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Planning
Data Networks
Finance-Economics
VLSI Design
....
Pattern Recognition
Data Mining
Ressource Allocation
Machine Learning
Signal Processing
Tomography
Human Behavior....

OPTIMIZATION APPEARS TO BE PRESENT ”ALMOST”
EVERYWHERE....
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Outline of the Talk

• Ideas and Principles

• Constrained Problems: Difficulties

• Convexity and Duality: A Working Horse in Optimization

• Some Fundamental/Useful Optimization Models

♣♣♣♣♣

• Devising Optimization Algorithms

• Convergence and Complexity issues

• Basic Iterative Schemes for Unconstrained Problems

• Some Classical and Modern Algorithms for Constrained Prob-
lems
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History of Optimization....

• Fermat (1629): Unconstrained Minimization Principle

• ...+160...Lagrange (1789) Equality Constrained Problems (Mechanics)

• Calculus of Variations, 18-19th Century [Euler, Lagrange, Legendre,
Hamilton...]

• ...+150...Karush (1939), Fritz-John (47), Kuhn-Tucker (1951)

• KKT Theorem for Inequality Constraints: Modern Optimization Theory

• Engineering Applications (1960)

• Optimal Control Bellman, Pontryagin...

• Major Algorithmic Developments (50’s with LP) and 60-80’s for NLP

• Polynomial Interior Points Methods for Convex Optimization Nesterov-
Nemirovsky (1988)

• Combinatorial Problems via continuous approximations 90’s

• ....More Theory, Algorithmic and much more applications .... A young,
and vibrant area of research.
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General Formulation: Nonlinear Programming

(O) minimize{f(x) : x ∈ X ∩ C}

X ⊂ Rn ≡ n-dimensional Euclidean space, (implicit or simple constraints)
C is a set of explicit constraints described by constraints

C = {x ∈ Rn : gi(x) ≤ 0, i = 1, . . . m,

hi(x) = 0, i = 1, . . . , p}.

All the functions in problem (O) are real valued functions on Rn, and the
set X can describe more abstract constraints of the problem.

Very Important Special Case: Unconstrained Problem X ∩ C ≡ Rn

(U) minimize{f(x) : x ∈ Rn}

Many (if not most) methods for constrained problems based on solving
some type of problem (U).
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Definitions and Terminology

(O) minimize{f(x) : x ∈ X ∩ C}

• A point x ∈ X ∩ C is called a feasible solution of (O).

• An optimal solution is any feasible point where the local or global min-
imum of f relative to X ∩ C is actually attained.

Definition

x∗ local mininum f(x∗) ≤ f(x), ∀x ∈ Nε(x
∗)

x∗ global minimum f(x∗) ≤ f(x), ∀x ∈ Rn

Note: There are also ”max” problems...But maxF ≡ −min[−F ]
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How to Solve an Optimization Problem?

• Analytically/Explicitly: Very rarely....or Never....

• We try to generate an Iterative-Descent Algorithm to approximately
solve the problem to a prescribed accuracy.

Algorithm: a map A : x→ y (start with x to get new point y)
Iterative: generate a sequence of pts calculated on prior point or points
Descent: Each new point y is such that f(y) < f(x)
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A Powerful Algorithm!

Set k = 0

While xk ∈ D ≡ {set of desisable Points} Do {

xk+1 = A(xk)

k ← k + 1}

Stop

Expected Output(s): {xk} is a minimizing sequence: as k →∞

• f(xk)→ f∗, (optimal value)

• or/and even more, xk → x∗ (optimal solution)
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Some Basic Questions

• How do we pick the initial starting point?

• How to construct A so that xk converges to optimal x∗?

• How do we stop the algorithm?

• How close is the approximate solution to the optimal one? (that we do
not know!)

• How sensitive is the whole process to data perturbations?

• How fast the algorithm converges to optimality?

• What is the computational cost? The complexity ?

10



Emerging Topics and Tools

To answer these questions, we need an appropriate mathematical founda-
tion. For example:

• Existence of optimal solutions

• Optimality conditions

• Convexity and Duality

• Convergence and Numerical Analysis

• Error and Complexity Analysis

While each algorithm for each type of problem will often require a specific
analysis (exploiting special structures of the problem), the above tools will
remain essential and fundamental.
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Optimality for Unconstrained Minimization

(U) inf{f(x) : x ∈ Rn} f : Rn → R is a smooth function.

Fermat Principle Let x∗ ∈ Rn be a local minimum. Then,

♠ ∇f(x∗) = 0, Zero Slope

This is a First Order Necessary condition

Second Order Necessary Condition: Nonnegative curvature at x∗

The Hessian Matrix ∇2f(x∗) � 0 positive semidefinite

Sufficient conditions for x∗ to be a local min.
Replace ∇2f(x∗) � 0 by ∇2f(x∗) � 0

Whenever f is assumed convex , then ♠ becomes a sufficient condition
for x∗ to be a global minimum for f .
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Convexity

S ⊂ Rn is convex if the line segment joining any two different points of S

is contained in it:

∀x, y ∈ S, ∀λ ∈ [0,1] =⇒ λx + (1− λ)y ∈ S

f : S → R is convex if for any x, y ∈ S and any λ ∈ [0,1],

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)

A Key Fact: Local Minima are also Global under convexity

Convexity plays a fundamental role in optimization
Even in Non convex problems!
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Equality constraints:Lagrange Theorem

(E) min{f(x) : h(x) = 0, x ∈ Rn}

with f : Rn → R, h : Rn → Rp.

Lagrange Theorem (necessary conditions) Let x∗ be a local minimum
for problem (E). Assume:

(A) {∇h1(x
∗), . . . ,∇hp(x

∗)} are linearly independent.

Then there exists a unique y∗ ∈ Rp satisfying:

∇f(x∗) +
p∑

k=1

y∗k∇hk(x
∗) = 0.

A system of (n + p) nonlinear equations in (n + p) variables (x∗, y∗)

Inequality constraints lead to more complications....
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Inequality Constraints: The Lagrangian

(P ) f∗ := inf{f(x) : g(x) ≤ 0, x ∈ Rn}

with f : Rn → R, g : Rn → Rm are given data.

We assume that there exists a feasible solution for (P) and f∗ ∈ R.

Observation : Problem (P) is equivalent to

inf
x∈Rn

sup
y≥0
{f(x) + 〈y, g(x)〉

which leads to the Lagrangian associated with (P) L : Rn × Rm
+ → R :

L(x, y) = f(x) + 〈y, g(x)〉 ≡ f(x) +
m∑

i=1

yigi(x).

Hidden in this equivalent min-max formulation of (P) is another problem
called the DUAL . This in turn is also at the origin of optimality conditions.

Definition A vector y∗ ∈ Rm is called a Lagrangian multiplier for (P) if

y∗ ≥ 0, and f∗ = inf{L(x, y∗) : x ∈ Rn}
.
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Lagrangian Duality

L(x, λ) = f(x) +
m∑

i=1

yigi(x).

and

(P ) ⇐⇒ inf
x∈S

sup
y∈Rm

+

L(x, y)

Suppose we can reverse the inf sup operations , that is consider

sup
y∈Rm

+

inf
x∈C

L(x, y)

Define the Dual Function:

h(y) := inf
x∈S

L(x, y), dom h = {y ∈ Rm : h(y) > −∞}.

and the Dual Problem:

(D) h∗ := sup{h(y) : y ∈ Rm
+ ∩ dom h}

Note: In general the dual problem consists of simple nonnegativity con-
straints. But , to avoid h(·) to be −∞, additional constraints might also
emerge through y ∈ dom h.
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Dual problem Properties

The dual Problem Uses the same data

(D) h∗ = sup
y
{h(y) : y ∈ Rm

+ ∩ dom h}, h(y) = inf
x

L(x, y)

Properties of (P)-(D)
• Dual is always convex (ax max of concave func.)
•Weak duality holds: f∗ ≥ h∗ for any feasible pair (P)-(D)

Valid for any optimization problem. No convexity assumed or/and, any
other assumptions!
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Duality: Key Questions for the pair (P)-(D)

f∗ = inf{f(x) : g(x) ≤ 0, x ∈ Rn}; h∗ = supy{h(y) : y ∈ Rm
+}

• Zero Duality Gap: when f∗ = h∗?
• Strong Duality: when inf / sup attained?
• Structure/Relations of Primal-Dual Optimal Sets/Solutions

Convex data + a Constraint Qualification,on constraints e.g.,
∃x̂ ∈ Rn : g(x̂) < 0

deliver the answers.
Linear equality constraints can also be treated easily.
Proof based on a simple and powerful geometric argument: Any point out-
side a closed convex set can be separated by a hyperplane.
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An Example: Least Squares Optimization

(P ) min
x
‖Ax− b‖2 ⇐⇒ min

x,z
{‖z‖2 : Ax− b = z}

(D) max{‖b‖2 − ‖y − b‖2 : ATy = 0}

Strong Duality holds : min(P ) = max(D)

(distance to subspace R(A))2 + (distance to N(AT ))2 = ‖b‖2
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An Example: Least Squares Optimization

(P ) min
x
‖Ax− b‖2 ⇐⇒ min

x,z
{‖z‖2 : Ax− b = z}

(D) max{‖b‖2 − ‖y − b‖2 : ATy = 0}

Strong Duality holds : min(P ) = max(D)

(distance to subspace R(A))2 + (distance to N(AT ))2 = ‖b‖2

...THIS PROVES PYTHAGORAS THEOREM !
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Primal-Dual Optimal Solutions

Definition The pair (x∗, y∗) ∈ S × Rm
+ is called a saddle point for L if

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗), ∀x ∈ S, ∀y ∈ Rm
+.

Proposition (Saddle point characterization)

(x∗, y∗) ∈ S × Rm
+

is a saddle point for L iff
(a) x∗ = argminx∈SL(x, y∗) (L-optimality)
(b) x∗ ∈ S, g(x∗) ≤ 0 (Primal feasibility)
(c) y∗ ∈ Rm

+ (Dual feasibility)
(d) y∗i gi(x

∗) = 0, i = 1, . . . , m (Complementarity).

Note that the above is valid with 0-assumptions on the problem’s data!

Proposition (Sufficient condition for optimality) If (x∗, y∗) ∈ S × Rm
+ is a

saddle point for L, then x∗ is a global optimal solution for NLP.

Once again this result is very general and holds for any optimization prob-
lem. However for nonconvex problem it is in general difficult to find a saddle
point.
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The KKT Theorem

(P ) inf{f(x) : g(x) ≤ 0, x ∈ Rn}

Let x∗ be a local minimum for problem (P) and assume that a (CQ) holds.
Then there exists a Lagrange multipier y∗ ∈ Rm

+ s.t.

∇f(x∗) +
m∑

i=1

λ∗i∇gi(x
∗) = 0, [Saddle pt. in x∗]

gi(x
∗) ≤ 0, ∀i ∈ [1, m], [Feasibility ≡ Saddle pt. in y∗]

y∗i gi(x
∗) = 0, i = 1, . . . , m.

The system of equations and inequalities is called the KKT system.

With convex data + (CQ), the KKT conditions become necessary and suf-
ficient for global optimality ...Closing the loop....Equiv. to strong duality....
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Useful Convex Models: Conic Problems

min{〈c, x〉 : A(x) = b, x ∈ K}

• K is a closed convex cone in some finite dimensional space X

• 〈·, ·〉 appropriate inner product on X

• A is a linear map

Example: Linear Programming

X ≡ Rn, x ∈ Rn decision variables
K ≡ Rn

+, the nonnegative orthant
A ∈ Rm×n, b ∈ Rm, c ∈ Rn and 〈·, ·〉 the usual scalar product in Rn

....Other Examples...?
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Semidefinite Programming-Primal Dual Forms

min
x∈Rm

{cTx : A(x) � 0};

max
Z∈Sn

{− tr A0Z : tr AiZ = ci, i ∈ [1, m], Z � 0}

Here

A(x) := A0 +
m∑

i=1

xiAi, each Ai ∈ Sn ≡ symmetric

• Primal : x ∈ Rn decision variables. A(x) � 0 is a linear matrix
inequality.

• Dual in Conic Form: Z ∈ Sn decision variables, K ≡ S+
n is the

closed convex cone of p.s.d. matrices, tr trace of a matrix
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SDP Features and Applications

♦ Features

• SDP are special classes of convex (nondifferentiable) problems

• Computationally tractable: Can be approximately solved to a desired
accuracy in polynomial time

• Include linear and quadratic programs

• A very active research area since mid 90’s

♦ Applications–A Short list!

• Combinatorial optimization

• Control theory

• Statistics

• Computational Geometry

• Classification and Clustering problems
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Related conic convex problems

Other models arising in many applications include

• Second order cone programming

• max-determinant optimization problems

• Eigenvalue problems
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Convex Optimization–Summary

• Local minima are global
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Convex Optimization–Summary

• Local minima are global
• Computationally Tractable: Can be approximately solved to a desired
accuracy in polynomial time [Self-Concordance Theory–Nemirovski-Nesterov]
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Convex Optimization–Summary

• Local minima are global
• Computationally Tractable: Can be approximately solved to a desired
accuracy in polynomial time [Self-Concordance Theory–Nemirovski-Nesterov]
• Model many more problems than one might think!
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Convex Optimization–Summary

• Local minima are global
• Computationally Tractable: Can be approximately solved to a desired
accuracy in polynomial time [Self-Concordance Theory–Nemirovski-Nesterov]
• Model many more problems than one might think!
• Enjoy a powerful Duality Theory that can be used to find bounds for hard
problems
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Tractability is a key Issue

• Drawing a line between Easy [Convex]and Hard [Nonconvex] Prob-
lems

• Convexity plays a key role in this distinction.
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Easy/Hard: Example

(P1) max{
n∑

j=1

xj : x2
j−xj = 0, j = 1, . . . , n; xixj = 0 ∀i 6= j ∈ Γ}

(P2) inf x0 subject to

m∑
j=1

xj = 1,
m∑

j=1

ajx
l
j = bl, l = 1, . . . , k

λmin



x1 xl
1

· ·
· ·
· ·

xm xl
m

xl
1 · · · xl

m x0


≥ 0, l = 1, . . . , k

x ∈ Rm+1, xl ∈ Rm, l = 1, . . . , k

(P1) ”looks” much easier than (P2)...

32



Easy/Hard: Example

(P1) max{
n∑

j=1

xj : x2
j−xj = 0, j = 1, . . . , n; xixj = 0 ∀i 6= j ∈ Γ}

(P2) min{x0 : λmin(A(x, xl)) ≥ 0,
m∑

j=1

ajx
l
j = bl, l = 1, . . . , k,

m∑
j=1

xj = 1}

where A(x, xl) is affine in x0, x1, . . . , xm, xl
1, . . . , xl

m.

♠ (P1) easy formulation but: is as difficult as an optimization problem
can be! Worst case computational effort within absolute inaccuracy 0.5, for
n = 256 is 2256 ≈ 1077 ≈ +∞!

♠ (P2) complicated formulation but: easy to solve! For m = 100, k =

6 =⇒ 701 variables (≈ 3 times larger) solved in less than 2 minutes for 6
digits accuracy!

convex (P2)[slow ↗ (n, ε)] vs. nonconvex (P1) [very fast ↗ (n, ε)]
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A Bird’s-Eye View of Classical and Modern Algorithms
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A Generic Unconstrained Minimization Algorithm

(U) min{f(x) : x ∈ Rn}

Start with x ∈ Rn such that ∇f(x) 6= 0.

Compute new point x+ = x + td where

• d ∈ Rn is a descent direction: 〈d,∇f(x)〉 < 0

• t ∈ (0,+∞) is a stepsize. How far to go in direction d such that for t

small one guarantees

f(x+) = f(x + td) < f(x)
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Basic Gradient Iterative Schemes

x0 ∈ Rn, xk+1 = xk + tkW kdk

where

W k � 0, tk ' argmin
t

f(xk + tW kdk)

• W k ≡ I, dk ≡ −∇f(xk), Steepest Descent Method;
Slow but Globally convergent

• W k ≡ ∇2f(xk)−1, Newton’s Method; Fast but Locally convergent

• Global Rate of convergence depends on information and topological
properties of ∇f, ∇2f .

36



Three fundamental algorithms in applications which are
gradient based

• Clustering: The k-means algorithm

• Neuro-computation: The backpropagation (perceptron) algorithm

• The EM (Expectation-Maximization) algorithm in statistical estima-
tion
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Constrained Optimization Algorithms

Richer but much more Difficult....

In most algorithms

• either we will solve a nonlinear system of equations and inequalities

• or we will have to solve a sequence of unconstrained minimization
problems.

• Thus, the importance of having efficient linear algebra packages and
a fast and reliable unconstrained routine.
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Some Classes of Constrained Optimization Algorithms...

• Penalty and Barrier Methods

• Sequential Quadratic Programming

• Multiplier Methods

• Active set methods

• Dual Methods

• Interior point/primal-dual Methods

• ....and more...
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Penalty Methods: Courant 1943, Ablow-Brigham 1955.

(C) min{f(x) : x ∈ S ⊂ Rn}

Idea: Replace (C) by a family of unconstrained problems

(Ct) min
x∈Rn

{f(x) + tP (x)} (t > 0)

Let

x(t) = argmin{f(x) + tP (x)}

• P (·) ≥ 0 and = 0 if and only if x feasible.
P is a Penalty we pay for constraints violation.

• For large t the minimum of (Ct) will be in a region where P is small.
We thus expect that as t→∞ :

tP (x(t)) → 0

x(t) → x∗ optimal solution of (C)
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Examples of Penalty Functions

For Inequality Constraints S = {x : gi(x) ≤ 0, i = 1, . . . , m}

P (x) =
m∑

i=1

max(0, gi(x)); P (x) =
m∑

i=1

2
max(0, gi(x)) ← smooth

For Equality Constraints S = {x : hi(x) = 0, i = 1, . . . , m}

P (x) = ||h(x)||2, h : Rn → Rm
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The Penalty Algorithm

Let 0 < tk < tk+1, ∀k with ck →∞.

For each k solve xk = argminx{f(x) + tkP (x)}.

Convergence

Every limit point of {xk} is a solution of (C).
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Barrier Methods: Frish 58, Fiacco-McCormick 68

Similar idea, but acting from the interior (for inequality constraints only!)

Let S := {x : gi(x) ≤ 0, i = 1, . . . , m}

Assume S has nonempty interior.

A Barrier function for S is a continuous function s.t.

B(x)→∞ as x→ boundaryS

B is a barrier on bdyS preventing leaving the feasible region. The con-
strained problem is replaced by the unconstrained

x(ε) = argmin{f(x) + εB(x)} ∈ intS

Examples:

B(x) = −
m∑

i=1

1

gi(x)
, B(x) = −

m∑
i=1

log(−gi(x))
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Barrier Algorithm

Let 0 < εk+1 < εk ∀k with εk → 0.

For each k solve

xk = argminx{f(x) + εkB(x)}.

Convergence Every limit point of {xk} is a solution of (C).

In both Penalty/Barrier Methods:Compromise

• t(ε) must be chosen sufficiently large (small) so that x(t)(x(ε)) will
approach S from the exterior (interior).

• BUT, if t(ε) is chosen too large (small), then Ill-Conditionning may
occurs.

Avoid IC, do not send t→∞, ε→ 0.

.....use augmented Lagrangian/Multiplier methods.....
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A Basic Multiplier Method for Equality Constraints

min{f(x) : h(x) = 0} h : Rn → Rm

Lagrangian: L(x, u) = f(x) + uTh(x)

Augmented L: A(x, u, c)) = L(x, u) + 2−1c||h(x)||2

AL = Penalized Lagrangian

Multiplier Method Given {uk, ck}

1. Find xk+1 = argmin{A(x, uk, ck) : x ∈ Rn}

2. Update Rule: uk+1 = uk + ckh(xk+1)

3. Increase ck > 0 if necessary.
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Features of Multipliers Method

• A key Advantage: it is not necessary to increase ck to∞, for conver-
gence (as opposed to ”Penalty/Barrier method” )

• As a result, A is ”less subject to ill-conditionning”, and more ”robust”.

• The AL depends on c but also on the dual multiplier u : faster conver-
gence can be expected (rather than keeping u constant)

• Extendible to inequality constrained problems
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Multiplier Methods for Inequality Constrained Problems

(C) min{f(x) : gi(x) ≤ 0, i = 1, . . . , m}, g := (g1, . . . , gm)T

Quadratic Method of Multipliers

xk+1 ∈ argmin{L(x, uk, ck) : x ∈ Rn}
uk+1 = (uk + ckg(xk+1))+, (ck > 0)

with z+ := max{0, z}, (componentwise)

L(x, u, c) := f(x) + (2c)−1{||(u + cg(x))+||2 − ||u||2}

More recent and modern approaches allow for constructing smooth La-
grangians so that Newton’s method can be applied for the unconstrained
minimization.
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Interior Point Methods

Idea goes back to Barrier Methods, but within a different methodology, elim-
inating the ill-conditioning drawback.

Basically the idea is to approximately follow the central path generated
within the interior of the corresponding feasible set.

Computation of Central Path

x∗(µ) = argmin
x
{µ〈c, x〉+ S(x)}

Where S is a Self-Concordant Barrier for the feasible set of the given
optimization problem .

• x∗(µ) remains strictly feasible for every µ > 0

• x∗(µ)→ x∗ optimal for µ→∞

• Can be computed in polynomial time with Newton method

This relies on the fundamental theory of Selconcordance developed by
Nesterov-Nemirovsky (1990)s. [Idea: to make the convergence analysis
coordinate invariant]
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Interior Point Methods for SC-Convex Problems

For self-concordant convex problems

• IPM can be proven to be polynomially solvable for a prescribed ac-
curacy ε.

• Worst case complexity: # Newton steps ≤ square root of problem size

• Each iteration requires forming gradient, Hessian and solving a
linear system
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Mathematical and Computational Challenges

• Convex problems appears in applications more than we (use to) think

• Convex optimization can be used to approximate (finding bounds) hard
problems

• Convex problems can be solved efficiently, namely with polynomial
time algorithms

.......BUT.........

• Polynomial algorithms are highly sophisticated and require informa-
tions on the Hessians of objective and constraints, often not available.

• Require heavy computational cost at each iteration

• For large scale problems with no particular structures, ... even ONE
ITERATION cannot be completed...!
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Challenge: to solve very large scale optimization problems
emerging from applied world,
keeping in mind the trade off between

Efficiency versus Practicality

Thus the needs to

• further study potential direct/simple methods (e.g., first order meth-
ods, using function or/and gradient infos only).

• Produce faster algorithms within these methods
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Conclusion

Optimizers are not (yet!) out of job......

Thank you for listening!
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