Tutorial Session on
 Clustering Large and High-Dimensional Data

Organizers Jacob Kogan, UMBC
Charles Nicholas, UMBC
Marc Teboulle, Tel-Aviv University

International Conference on Information and Knowledge Management - New Orleans, November 3-8, 2003

A Tutorial on Modern Optimization:
 Theory, Algorithms and Applications

Marc Teboulle
School of Mathematical Sciences
Tel-Aviv University
www.math.tau.ac.il/~teboulle

presented at

Tutorial Session on Clustering Large and High-Dimensional Data CIKM 2003
International Conference on Information and Knowledge
Management - New Orleans, November 3-8, 2003

```
Planning
Data Networks
Finance-Economics
VLSI Design
Pattern Recognition
Data Mining
Ressource Allocation
Machine Learning
Signal Processing
Tomography
Human Behavior....
```


OPTIMIZATION APPEARS TO BE PRESENT "ALMOST" EVERYWHERE....

Outline of the Talk

- Ideas and Principles
- Constrained Problems: Difficulties
- Convexity and Duality: A Working Horse in Optimization
- Some Fundamental/Useful Optimization Models

- Devising Optimization Algorithms
- Convergence and Complexity issues
- Basic Iterative Schemes for Unconstrained Problems
- Some Classical and Modern Algorithms for Constrained Problems

History of Optimization....

- Fermat (1629): Unconstrained Minimization Principle
- ...+160...Lagrange (1789) Equality Constrained Problems (Mechanics)
- Calculus of Variations, 18-19th Century [Euler, Lagrange, Legendre, Hamilton...]
- ...+150...Karush (1939), Fritz-John (47), Kuhn-Tucker (1951)
- KKT Theorem for Inequality Constraints: Modern Optimization Theory
- Engineering Applications (1960)
- Optimal Control Bellman, Pontryagin...
- Major Algorithmic Developments (50's with LP) and 60-80's for NLP
- Polynomial Interior Points Methods for Convex Optimization NesterovNemirovsky (1988)
- Combinatorial Problems via continuous approximations 90's
-More Theory, Algorithmic and much more applications A young, and vibrant area of research.

General Formulation: Nonlinear Programming

(O) minimize $\{f(x): x \in X \cap C\}$
$X \subset \mathbb{R}^{n} \equiv n$-dimensional Euclidean space, (implicit or simple constraints)
C is a set of explicit constraints described by constraints

$$
\begin{aligned}
C=\left\{x \in \mathbb{R}^{n}: g_{i}(x)\right. & \leq 0, i=1, \ldots m, \\
h_{i}(x) & =0, i=1, \ldots, p\} .
\end{aligned}
$$

All the functions in problem (O) are real valued functions on \mathbb{R}^{n}, and the set X can describe more abstract constraints of the problem.

Very Important Special Case: Unconstrained Problem $X \cap C \equiv \mathbb{R}^{n}$
(U) minimize $\left\{f(x): x \in \mathbb{R}^{n}\right\}$
Many (if not most) methods for constrained problems based on solving some type of problem (U).

Definitions and Terminology

(O) $\operatorname{minimize}\{f(x): x \in X \cap C\}$

- A point $x \in X \cap C$ is called a feasible solution of (O).
- An optimal solution is any feasible point where the local or global minimum of f relative to $X \cap C$ is actually attained.

Definition

$$
\begin{aligned}
x^{*} \text { local mininum } f\left(x^{*}\right) & \leq f(x), \forall x \in N_{\epsilon}\left(x^{*}\right) \\
x^{*} \text { global minimum } f\left(x^{*}\right) & \leq f(x), \forall x \in \mathbb{R}^{n}
\end{aligned}
$$

Note: There are also "max" problems...But $\max F \equiv-\min [-F]$

How to Solve an Optimization Problem?

- Analytically/Explicitly: Very rarely....or Never....
- We try to generate an Iterative-Descent Algorithm to approximately solve the problem to a prescribed accuracy.

Algorithm: a map $\mathcal{A}: x \rightarrow y$ (start with x to get new point y) Iterative: generate a sequence of pts calculated on prior point or points
Descent: Each new point y is such that $f(y)<f(x)$

A Powerful Algorithm!

Set $k=0$

While $x^{k} \in \mathcal{D} \equiv\{$ set of desisable Points $\}$ Do $\{$

$$
\begin{aligned}
x^{k+1} & =\mathcal{A}\left(x^{k}\right) \\
k & \leftarrow k+1\}
\end{aligned}
$$

Stop

Expected Output(s): $\left\{x^{k}\right\}$ is a minimizing sequence: as $k \rightarrow \infty$

- $f\left(x^{k}\right) \rightarrow f_{*}$, (optimal value)
- or/and even more, $x^{k} \rightarrow x^{*}$ (optimal solution)

Some Basic Questions

- How do we pick the initial starting point?
- How to construct \mathcal{A} so that x^{k} converges to optimal x^{*} ?
- How do we stop the algorithm?
- How close is the approximate solution to the optimal one? (that we do not know!)
- How sensitive is the whole process to data perturbations?
- How fast the algorithm converges to optimality?
- What is the computational cost? The complexity ?

Emerging Topics and Tools

To answer these questions, we need an appropriate mathematical foundation. For example:

- Existence of optimal solutions
- Optimality conditions
- Convexity and Duality
- Convergence and Numerical Analysis
- Error and Complexity Analysis

While each algorithm for each type of problem will often require a specific analysis (exploiting special structures of the problem), the above tools will remain essential and fundamental.

Optimality for Unconstrained Minimization

(U) $\inf \left\{f(x): x \in \mathbb{R}^{n}\right\} f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a smooth function.

Fermat Principle Let $x^{*} \in \mathbb{R}^{n}$ be a local minimum. Then,

$$
\text { 内 } \quad \nabla f\left(x^{*}\right)=0 \text {, Zero Slope }
$$

This is a First Order Necessary condition
Second Order Necessary Condition: Nonnegative curvature at x^{*}
The Hessian Matrix $\nabla^{2} f\left(x^{*}\right) \succeq 0$ positive semidefinite
Sufficient conditions for x^{*} to be a local min.
Replace $\nabla^{2} f\left(x^{*}\right) \succeq 0$ by $\nabla^{2} f\left(x^{*}\right) \succ 0$
Whenever f is assumed convex, then becomes a sufficient condition for x^{*} to be a global minimum for f.

Convexity

$S \subset \mathbb{R}^{n}$ is convex if the line segment joining any two different points of S is contained in it:

$$
\forall x, y \in S, \forall \lambda \in[0,1] \Longrightarrow \lambda x+(1-\lambda) y \in S
$$

$f: S \rightarrow \mathbb{R}$ is convex if for any $x, y \in S$ and any $\lambda \in[0,1]$,

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

A Key Fact: Local Minima are also Global under convexity

Convexity plays a fundamental role in optimization Even in Non convex problems!

Equality constraints:Lagrange Theorem

$$
\text { (E) } \min \left\{f(x): h(x)=0, x \in \mathbb{R}^{n}\right\}
$$

with $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$.

Lagrange Theorem (necessary conditions) Let x^{*} be a local minimum for problem (E). Assume:
(A) $\left\{\nabla h_{1}\left(x^{*}\right), \ldots, \nabla h_{p}\left(x^{*}\right)\right\}$ are linearly independent.

Then there exists a unique $y^{*} \in \mathbb{R}^{p}$ satisfying:

$$
\nabla f\left(x^{*}\right)+\sum_{k=1}^{p} y_{k}^{*} \nabla h_{k}\left(x^{*}\right)=0 .
$$

A system of $(n+p)$ nonlinear equations in $(n+p)$ variables $\left(x^{*}, y^{*}\right)$

Inequality constraints lead to more complications....

Inequality Constraints: The Lagrangian

$$
(P) f_{*}:=\inf \left\{f(x): g(x) \leq 0, x \in \mathbb{R}^{n}\right\}
$$

with $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are given data.
We assume that there exists a feasible solution for (P) and $f_{*} \in \mathbb{R}$.
Observation: Problem (P) is equivalent to

$$
\inf _{x \in \mathbb{R}^{n}} \sup _{y \geq 0}\{f(x)+\langle y, g(x)\rangle
$$

which leads to the Lagrangian associated with (P) $L: \mathbb{R}^{n} \times \mathbb{R}_{+}^{m} \rightarrow \mathbb{R}$:

$$
L(x, y)=f(x)+\langle y, g(x)\rangle \equiv f(x)+\sum_{i=1}^{m} y_{i} g_{i}(x)
$$

Hidden in this equivalent min-max formulation of (P) is another problem called the DUAL. This in turn is also at the origin of optimality conditions.

Definition A vector $y^{*} \in \mathbb{R}^{m}$ is called a Lagrangian multiplier for (P) if

$$
y^{*} \geq 0, \text { and } f_{*}=\inf \left\{L\left(x, y^{*}\right): x \in \mathbb{R}^{n}\right\}
$$

Lagrangian Duality

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} y_{i} g_{i}(x)
$$

and

$$
(P) \Longleftrightarrow \inf _{x \in S} \sup _{y \in \mathbb{R}_{+}^{m}} L(x, y)
$$

Suppose we can reverse the inf sup operations, that is consider

$$
\sup _{y \in \mathbb{R}_{+}^{m}} \inf _{x \in C} L(x, y)
$$

Define the Dual Function:

$$
h(y):=\inf _{x \in S} L(x, y), \quad \operatorname{dom} h=\left\{y \in \mathbb{R}^{m}: h(y)>-\infty\right\}
$$

and the Dual Problem:

$$
(D) \quad h_{*}:=\sup \left\{h(y): y \in \mathbb{R}_{+}^{m} \cap \operatorname{dom} h\right\}
$$

Note: In general the dual problem consists of simple nonnegativity constraints. But, to avoid $h(\cdot)$ to be $-\infty$, additional constraints might also emerge through $y \in \operatorname{dom} h$.

Dual problem Properties

The dual Problem Uses the same data
(D) $\quad h_{*}=\sup _{y}\left\{h(y): y \in \mathbb{R}_{+}^{m} \cap \operatorname{dom} h\right\}, \quad h(y)=\inf _{x} L(x, y)$

Properties of (P)-(D)

- Dual is always convex (ax max of concave func.)
- Weak duality holds: $f_{*} \geq h_{*}$ for any feasible pair (P)-(D)

Valid for any optimization problem. No convexity assumed or/and, any other assumptions!

Duality: Key Questions for the pair (P)-(D)

$$
f_{*}=\inf \left\{f(x): g(x) \leq 0, x \in \mathbb{R}^{n}\right\} ; h_{*}=\sup _{y}\left\{h(y): y \in \mathbb{R}_{+}^{m}\right\}
$$

- Zero Duality Gap: when $f_{*}=h_{*}$?
- Strong Duality: when inf / sup attained?
- Structure/Relations of Primal-Dual Optimal Sets/Solutions

Convex data + a Constraint Qualification,on constraints e.g.,
$\exists \hat{x} \in \mathbb{R}^{n}: g(\hat{x})<0$
deliver the answers.
Linear equality constraints can also be treated easily.
Proof based on a simple and powerful geometric argument: Any point outside a closed convex set can be separated by a hyperplane.

An Example: Least Squares Optimization

$$
\begin{aligned}
& (P) \quad \min _{x}\|A x-b\|^{2} \Longleftrightarrow \min _{x, z}\left\{\|z\|^{2}: A x-b=z\right\} \\
& \text { (D) } \quad \max \left\{\|b\|^{2}-\|y-b\|^{2}: A^{T} y=0\right\}
\end{aligned}
$$

Strong Duality holds: $\min (P)=\max (D)$
(distance to subspace $R(A))^{2}+\left(\text { distance to } N\left(A^{T}\right)\right)^{2}=\|b\|^{2}$

An Example: Least Squares Optimization

$$
\begin{gathered}
(P) \quad \min _{x}\|A x-b\|^{2} \Longleftrightarrow \min _{x, z}\left\{\|z\|^{2}: A x-b=z\right\} \\
\text { (D) } \quad \max \left\{\|b\|^{2}-\|y-b\|^{2}: A^{T} y=0\right\}
\end{gathered}
$$

Strong Duality holds: $\min (P)=\max (D)$
(distance to subspace $R(A))^{2}+\left(\text { distance to } N\left(A^{T}\right)\right)^{2}=\|b\|^{2}$

...THIS PROVES PYTHAGORAS THEOREM!

Primal-Dual Optimal Solutions

Definition The pair $\left(x^{*}, y *\right) \in S \times \mathbb{R}_{+}^{m}$ is called a saddle point for L if

$$
L\left(x^{*}, y\right) \leq L\left(x^{*}, y^{*}\right) \leq L\left(x, y^{*}\right), \quad \forall x \in S, \forall y \in \mathbb{R}_{+}^{m}
$$

Proposition (Saddle point characterization)

$$
\left(x^{*}, y^{*}\right) \in S \times \mathbb{R}_{+}^{m}
$$

is a saddle point for L iff
(a) $x^{*}=\operatorname{argmin}_{x \in S} L\left(x, y^{*}\right)$ (L-optimality)
(b) $x^{*} \in S, g\left(x^{*}\right) \leq 0$ (Primal feasibility)
(c) $y^{*} \in \mathbb{R}_{+}^{m}$ (Dual feasibility)
(d) $y_{i}^{*} g_{i}\left(x^{*}\right)=0, i=1, \ldots, m$ (Complementarity).

Note that the above is valid with 0 -assumptions on the problem's data!
Proposition (Sufficient condition for optimality) If $\left(x^{*}, y^{*}\right) \in S \times \mathbb{R}_{+}^{m}$ is a saddle point for L, then x^{*} is a global optimal solution for NLP.

Once again this result is very general and holds for any optimization problem. However for nonconvex problem it is in general difficult to find a saddle point.

The KKT Theorem

$$
(P) \quad \inf \left\{f(x): g(x) \leq 0, x \in \mathbb{R}^{n}\right\}
$$

Let x^{*} be a local minimum for problem (P) and assume that a (CQ) holds. Then there exists a Lagrange multipier $y^{*} \in \mathbb{R}_{+}^{m}$ s.t.

$$
\begin{aligned}
\nabla f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla g_{i}\left(x^{*}\right) & \left.=0, \text { [Saddle pt. in } x^{*}\right] \\
g_{i}\left(x^{*}\right) & \leq 0, \forall i \in[1, m],\left[\text { Feasibility } \equiv \text { Saddle pt. in } y^{*}\right] \\
y_{i}^{*} g_{i}\left(x^{*}\right) & =0, i=1, \ldots, m .
\end{aligned}
$$

The system of equations and inequalities is called the KKT system.
With convex data + (CQ), the KKT conditions become necessary and sufficient for global optimality...Closing the loop....Equiv. to strong duality....

Useful Convex Models: Conic Problems

$$
\min \{\langle c, x\rangle: \mathcal{A}(x)=b, x \in \mathcal{K}\}
$$

- \mathcal{K} is a closed convex cone in some finite dimensional space X
- $\langle\cdot, \cdot\rangle$ appropriate inner product on X
- \mathcal{A} is a linear map

Example: Linear Programming

$X \equiv \mathbb{R}^{n}, x \in \mathbb{R}^{n}$ decision variables
$K \equiv \mathbb{R}_{+}^{n}$, the nonnegative orthant
$A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$ and $\langle\cdot, \cdot\rangle$ the usual scalar product in \mathbb{R}^{n}
....Other Examples...?

Semidefinite Programming-Primal Dual Forms

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{m}}\left\{c^{T} x: A(x) \succeq 0\right\} \\
\max _{Z \in S_{n}}\left\{-\operatorname{tr} A_{0} Z: \operatorname{tr} A_{i} Z=c_{i}, i \in[1, m], Z \succeq 0\right\}
\end{gathered}
$$

Here

$$
A(x):=A_{0}+\sum_{i=1}^{m} x_{i} A_{i}, \text { each } A_{i} \in S_{n} \equiv \text { symmetric }
$$

- Primal : $x \in \mathbb{R}^{n}$ decision variables. $A(x) \succeq 0$ is a linear matrix inequality.
- Dual in Conic Form: $Z \in S_{n}$ decision variables, $\mathcal{K} \equiv S_{n}^{+}$is the closed convex cone of p.s.d. matrices, tr trace of a matrix

SDP Features and Applications

\diamond Features

- SDP are special classes of convex (nondifferentiable) problems
- Computationally tractable: Can be approximately solved to a desired accuracy in polynomial time
- Include linear and quadratic programs
- A very active research area since mid 90 's
\diamond Applications-A Short list!
- Combinatorial optimization
- Control theory
- Statistics
- Computational Geometry
- Classification and Clustering problems

Related conic convex problems

Other models arising in many applications include

- Second order cone programming
- max-determinant optimization problems
- Eigenvalue problems

Convex Optimization-Summary

- Local minima are global

Convex Optimization-Summary

- Local minima are global
- Computationally Tractable: Can be approximately solved to a desired accuracy in polynomial time [Self-Concordance Theory-Nemirovski-Nesterov]

Convex Optimization-Summary

- Local minima are global
- Computationally Tractable: Can be approximately solved to a desired accuracy in polynomial time [Self-Concordance Theory-Nemirovski-Nesterov]
- Model many more problems than one might think!

Convex Optimization-Summary

- Local minima are global
- Computationally Tractable: Can be approximately solved to a desired accuracy in polynomial time [Self-Concordance Theory-Nemirovski-Nesterov]
- Model many more problems than one might think!
- Enjoy a powerful Duality Theory that can be used to find bounds for hard problems

Tractability is a key Issue

- Drawing a line between Easy [Convex]and Hard [Nonconvex] Problems
- Convexity plays a key role in this distinction.

Easy/Hard: Example

(P1) $\quad \max \left\{\sum_{j=1}^{n} x_{j}: x_{j}^{2}-x_{j}=0, j=1, \ldots, n ; x_{i} x_{j}=0 \forall i \neq j \in \Gamma\right\}$
$(P 2) \quad$ inf x_{0} subject to

$$
\begin{aligned}
& \sum_{j=1}^{m} x_{j}=1, \sum_{j=1}^{m} a_{j} x_{j}^{l}=b^{l}, l=1, \ldots, k \\
& \lambda_{\text {min }}\left(\begin{array}{ccccc}
x_{1} & & & & x_{1}^{l} \\
& \cdot & & & \\
& & \cdot & & \\
& & & \cdot & \\
& & & \cdot & x_{m} \\
& x_{m}^{l} \\
x_{1}^{l} & \cdots & \cdot & \cdot & x_{m}^{l}
\end{array} x_{0}\right) \geq 0, l=1, \ldots, k \\
& x \in \mathbb{R}^{m+1}, x^{l} \in \mathbb{R}^{m}, l=1, \ldots, k
\end{aligned}
$$

(P1) "looks" much easier than (P2)...

Easy/Hard: Example

(P1) $\quad \max \left\{\sum_{j=1}^{n} x_{j}: x_{j}^{2}-x_{j}=0, j=1, \ldots, n ; x_{i} x_{j}=0 \forall i \neq j \in \Gamma\right\}$
(P2) $\min \left\{x_{0}: \lambda_{\min }\left(A\left(x, x^{l}\right)\right) \geq 0, \sum_{j=1}^{m} a_{j} x_{j}^{l}=b^{l}, l=1, \ldots, k, \sum_{j=1}^{m} x_{j}=1\right\}$
where $A\left(x, x^{l}\right)$ is affine in $x_{0}, x_{1}, \ldots, x_{m}, x_{1}^{l}, \ldots, x_{m}^{l}$.

- (P1) easy formulation but: is as difficult as an optimization problem can be! Worst case computational effort within absolute inaccuracy 0.5 , for $n=256$ is $2^{256} \approx 10^{77} \approx+\infty$!
- (P2) complicated formulation but: easy to solve! For $m=100, k=$ $6 \Longrightarrow 701$ variables (≈ 3 times larger) solved in less than 2 minutes for 6 digits accuracy!
convex (P2)[slow $\nearrow(n, \varepsilon)$] vs. nonconvex (P1) [very fast $\nearrow(n, \varepsilon)$]

A Bird's-Eye View of Classical and Modern Algorithms

A Generic Unconstrained Minimization Algorithm

$$
\text { (U) } \min \left\{f(x): x \in \mathbb{R}^{n}\right\}
$$

Start with $x \in \mathbb{R}^{n}$ such that $\nabla f(x) \neq 0$.

Compute new point $x^{+}=x+t d$ where

- $d \in \mathbb{R}^{n}$ is a descent direction: $\langle d, \nabla f(x)\rangle<0$
- $t \in(0,+\infty)$ is a stepsize. How far to go in direction d such that for t small one guarantees

$$
f\left(x^{+}\right)=f(x+t d)<f(x)
$$

Basic Gradient Iterative Schemes

$$
x^{0} \in \mathbb{R}^{n}, x^{k+1}=x^{k}+t_{k} W^{k} d^{k}
$$

where

$$
W^{k} \succ 0, \quad t_{k} \simeq \underset{t}{\operatorname{argmin}} f\left(x^{k}+t W^{k} d^{k}\right)
$$

- $W^{k} \equiv I, d^{k} \equiv-\nabla f\left(x^{k}\right)$, Steepest Descent Method; Slow but Globally convergent
- $W^{k} \equiv \nabla^{2} f\left(x^{k}\right)^{-1}$, Newton's Method; Fast but Locally convergent
- Global Rate of convergence depends on information and topological properties of $\nabla f, \nabla^{2} f$.

Three fundamental algorithms in applications which are gradient based

- Clustering: The k-means algorithm
- Neuro-computation: The backpropagation (perceptron) algorithm
- The EM (Expectation-Maximization) algorithm in statistical estimation

Constrained Optimization Algorithms

Richer but much more Difficult....

In most algorithms

- either we will solve a nonlinear system of equations and inequalities
- or we will have to solve a sequence of unconstrained minimization problems.
- Thus, the importance of having efficient linear algebra packages and a fast and reliable unconstrained routine.

Some Classes of Constrained Optimization Algorithms...

- Penalty and Barrier Methods
- Sequential Quadratic Programming
- Multiplier Methods
- Active set methods
- Dual Methods
- Interior point/primal-dual Methods
-and more...

Penalty Methods: Courant 1943, Ablow-Brigham 1955.

$$
\text { (C) } \quad \min \left\{f(x): x \in S \subset \mathbb{R}^{n}\right\}
$$

Idea: Replace (C) by a family of unconstrained problems

$$
\left(C_{t}\right) \quad \min _{x \in \mathbb{R}^{n}}\{f(x)+t P(x)\} \quad(t>0)
$$

Let

$$
x(t)=\operatorname{argmin}\{f(x)+t P(x)\}
$$

- $P(\cdot) \geq 0$ and $=0$ if and only if x feasible. P is a Penalty we pay for constraints violation.
- For large t the minimum of $\left(C_{t}\right)$ will be in a region where P is small. We thus expect that as $t \rightarrow \infty$:

$$
\begin{aligned}
t P(x(t)) & \rightarrow 0 \\
x(t) & \rightarrow x^{*} \quad \text { optimal solution of }(\mathrm{C})
\end{aligned}
$$

Examples of Penalty Functions

For Inequality Constraints $S=\left\{x: g_{i}(x) \leq 0, i=1, \ldots, m\right\}$

$$
P(x)=\sum_{i=1}^{m} \max \left(0, g_{i}(x)\right) ; \quad P(x)=\sum_{i=1}^{m} \max ^{2}\left(0, g_{i}(x)\right) \leftarrow \text { smooth }
$$

For Equality Constraints $S=\left\{x: h_{i}(x)=0, i=1, \ldots, m\right\}$
$P(x)=\|h(x)\|^{2}, \quad h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

The Penalty Algorithm

Let $0<t_{k}<t_{k+1}, \quad \forall k$ with $c_{k} \rightarrow \infty$.
For each k solve $x_{k}=\operatorname{argmin}_{x}\left\{f(x)+t_{k} P(x)\right\}$.

Convergence

Every limit point of $\left\{x_{k}\right\}$ is a solution of (C).

Barrier Methods: Frish 58, Fiacco-McCormick 68

Similar idea, but acting from the interior (for inequality constraints only!)
Let $S:=\left\{x: g_{i}(x) \leq 0, i=1, \ldots, m\right\}$
Assume S has nonempty interior.
A Barrier function for S is a continuous function s.t.

$$
B(x) \rightarrow \infty \text { as } x \rightarrow \text { boundary } S
$$

B is a barrier on bdy S preventing leaving the feasible region. The constrained problem is replaced by the unconstrained

$$
x(\varepsilon)=\operatorname{argmin}\{f(x)+\varepsilon B(x)\} \in \operatorname{int} S
$$

Examples:

$$
B(x)=-\sum_{i=1}^{m} \frac{1}{g_{i}(x)}, B(x)=-\sum_{i=1}^{m} \log \left(-g_{i}(x)\right)
$$

Barrier Algorithm

Let $0<\varepsilon_{k+1}<\varepsilon_{k} \forall k$ with $\varepsilon_{k} \rightarrow 0$.
For each k solve

$$
x_{k}=\operatorname{argmin}_{x}\left\{f(x)+\varepsilon_{k} B(x)\right\} .
$$

Convergence Every limit point of $\left\{x_{k}\right\}$ is a solution of (C).
In both Penalty/Barrier Methods:Compromise

- $t(\varepsilon)$ must be chosen sufficiently large (small) so that $x(t)(x(\varepsilon))$ will approach S from the exterior (interior).
- BUT, if $t(\varepsilon)$ is chosen too large (small), then III-Conditionning may occurs.

Avoid IC, do not send $t \rightarrow \infty, \varepsilon \rightarrow 0$.
.....use augmented Lagrangian/Multiplier methods.....

A Basic Multiplier Method for Equality Constraints

$$
\min \{f(x): h(x)=0\} \quad h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

Lagrangian: $L(x, u)=f(x)+u^{T} h(x)$
Augmented L: $A(x, u, c))=L(x, u)+2^{-1} c\|h(x)\|^{2}$

AL = Penalized Lagrangian

Multiplier Method Given $\left\{u^{k}, c^{k}\right\}$

1. Find $x^{k+1}=\operatorname{argmin}\left\{A\left(x, u^{k}, c^{k}\right): x \in \mathbb{R}^{n}\right\}$
2. Update Rule: $u^{k+1}=u^{k}+c^{k} h\left(x^{k+1}\right)$
3. Increase $c^{k}>0$ if necessary.

Features of Multipliers Method

- A key Advantage: it is not necessary to increase c^{k} to ∞, for convergence (as opposed to "Penalty/Barrier method")
- As a result, A is "less subject to ill-conditionning", and more "robust".
- The AL depends on c but also on the dual multiplier u : faster convergence can be expected (rather than keeping u constant)
- Extendible to inequality constrained problems

Multiplier Methods for Inequality Constrained Problems

$$
\text { (C) } \min \left\{f(x): g_{i}(x) \leq 0, i=1, \ldots, m\right\}, g:=\left(g_{1}, \ldots, g_{m}\right)^{T}
$$

Quadratic Method of Multipliers

$$
\begin{aligned}
x^{k+1} & \in \operatorname{argmin}\left\{L\left(x, u^{k}, c^{k}\right): x \in \mathbb{R}^{n}\right\} \\
u^{k+1} & =\left(u^{k}+c^{k} g\left(x^{k+1}\right)\right)_{+}, \quad\left(c^{k}>0\right)
\end{aligned}
$$

with $z_{+}:=\max \{0, z\}$, (componentwise)

$$
L(x, u, c):=f(x)+(2 c)^{-1}\left\{\left\|(u+c g(x))_{+}\right\|^{2}-\|u\|^{2}\right\}
$$

More recent and modern approaches allow for constructing smooth Lagrangians so that Newton's method can be applied for the unconstrained minimization.

Interior Point Methods

Idea goes back to Barrier Methods, but within a different methodology, eliminating the ill-conditioning drawback.

Basically the idea is to approximately follow the central path generated within the interior of the corresponding feasible set.

Computation of Central Path

$$
x^{*}(\mu)=\underset{x}{\operatorname{argmin}}\{\mu\langle c, x\rangle+S(x)\}
$$

Where S is a Self-Concordant Barrier for the feasible set of the given optimization problem.

- $x^{*}(\mu)$ remains strictly feasible for every $\mu>0$
- $x^{*}(\mu) \rightarrow x^{*}$ optimal for $\mu \rightarrow \infty$
- Can be computed in polynomial time with Newton method

This relies on the fundamental theory of Selconcordance developed by Nesterov-Nemirovsky (1990)s. [ldea: to make the convergence analysis coordinate invariant]

Interior Point Methods for SC-Convex Problems

For self-concordant convex problems

- IPM can be proven to be polynomially solvable for a prescribed accuracy ϵ.
- Worst case complexity: \# Newton steps \leq square root of problem size
- Each iteration requires forming gradient, Hessian and solving a linear system

Mathematical and Computational Challenges

- Convex problems appears in applications more than we (use to) think
- Convex optimization can be used to approximate (finding bounds) hard problems
- Convex problems can be solved efficiently, namely with polynomial time algorithms
\qquad
- Polynomial algorithms are highly sophisticated and require informations on the Hessians of objective and constraints, often not available.
- Require heavy computational cost at each iteration
- For large scale problems with no particular structures, ... even ONE ITERATION cannot be completed...!

Challenge: to solve very large scale optimization problems emerging from applied world, keeping in mind the trade off between

Efficiency versus Practicality

Thus the needs to

- further study potential direct/simple methods (e.g., first order methods, using function or/and gradient infos only).
- Produce faster algorithms within these methods

Conclusion

Optimizers are not (yet!) out of job......

Thank you for listening!

