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Outline of the talk

now to build a partition
now to improve a partition

now to evaluate a partition



-

Partitions

X ={x1,...,Xn} IS a set of vectors in R".
A partition II of X Is
= {my,..., 7}

mU...Um, ={X1,...,Xm}, andmﬂﬂj:@ifi#]’.

g 1S a real valued function whose domain is the set of
subsets of {x1,...,x}.

The quality of the partition is given by
Q) = q(my) + ...+ q(mg).

|
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What do we want?

-

To identify an optimal partition
[° = {n{,..., 7},

l.e., one that optimizes

In general the solution is available when the dimension of

the vector space is ONE.

.

|
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Data sets

o N

Vector sets generated for large document collections
contain vectors which are:

sparse

high dimensional

have non-negative entries

© o o o

normalized (usually with [ norm 1)

For example the Reuters business news collec-

tion (available from David D. Lewis’ home page:

http://www.research.att.com/~ lewis) contains
L19043 non-empty documents with 44749 unique words. J
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The simplest way to go

-

Given a partition ) = {ﬂt), e ,W;(f)} :

build a partition IT¢+D) = {w?*”, . ,W,(fﬂ)} ,

such that:
» there are clusters 7", ; ) and x € 7",
I w,&(tﬂ) —{x} 7w t+1 U{X}

and
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Partition

INITIAL PARTITION
T




Pick a vector

SELECT VECTOR

| | | | | | |
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New partition

r(t+1)

MOVE VECTOR TO ANOTHER CLUSTER
T T T

)
A,

-3 -2 -1 0 1 2 3 J
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Centroid

CLUSTER

|
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Centroid

CENTROID CANDIDATE

|
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Centroid




Distance-like function

o N

d(y,x) and ¢ can be associated.

The relation between ¢ and d can be defined through a
centroid c of a cluster =

c = c¢(m) = arg min {Zd(y,x), y € C} .

Xem

If q() Is defined as Zd(c(w),x), then centroids and parti-
XecTm

tions can be associated.

o |
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Centroid-partition association

o N

1. For a set of centroids {cy, ..., c;} define a partition
{r1,...,m} of the set X by:

m; = {x | d(c;,x) < d(c;,x) for each j # i}

(we break ties arbitrarily).
2. Given a partition {xy, ..., n;} of the set X define the

corresponding centroids {cy,...,ci} by
c; = arg min { Z dy,x), y € C} .
XET;

o |
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Example

-

"distance-like" function
d(y,x) =[x —y||” and C = R"

If m = {Xl, s ,Xl}, then
U
C = argmin{zd(y,X), y € C} — TZXZ-
XET =1
and

a(m) =Y Ix—c|f
. |
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Example

THE VECTOR SET

|
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Example

INITIAL PARTITION

|
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Example

CENTROIDS

|
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Example

REASSIGN VECTORS

|
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Example

NEW PARTITION

|
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convexity of final partition

-




optimal 1D two cluster partition

OPTIMAL PARTITI ON
3_
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Batch k-means like algorithms

o N

1. For a set of centroids {cy, ..., c;} define a partition
{r1,...,m} of the set X by:

mi = {x||lc; —x||* < |lc; — x||* for each j # i}

(we break ties arbitrarily).

2. Given a partition {my,...,m;} of the set X define the
corresponding centroids {ci,...,c;} by

C; = argmin{z ly —x||?, y € R”} .

XET;

o |
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Deficiencies

o N

# k-the “right" number of clusters should be supplied,
# the initial partition

10 — {7‘(‘50), . ,W]go)}

should be supplied,

# the batch k—means often gets trapped at a local
minimum.

o |
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Incremental k—-means

o N

X ={0,%,1}, 7'('%0) ={0,%}, 7T§0) = {1}.

INITIAL PARTITION

15

-1.5 : :
-0.5 0 0.5 1 15
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-

. Start with an arbitrary partitioning [1*) = {ﬂt), T }

Enhanced k-means algorithm

. Sett =0.

. Run batch k-means until no vector movement is

detected.

. Run one iteration of incremental k-means.

If (vector movement is detected) go to Step 3.

. Stop.

|

k-means and beyond — p.26/53



Cost of incremental step

o -

The decision whether a vector x € m; should be moved from
cluster m; with m; vectors to cluster 7; with m; vectors made

by the batch k—means algorithm based on the sign of
A = —|x = c(m)|I* + [Ix — c(m))|*

The vector x iIs moved by the batch k—means algorithm if
A < 0.

The exact change in the value of the objective function
caused by the move Is

my m

Ix — (m)[|” + Ix = e(m)|I”-

m; — 1 mj—l—l

o |
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""distance-like"" functions

-

j=1
CXZn c'oM X[7| —C
» dlox) =3 <ljltog 21+ xp] - il



-----

Spherical k—means
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optimal 1D two cluster partition
- -

when the data belongs to S!
the optimal two cluster parti-
tion can be obtained by split-

ting the circle S! into two
semi-circles by a line passing
through the origin
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data
-

°

DCO (Medlars Collection, 1033 medical abstracts).

# DC1 (CISI Collection, 1460 information science
abstracts).

# DC2 (Cranfield Collection, 1400 aerodynamics
abstracts).

DCO | DC1 | DC2
cluster O | 1004 5 4
cluster 1 18 | 1440 16
cluster 2 11 15 | 1380

69 “misclassified" documents using 4099 terms

o |

k-means and beyond — p.31/53




Average document

The Pythagorean Theorem employed 24 words,
the Lord’s Prayer has 66 words,

Archimedes Principle has 67 words,

the 10 Commandments have 179 words,

the Gettysburg Address had 286 words,

the Declaration of Independence has 1,300 words

and finally

the European Commission’s regulation on the sale of cab-

bage: 26,911 words.
| -
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what do we want to do:

o N

® to use the same data

# to select SMALLER set of terms (and to reduce the
dimensionality of the problem)

# to apply a hybrid clustering scheme
(a sequence of clustering algorithms so that the output
of algorithm 7 becomes the input of algorithm 7 + 1).

and to get better clustering results

o |
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PDDP

Principal Direction Divisive Partitioning

or

HOW TO GET
A REASONABLE INITIAL PARTITION

|
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PDDP

Principal Direction Divisive Partitioning
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partition one dimensional set

o N
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How to find the pricipal direction

-

# Look at the “term by document” matrix
X =[xX1,...,Xm] -

X1+ ...1+Xm
m

# compute the mean m =

# compute the first singular vector v; of the matrix

T

X —me =[x;—m,..., X —m).

v1 IS the pricipal direction vector

o |
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clustering results

DCO | DC1 | DC2
cluster O 272 9| 1379
cluster 1 4 | 1285 11
cluster 2 /57| 166 8
“empty" documents
cluster 3 0 0 0

PDDP generated initial “confusion™ matrix with 470 “misclas-

sified" documents using 600 terms

|
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constrained data

o N

# PDDP as well as the classical k~—means algorithm are
general clustering algorithms capable of handling
general datasets in R™.

® "document—vectors" reside on an n — 1 dimensional
sphere S*—1.

o |
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sPDDP

. Given a set X ¢ S~ ! determine the two dimensional

plane P that approximates X in the “best possible way".
. Project X onto P and denote the projection by Y.
Yy

. “Push" Y to the great circle, i.e., y — z = Tyl
Yy

4. Partition Z c S3 into two clusters Z; and Zs.

. Generate the induced partition {X;, X2} of X as follows:

Xi={x|z€Z},and Xy ={x |z € Zs}.

|
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first two dimensional projection

o N

PARTITION 1, ENTIRE SET, 2D PROJECTION
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circle approximation

PARTITION 1, ENTIRE SET, GREAT CIRCLE APPROXIMATION
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circular partition

PARTITION 1, ENTIRE SET, GREAT CIRCLE APPROXIMATION
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plane partition

PARTITION 1, ENTIRE SET, 2D PROJECTION
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second plane projection

PARTITION 2, LARGEST CLUSTER, 2D PROJECTION
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clustering results

DCO| DC1 | DC2
cluster O 1000 3 1
cluster 1 8 10 | 1376
cluster 2 25 | 1447 21
“empty"” documents
cluster 3 0 0 0

sPDDP generated initial “confusion” matrix with 68 “misclas-

sified" documents using 600 terms

|
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clustering results

documents misclassified by sPDDP

# 0 + + +
of alone sph
terms | vec k—means | k—means | |T-means

100 | 12 | 383 258 229 168
200 3 277 133 143 116
300 0 228 100 104 81
400 0 88 80 /8 56
500 0 76 62 57 40
600 0 68 62 54 44

|
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Low Bound for Q(IT)

II={my,..., Tk by T = my
Cem,
€m,
v | s "
Nara
Yy = I,

Q (IT) = trace (XTX> — trace (YTXTXY) .

To minimize @ (I1) solve

\_ max {trace <YTXTXY) . Y Is of the form (*)} . J
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Relaxed Maximization Problem

o N

max {trace (YTXTXY> YTy = Ik} |

Theorem (Ky Fan) If H is a symmetric matrix with
eigenvalues

Al > A > > A,
then

max trace (YTHY) = A+ A4+ ...+ .
YTY =1I,

o |

k-means and beyond — p.52/53



Low Bound for Q(IT)

As a by-product we have

Q (II) > trace (XTX> — max trace (YTXTXY)
YTY=Iy

min{m,n}

= Z 0'Z-2(X).

i=k+1



	clustering
	Outline of the talk
	�f Partitions
	�f What do we want?
	�f Data sets
	�f The simplest way to go
	�f Partition
	�f Pick a vector
	�f New partition
	�f Centroid
	�f Centroid
	�f Centroid
	�f Distance-like function
	�f Centroid-partition association
	�f Example
	�f Example
	�f Example
	�f Example
	�f Example
	�f Example
	convexity of final partition
	optimal 1D two cluster partition
	�f Batch k-means like algorithms
	�f Deficiencies
	�f Incremental $k$--means
	�f Enhanced k-means algorithm
	�f Cost of incremental step
	"distance--like" functions
	�f Spherical $k$--means
	optimal 1D two cluster partition
	data
	Average document
	what do we want to do:
	PDDP
	PDDP
	Principal Direction
	projection
	partition one dimensional set
	partition original set
	How to find the pricipal direction
	clustering results
	constrained data
	sPDDP
	first two dimensional projection
	circle approximation
	circular partition
	plane partition
	second plane projection
	clustering results
	clustering results
	�f Low Bound for $Q(Pi )$
	�f Relaxed Maximization Problem
	�f Low Bound for $Q(Pi )$

