clustering

k-means like algorithms and beyond

CIKM 2003

Jacob Kogan
Charles Nicholas
Marc Teboulle

Outline of the talk

- how to build a partition
- how to improve a partition
- how to evaluate a partition

Partitions

$\mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}$ is a set of vectors in \mathbf{R}^{n}.
A partition Π of \mathbf{X} is

$$
\begin{gathered}
\Pi=\left\{\pi_{1}, \ldots, \pi_{k}\right\} \\
\pi_{1} \cup \ldots \cup \pi_{k}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}, \text { and } \pi_{i} \bigcap \pi_{j}=\emptyset \text { if } i \neq j .
\end{gathered}
$$

q is a real valued function whose domain is the set of subsets of $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}$.

The quality of the partition is given by

$$
Q(\Pi)=q\left(\pi_{1}\right)+\ldots+q\left(\pi_{k}\right) .
$$

What do we want?

To identify an optimal partition

$$
\Pi^{o}=\left\{\pi_{1}^{o}, \ldots, \pi_{k}^{o}\right\}
$$

i.e., one that optimizes

$$
Q(\Pi)=q\left(\pi_{1}\right)+\ldots+q\left(\pi_{k}\right) .
$$

In general the solution is available when the dimension of the vector space is ONE.

Data sets

Vector sets generated for large document collections contain vectors which are:

- sparse
- high dimensional
- have non-negative entries
- normalized (usually with l_{2} norm 1)

For example the Reuters business news collection (available from David D. Lewis' home page: http://www.research.att.com/~ lewis) contains 19043 non-empty documents with 44749 unique words.

The simplest way to go

Given a partition $\Pi^{(t)}=\left\{\pi_{1}^{(t)}, \ldots, \pi_{k}^{(t)}\right\}$,
build a partition $\Pi^{(t+1)}=\left\{\pi_{1}^{(t+1)}, \ldots, \pi_{k}^{(t+1)}\right\}$,
such that:

- there are clusters $\pi_{i}^{(t)}, \pi_{j}^{(t)}$, and $\mathrm{x} \in \pi_{i}^{(t)}$,
- $\pi_{i}^{(t+1)}=\pi_{i}^{(t)}-\{\mathbf{x}\}, \pi_{j}^{(t+1)}=\pi_{j}^{(t)} \bigcup\{\mathbf{x}\}$
and

$$
q\left(\pi_{i}^{(t+1)}\right)+q\left(\pi_{j}^{(t+1)}\right)<q\left(\pi_{i}^{(t)}\right)+q\left(\pi_{j}^{(t)}\right) .
$$

Partition

$$
\Pi^{(t)}=\left\{\pi_{1}^{(t)}, \pi_{2}^{(t)}\right\}
$$

Pick a vector

New partition

$$
\Pi^{(t+1)}
$$

MOVE VECTOR TO ANOTHER CLUSTER

Centroid

Centroid

CENTROID CANDIDATE

Centroid

Distance-like function

$d(\mathbf{y}, \mathbf{x})$ and q can be associated.
The relation between q and d can be defined through a centroid c of a cluster π

$$
\mathbf{c}=\mathbf{c}(\pi)=\arg \min \left\{\sum_{\mathbf{x} \in \pi} d(\mathbf{y}, \mathbf{x}), \mathbf{y} \in \mathbf{C}\right\} .
$$

If $q(\pi)$ is defined as $\sum_{\mathbf{x} \in \pi} d(\mathbf{c}(\pi), \mathbf{x})$, then centroids and partitions can be associated.

Centroid-partition association

1. For a set of centroids $\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{k}\right\}$ define a partition $\left\{\pi_{1}, \ldots, \pi_{k}\right\}$ of the set \mathbf{X} by:

$$
\pi_{i}=\left\{\mathbf{x} \mid d\left(\mathbf{c}_{i}, \mathbf{x}\right) \leq d\left(\mathbf{c}_{j}, \mathbf{x}\right) \text { for each } j \neq i\right\}
$$

(we break ties arbitrarily).
2. Given a partition $\left\{\pi_{1}, \ldots, \pi_{k}\right\}$ of the set \mathbf{X} define the corresponding centroids $\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{k}\right\}$ by

$$
\mathbf{c}_{i}=\arg \min \left\{\sum_{\mathbf{x} \in \pi_{i}} d(\mathbf{y}, \mathbf{x}), \mathbf{y} \in \mathbf{C}\right\} .
$$

Example

"distance-like" function

$$
d(\mathbf{y}, \mathbf{x})=\|\mathbf{x}-\mathbf{y}\|^{2} \text { and } \mathbf{C}=\mathbf{R}^{n}
$$

if $\pi=\left\{\mathbf{x}_{1}, \ldots, \mathrm{x}_{l}\right\}$, then

$$
\mathbf{c}=\arg \min \left\{\sum_{\mathbf{x} \in \pi} d(\mathbf{y}, \mathbf{x}), \mathbf{y} \in \mathbf{C}\right\}=\frac{1}{l} \sum_{i=1}^{l} \mathbf{x}_{i}
$$

and

$$
q(\pi)=\sum_{\mathbf{x} \in \pi}\|\mathbf{x}-\mathbf{c}\|^{2}
$$

Example

THE VECTOR SET

Example

Example

Example

Example

convexity of final partition

optimal 1D two cluster partition

Batch k-means like algorithms

1. For a set of centroids $\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{k}\right\}$ define a partition $\left\{\pi_{1}, \ldots, \pi_{k}\right\}$ of the set \mathbf{X} by:

$$
\pi_{i}=\left\{\mathbf{x} \mid\left\|\mathbf{c}_{i}-\mathbf{x}\right\|^{2} \leq\left\|\mathbf{c}_{j}-\mathbf{x}\right\|^{2} \text { for each } j \neq i\right\}
$$

(we break ties arbitrarily).
2. Given a partition $\left\{\pi_{1}, \ldots, \pi_{k}\right\}$ of the set \mathbf{X} define the corresponding centroids $\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{k}\right\}$ by

$$
\mathbf{c}_{i}=\arg \min \left\{\sum_{\mathbf{x} \in \pi_{i}}\|\mathbf{y}-\mathbf{x}\|^{2}, \mathbf{y} \in \mathbf{R}^{n}\right\} .
$$

Deficiencies

- k-the "right" number of clusters should be supplied,
- the initial partition

$$
\Pi^{(0)}=\left\{\pi_{1}^{(0)}, \ldots, \pi_{k}^{(0)}\right\}
$$

should be supplied,

- the batch k-means often gets trapped at a local minimum.

Incremental k-means

$$
\mathbf{X}=\left\{0, \frac{2}{3}, 1\right\}, \pi_{1}^{(0)}=\left\{0, \frac{2}{3}\right\}, \pi_{2}^{(0)}=\{1\} .
$$

Enhanced k-means algorithm

1. Set $t=0$.
2. Start with an arbitrary partitioning $\Pi^{(t)}=\left\{\pi_{1}^{(t)}, \ldots, \pi_{k}^{(t)}\right\}$.
3. Run batch k-means until no vector movement is detected.
4. Run one iteration of incremental k-means. if (vector movement is detected) go to Step 3.
5. Stop.

Cost of incremental step

The decision whether a vector $\mathrm{x} \in \pi_{i}$ should be moved from cluster π_{i} with m_{i} vectors to cluster π_{j} with m_{j} vectors made by the batch k-means algorithm based on the sign of

$$
\Delta=-\left\|\mathbf{x}-\mathbf{c}\left(\pi_{i}\right)\right\|^{2}+\left\|\mathbf{x}-\mathbf{c}\left(\pi_{j}\right)\right\|^{2} .
$$

The vector x is moved by the batch k-means algorithm if $\Delta<0$.

The exact change in the value of the objective function caused by the move is

$$
\Delta_{\text {exact }}=-\frac{m_{i}}{m_{i}-1}\left\|\mathbf{x}-\mathbf{c}\left(\pi_{i}\right)\right\|^{2}+\frac{m_{j}}{m_{j}+1}\left\|\mathbf{x}-\mathbf{c}\left(\pi_{j}\right)\right\|^{2}
$$

"distance-like" functions

A vector $\mathbf{x}=(\mathbf{x}[1], \ldots, \mathbf{x}[n])^{T} \in \mathbf{R}^{n}$.

- $d(\mathbf{c}, \mathbf{x})=\|\mathbf{c}-\mathbf{x}\|^{2}$
- $d(\mathbf{c}, \mathbf{x})=\mathbf{c}^{T} \mathbf{x}$
- $d(\mathbf{c}, \mathbf{x})=\sum_{j=1}^{n}\left[\mathbf{x}[j] \log \frac{\mathbf{x}[j]}{\mathbf{c}[j]}+\mathbf{c}[j]-\mathbf{x}[j]\right]$
- $d(\mathbf{c}, \mathbf{x})=\sum_{j=1}^{n}\left[c[j] \log \frac{\mathbf{c}[j]}{\mathbf{x}[j]}+\mathbf{x}[j]-\mathbf{c}[j]\right]$

Spherical k-means

$$
\Pi=\left\{\pi_{1}, \ldots, \pi_{k}\right\}, q(\pi)=\left\|\sum_{\mathbf{x} \in \pi} \mathbf{x}\right\|
$$

optimal 1D two cluster partition

when the data belongs to \mathbf{S}^{1} the optimal two cluster partition can be obtained by splitting the circle \mathbf{S}^{1} into two semi-circles by a line passing through the origin

data

- DC0 (Medlars Collection, 1033 medical abstracts).
- DC1 (CISI Collection, 1460 information science abstracts).
- DC2 (Cranfield Collection, 1400 aerodynamics abstracts).

	DC0	DC1	DC2
cluster 0	1004	5	4
cluster 1	18	1440	16
cluster 2	11	15	1380

69 "misclassified" documents using 4099 terms

Average document

The Pythagorean Theorem employed 24 words, the Lord's Prayer has 66 words, Archimedes Principle has 67 words, the 10 Commandments have 179 words, the Gettysburg Address had 286 words, the Declaration of Independence has 1,300 words and finally
the European Commission's regulation on the sale of cabbage: 26,911 words.

what do we want to do:

- to use the same data
- to select SMALLER set of terms (and to reduce the dimensionality of the problem)
- to apply a hybrid clustering scheme (a sequence of clustering algorithms so that the output of algorithm i becomes the input of algorithm $i+1$).
and to get better clustering results

PDDP

Principal Direction Divisive Partitioning

or

HOW TO GET A REASONABLE INITIAL PARTITION

PDDP

Principal Direction Divisive Partitioning

Principal Direction

projection

partition one dimensional set

partition original set

How to find the pricipal direction

- Look at the "term by document" matrix

$$
X=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right] .
$$

- compute the mean $\mathbf{m}=\frac{\mathbf{x}_{1}+\ldots+\mathbf{x}_{m}}{m}$
- compute the first singular vector \mathbf{v}_{1} of the matrix

$$
X-\mathbf{m e}^{T}=\left[\mathbf{x}_{1}-\mathbf{m}, \ldots, \mathbf{x}_{m}-\mathbf{m}\right] .
$$

\mathbf{v}_{1} is the pricipal direction vector

clustering results

	DC0	DC1	DC2
cluster 0	272	9	1379
lluster 1	4	1285	11
cluster 2	757	166	8
"empty" documents			
cluster 3	0	0	0

PDDP generated initial "confusion" matrix with 470 "misclassified" documents using 600 terms

constrained data

- PDDP as well as the classical k-means algorithm are general clustering algorithms capable of handling general datasets in \mathbf{R}^{n}.
- "document-vectors" reside on an $n-1$ dimensional sphere \mathbf{S}^{n-1}.

sPDDP

1. Given a set $\mathbf{X} \subset \mathbf{S}_{2}^{n-1}$ determine the two dimensional plane \mathbf{P} that approximates \mathbf{X} in the "best possible way".
2. Project \mathbf{X} onto \mathbf{P} and denote the projection by \mathbf{Y}.
3. "Push" Y to the great circle, i.e., $\mathrm{y} \rightarrow \mathrm{z}=\frac{\mathbf{y}}{\|\mathbf{y}\|}$.
4. Partition $\mathbf{Z} \subset \mathbf{S}_{2}^{1}$ into two clusters \mathbf{Z}_{1} and \mathbf{Z}_{2}.
5. Generate the induced partition $\left\{\mathbf{X}_{1}, \mathbf{X}_{2}\right\}$ of \mathbf{X} as follows:

$$
\mathbf{X}_{1}=\left\{\mathbf{x} \mid \mathbf{z} \in \mathbf{Z}_{1}\right\}, \text { and } \mathbf{X}_{2}=\left\{\mathbf{x} \mid \mathbf{z} \in \mathbf{Z}_{2}\right\} .
$$

first two dimensional projection

PARTITION 1, ENTIRE SET, 2D PROJECTION

circle approximation

PARTITION 1, ENTIRE SET, GREAT CIRCLE APPROXIMATION

circular partition

PARTITION 1, ENTIRE SET, GREAT CIRCLE APPROXIMATION

plane partition

PARTITION 1, ENTIRE SET, 2D PROJECTION

second plane projection

PARTITION 2, LARGEST CLUSTER, 2D PROJECTION

clustering results

	DC0	DC1	DC2
lluster 0	1000	3	1
cluster 1	8	10	1376
cluster 2	25	1447	21
"empty" documents			
cluster 3	0	0	0

sPDDP generated initial "confusion" matrix with 68 "misclassified" documents using 600 terms

clustering results

		documents misclassified by sPDDP			
$\#$ of terms	0	vec	alone	+	+
k-means	sph $k-$ means	IT-means			
100	12	383	258	229	168
200	3	277	133	143	116
300	0	228	100	104	81
400	0	88	80	78	56
500	0	76	62	57	40
600	0	68	62	54	44

Low Bound for $Q(\Pi)$

$\Pi=\left\{\pi_{1}, \ldots, \pi_{k}\right\},\left|\pi_{i}\right|=m_{i}$

$$
\begin{gathered}
Y=\left[\begin{array}{llll}
\frac{\mathbf{e}_{m_{1}}}{\sqrt{m_{1}}} & \cdots & \cdots & \\
\cdots & \frac{\mathbf{e}_{m_{2}}}{\sqrt{m_{2}}} & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \frac{\mathbf{e}_{m_{k}}}{\sqrt{m_{k}}}
\end{array}\right] \quad(*) \\
Y^{T} Y=I_{k} \\
Q(\Pi)=\operatorname{trace}\left(X^{T} X\right)-\operatorname{trace}\left(Y^{T} X^{T} X Y\right) .
\end{gathered}
$$

To minimize $Q(\Pi)$ solve $\max \left\{\operatorname{trace}\left(Y^{T} X^{T} X Y\right): Y\right.$ is of the form $\left.(*)\right\}$.

Relaxed Maximization Problem

$$
\max \left\{\operatorname{trace}\left(Y^{T} X^{T} X Y\right): Y^{T} Y=I_{k}\right\} .
$$

Theorem (Ky Fan) If H is a symmetric matrix with eigenvalues

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n},
$$

then

$$
\max _{Y^{T} Y=I_{k}} \operatorname{trace}\left(Y^{T} H Y\right)=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{k} .
$$

Low Bound for $Q(\Pi)$

As a by-product we have

$$
\begin{aligned}
Q(\Pi) & \geq \operatorname{trace}\left(X^{T} X\right)-\max _{Y^{T} Y=I_{k}} \operatorname{trace}\left(Y^{T} X^{T} X Y\right) \\
& =\sum_{i=k+1}^{\min \{m, n\}} \sigma_{i}^{2}(X) .
\end{aligned}
$$

