x,y) depends on(x−1,y),
(x,y−1), and(x−1,y−1). This leads us to the observation
that we can compute all blocks on onediagonalof the grid in
parallel, assuming that all earlier diagonals have been com-
puted. The bottom right of Figure4 shows the subproblem
matrix with each grid shaded according to the diagonal it
belongs to. One interesting feature of this memory pattern is
that it contains "ramp up" and "ramp down" periods at either
end, which are determined by diagonals which have fewer
blocks than available processors. In order to maintain effi-
ciency, these areas of under-utilization must be small when
compared to the entire job, which puts an effective minimum
size subproblem which is efficient. We determine these lim-
its experimentally, as described in later sections.

5.2. GPU Level 1: Quadratic Space DP

The first level of parallelism we use is a quadratic-space DP
algorithm which is run on the entire GPU. This level is called
by CH-LCS as soon as the problem is large enough to be
efficiently solved on the GPU but small enough to fit onto
graphics hardware, which has been empirically determined

c© The Eurographics Association 2008.

J. Kloetzli, B. Strege, J. Decker & M. Olano / Parallel LCS using Graphics Hardware

Figure 4: Top left: Block(x,y) requires the three shaded
areas as input boundaries. Top right: The same block has
two output boundaries. Bottom left: Each block only needs to
store its output boundary, which we fold to minimize memory
usage and memory contention. Bottom right: Depiction of
the parallel memory access pattern. All blocks on the same
diagonal (depicted as the same shade) can be computed in
parallel, given that all previous diagonals (darker shades)
have been computed.

to be sequences between 2056 and 32,256 for our hardware.
Since this algorithm is a base case for the recursiveoutput
boundary function of CH-LCS described above, it only
needs to compute the output boundary of a submatrix within
the logical matrix given the input boundary to that subma-
trix, and not the actual LCS solution. In addition, since CH-
LCS only needs to solve square subproblems with sequence
lengths which are a power of two, our implementation only
works with sequences which satisfy these two requirements,
allowing us to perform some small optimizations.

GPU Level 1 subproblems are solved in parallel by look-
ing at then×n logical matrix of the sequence and dividing it
up intomblocks in each dimension, which are solved in par-
allel according to the memory access pattern from the pre-
vious section. We loop through each diagonal, concurrently
launching one multiprocessor GPU job for each block in the
current diagonal. The values for each grid block are filled
in by the GPU Level 2 algorithm described below, which is
referred to as thread-level parallelism. The pseudocode for
this algorithm can be seen in GPU-LEVEL-ONE .

Although the GPU Level 1 method is quadratic space, it
employs a memory addressing scheme pictured in the right
of Figure4 which reduces the absolute amount of space from
Θ(n2) to Θ(2(n2)/m), wherem is the size of each block. In-
stead of using ann× n matrix to store the results, we only

store the output boundary for each grid cell. In order to com-
pute the subproblem within each grid, we need to have ac-
cess to the output boundaries of the blocks which it depends
on. Since the optimal value form was determined exper-
imentally to be 512, this memory folding scheme signifi-
cantly reduces the required memory and allows us to solve
larger subproblems. Note that this method, pictured on the
bottom left of Figure4, stores two copies of the corner output
element, allowing both requesting blocks in the next diago-
nal to be served in parallel. Given that the global memory in
the GPU is not cached, performance could suffer if memory
contention existed.

GPU-LEVEL-ONE (sequencesa, b, input boundaryB)

1 for i← 1 to 2n−1
2 do for j← 1 to diagonali size, in parallel
3 do GPU-LEVEL-TWO with block j on diagonal i
4 Store the resulting output boundary

5.3. Level 2: GPU Linear Space DP

The next level is the linear space DP algorithm which we
use to solve each grid from GPU Level 1. It uses the shared
memory space in the GPU and computes the answer for the
grid block by breaking the submatrix into blocks again. Each
one consists of a submatrix 4×4 in size and is solved by one
core of one of the multiprocessor in a sequential manner.
Since the shared memory space is almost as fast as registers,
we use a linear space algorithm which allows the largest sub-
problem possible to fit. Memory contention is not a big issue
at this scale because reads and writes are very fast.

In order to maintain the correct solution, we have to en-
force the same order property described in GPU Level 1.
While the parallel data access pattern applies to this scale
of computation, we cannot enforce the order with the CPU
at this level. Instead, we use the built-in hardware synchro-
nization of a multiprocessor; a hardware lock which only
releases when all cores have requested the lock. We launch
enough threads to compute each block of the largest diago-
nal in parallel, which is 2k+ 1 wherek = n/m. One way of
thinking of this is to assign one thread to each slot of phys-
ical memory and have it compute the blocks which happen
to fall into that slot of memory in the order enforced by the
thread synchronization. This is visualized in Figure3, where
each arrow shows the computation of one core. The algo-
rithm precedes much in the same way as in CH-LCS ex-
cept that the pushing order will be determined by diagonal
blocks instead of quadrants. The pseudocode for this algo-
rithm is given by GPU-LEVEL-TWO below.

GPU-LEVEL-TWO (sequencesa, b, input boundaryB)

1 for i← 1 to 2n−1
2 do for j← 1 to diagonali size, in parallel
3 do GPU-LEVEL-THREE with block j on diagonal i
4 Store the resulting output boundary

c© The Eurographics Association 2008.

J. Kloetzli, B. Strege, J. Decker & M. Olano / Parallel LCS using Graphics Hardware

5.4. Level 3: GPU Serial Linear Space DP

Each of the blocks in GPU Level 2 is assigned to a single
thread to compute in a serial manner. Since we are trying to
maximize the size problem which will fit onto each core, the
shared memory space containing the input boundary for each
block is the only storage space used. This is accomplished by
following the same linear space algorithm as GPU Level 2
without the parallel computation.

5.5. Analysis

This section provides basic analysis of our algorithms. We
believe that showing that both GPU algorithms are work-
efficient when compared to SIMPLE-LCS is enough to
demonstrate that they are reasonable, although a more com-
plete analysis, which we leave for future work, would also
analyze the number of processors which can be effectively
used based upon input size. The pseudocode for GPU-
LEVEL-ONE contains two loops, one for each diagonal in
the grid matrix and one for each element in the diagonal.
Given that sets of blocks which appear in the diagonal do
not intersect, this loop is going to call each diagonal in the
block exactly once. This is exactly what the SIMPLE-LCS
algorithm does, with the added constant factor overhead of
diagonal indexing instead of column/row indexing. There-
fore, GPU-LEVEL-ONE is work-efficient when compared
to SIMPLE-LCS . The proof for GPU-LEVEL-TWO is
exactly the same.

The parallel running time for both GPU-LEVEL-ONE

and GPU-LEVEL-TWO is O(n) given 2k− 1 processors
at each stage, wherek = n/m. This can be seen by the in-
ner loop in the pseudocode, which collapses to a constant
amount of time givenk processors. In this case, only the
outer loops will be executed in serial, and, since there are a
linear (2k−1) number of diagonals, this will be linear time.

6. Results and Analysis

This section presents the results we obtained from our im-
plementation, along with the parameters we found to be op-
timal. Block size for GPU Level 2 was fastest at 4, while
the optimal grid width for GPU Level 1 is 512, and the cut-
off for calling SIMPLE-LCS and GPU-LCS is between
1024 and 2048. These numbers were determined experimen-
tally after running test applications with all possible combi-
nations, and should hold for most G80-based systems.

The performance of our new algorithm can be seen in Fig-
ure5, along with the performance of the Hirschberg [Hir75]
and Chowdhury et al. methods, as experimentally deter-
mined by Chowdhury et al. [CR06]. On average, we find our
method to provide a factor of 5 to 6 times the performance of

Figure 5: Comparison of the running time of our approach
(COGPU) against the linear space LCS algorithms pro-
posed by Hirschberg (HiCPU) [Hir75] and Chowdhury et
al. (COCPU) [CR06].

the CH-LCS algorithm alone. We ran our experiments run-
ning sequentially on an AMD Athlon 64 with a single G80
GTX GPU.

6.1. Comparison to CPU parallelization

It should be noted that, even though we are comparing our
performance with the performance of the linear CH-LCS
algorithm, our algorithm is compatible with the parallel ver-
sion of CH-LCS . In fact, it is trivial to integrate the two
algorithms because GPU-LCS can be inserted into the re-
currence along with SIMPLE-LCS as a separate base case
without requiring any further work. Their parallel algorithm
divides the work for the main CH-LCS algorithm between
n processors, each of which is a standard desktop or server
CPU. In order to give a theoretical bound on the number of
processors which can be effectively used, they determine the
following function:

p(n) =
nlog2(

4
3)

2(4+ log2n)
(2)

This equation gives an exact upper bound on the num-
ber of processors which can be effectively used with their
method as a function of input size. Unfortunately,p(n)
scales very poorly. Sincep(221) ≈ 8.41, we can conclude
that sequences which are over two million elements long
(which is slightly longer than any of the results presented
above) will only be able to use eight processors effectively.
They present results for a range of algorithms which are used
in bio-informatics, achieving a maximum of a factor of six
speedup with their method running on eight server proces-
sors. Given the definition ofp(n) above, we conclude that

c© The Eurographics Association 2008.

J. Kloetzli, B. Strege, J. Decker & M. Olano / Parallel LCS using Graphics Hardware

on the sequence sizes tested in this paper, they have achieved
the maximum performance possible with their technique.

Unfortunately, data for the exact speedup for their method
applied to the LCS problem is not available, so we must
assume a speedup similar to the factor of six which was
achieved on the algorithms which were implemented. Given
this assumption, coupled with the fact that they have
achieved the theoretical maximum parallelization with an
eight-processor system, we conclude that our factor of five
speedup using a CPU + GPU architecture has a lower
cost/performance ratio. The graphics hardware which we use
costs less than $500 on the current market and require no
special support, while the eight processor cores required to
give comparable performance cost at least as much and re-
quire special motherboard support. Finally, although we did
not perform any formal analysis, it is highly likely to have
an analogousp(n) function which scales much better than
the one for their method. This can be attributed to our fo-
cus on solving fixed-size subproblems in the most efficient
way possible, instead of creating a parallel algorithm which
attempts to maintain linear space usage at all levels. In this
way our method is able to drastically increase performance
by taking advantage of the massive parallelism on the GPU.

7. Conclusion

We have developed a framework for solving dynamic pro-
gramming problems on contemporary graphics hardware.
Graphics hardware has several levels of parallelism with dif-
fering characteristics. We focus on using each level of par-
allelization in the graphics hardware efficiently by solving
subproblems of the dynamic programming recurrence dif-
ferently depending on the scale of the problem and charac-
teristics of that level of the graphics architecture. We use the-
oretical analysis to maintain the asymptotic time and space
complexity of previous algorithms while designing each part
of our algorithm to have the best performance at each level
of graphics hardware. We also use empirical data to fine-
tune boundaries between the different levels of subproblem
computation. We believe this is a powerful design strategy
for creating new and efficient GPU and GPU-cluster based
algorithms.

Utilizing multiple levels of parallelism available on the
GPU, we report over five-fold speedup of our CPU + GPU
Longest Common Subsequence algorithm over the cache-
oblivious single processor method presented by Chowdhury
and Ramachandran [CR06]. We maintain reasonable mem-
ory usage and a high degree of scalability to future hardware
based upon the NVIDIA CUDA architecture.

8. Future Work

We have only implemented LCS within our parallel frame-
work for the results in this paper. It should be possible to
extend this to other DP algorithms in the GEP, and to more

levels of parallelization. We hope that our hybrid dynamic
programming algorithm design technique based upon hard-
ware design, theoretical analysis, and empirical data will be
further investigated. In particular, we would like to see our
algorithm extended by adding another level of parallelism in
GPU cluster applications.

It would also be worthwhile to explore combining our
method of parallelism with the method described by Chowd-
hury et al. to achieve even better performance. It is pos-
sible with current hardware to run such an algorithm on
multi-CPU and multi-GPU architecture, which should pro-
vide substantially increased performance over our single
CPU and single GPU approach.

9. Acknowledgements

We’d like to thank Rezaul Alam Chowdhury for his support
and Dr. Mike Brudno for providing us with the CFTR DNA
sequence data.

References

[CdMB05] CANTO S. D.,DE MADRID A. P., BENCOMO

S. D.: Parallel dynamic programming on clusters of
workstations. IEEE Trans. Parallel Distrib. Syst. 16, 9
(2005), 785–798.

[CR06] CHOWDHURY R. A., RAMACHANDRAN V.:
Cache-oblivious dynamic programming. InSODA ’06:
Proceedings of the seventeenth annual ACM-SIAM sym-
posium on Discrete algorithm(New York, NY, USA,
2006), ACM Press, pp. 591–600.

[GP91] GALIL Z., PARK K.: Parallel Dynamic Program-
ming. Tech. Rep. CUCS-040-91, Columbia University,
1991.

[Hir75] H IRSCHBERGD. S.: A linear space algorithm for
computing maximal common subsequences.Commun.
ACM 18, 6 (1975), 341–343.

[LSVMW07] L IU W., SCHMIDT B., VOSSG., MÜLLER-
WITTIG W.: Streaming algorithms for biological se-
quence alignment on gpus.IEEE Transactions on Parallel
and Distributed System 18, 9 (2007), 1270–1281.

[NVI07] NVIDIA C ORPORATION: NVIDIA CUDA Com-
pute Unified Device Architecture : Programming Guide.
Whitepaper, NVIDIA Corporation, 2007.

[OLG∗05] OWENS J. D., LUEBKE D., GOVINDARAJU

N., HARRIS M., KRÜGERJ., LEFOHN A. E., PURCELL

T. J.: A survey of general-purpose computation on graph-
ics hardware. InEurographics 2005, State of the Art Re-
ports(Aug. 2005), pp. 21–51.

[STDV07] SCHATZ M., TRAPNELL C., DELCHER A.,
VARSHNEY A.: High-throughput sequence alignment us-
ing graphics processing units.BMC Bioinformatics 8, 1
(2007).

c© The Eurographics Association 2008.

