The Entropic Geometric Means Algorithm: An Approach to Building
Small Clusters for Large Text Datasets

Jacob Kogan
kogan@umbc.edu
Department of Mathematics and Statistics
UMBC, Baltimore, MD 21250
Marc Teboulle
teboulle@post.tau.ac.il
School of Mathematical Sciences
Tel-Aviv University
Tel-Aviv, Israel
and
Charles Nicholas
nicholas@umbc.edu
Department of Computer Science and Electrical Engineering

UMBC, Baltimore, MD 21250
September 10, 2003

Abstract

Related documents should contain same, or similar, terms. The number of terms co—occurring
in all documents of a document cluster may provide an indication of the cluster’s quality. One
can expect a “good” document cluster to contain “large” numbers of terms co—occurring in all
documents that belong to the cluster. In reality, however, when a document cluster is large, there
is no single term that occurs in all the documents of the cluster (stop words may be an exception,
but those are usually removed ahead of clustering). In contrast, when a cluster is small, one can
expect certain terms to occur in all its documents. In this paper we introduce a new algorithm,
called the Entropic Geometric Means (EGM) which emerges by replacing the squared Euclidean
distance with an entropy-like distance in a k-means like algorithm. The EGM algorithm attempts
to generate small clusters of documents so that a set of terms co—occurring in all documents of a
cluster is non—empty for many clusters of the EGM generated partition.

1. Introduction

The classical k-means clustering algorithm [10] is a well known technique for clustering of data.
To outline our main goals and contribution, we begin with an informal presentation. More details
and precise formulations will be given in the next section. Basically, the clustering problem can
be represented as a nonconvex optimization problem with explicit constraints, and the resulting k-
mean clustering algorithm is essentially a gradient based algorithm, (see e.g., [3]), which leads to a
local solution. One of the main computational steps in the k-mean clustering algorithm consists of
computing the centroid ¢(w) of a cluster 7, and involves the solution of a convex optimization problem

c =c(m) :argmin{Zd(c,x), ce€ S}, (1.1)

XET

where S is a given convex subset of a finite dimensional vector space, and d(-, -) measures the discrep-
ancy between a cluster centroid and the data points in X. The function d is supposed to be convex

in the first argument and should satisfy the property
d(x,y) > 0, Vx,y € S, with equality iff x =y,

(symmetry and the triangle inequality need not to be satisfied). The classical k-means clustering
algorithm corresponds to S = R™ and d(c,x) = |c — x||? as the discrepancy measure. A variety of
modifications of the classical k—means clustering algorithm [10] have been introduced recently (see
e.g., [8], [2], [9], [15], to name just a few). All these modifications, exactly like the classical algorithm,
are also gradient based methods. The main difference between the various modifications is the choice
of the “discrepancy measure” d(-,-), which we call here a “distance like” function, and of the set S.
We believe that a particular choice of a distance like function d may improve clustering of a specific
dataset. Motivated by text mining applications, we shall consider the specific case when S is the
nonnegative orthant R’ , which in turn will govern the choice of d in problem (1.1). In this paper we
choose a specific entropy-like distance d, and use this choice to derive a new clustering algorithm. The
proposed choice for d emerges from earlier works in information theory within the use of the so-called
Csiszar or/and Bregman divergences (see e.g., [5], [6]) which are usually defined in that context over
the set of probability measures. However here, following ideas developed in several contributions in
the area of nonlinear optimization (see e.g., [1], [11], [12], [17], [18] and references therein) it will
be used as a distance-like function to measure the discrepancy between two vectors in R’} (see next
section for precise definitions and properties). For reasons that will become clear later (see Section 2),
we call the proposed algorithm the Entropic Geometric Means (EGM), and we shall show that EGM

generates clusters of document that contain the same terms.

The remaining of the paper is as follows. In Section 2 we review k—means like clustering algorithms,
the concept of entropy-like distances and introduce the EGM algorithm. The dataset and results of
clustering experiments are provided in Section 3. Brief conclusions, further research directions, and
possible applications of the proposed algorithm are outlined in Section 4. Arguments leading to

centroids computations are collected in the Appendix.
2. The Entropic-Geometric Means algorithm

We shall denote column n dimensional vectors by lowercase boldface Latin letters x, y, The entries
of the vector x are denoted by x[1],...,x[n]. Motivated by Text Mining application we shall consider
a set of vectors X = {x1,...,X,} in the non negative orthant of the n-dimensional Euclidean space
R", that is we let S = R"}. To develop a k-means type algorithm for clustering, we need to define an
appropriate divergence measure d in S, which will replace the usual squared Euclidean distance. In
this paper we shall be concerned with a specific “entropy-like” distance function

dte,x) = > w16 (1), @

= x[J]

where ¢ is a strictly convex function defined on the nonnegative real line. The divergence measure
defined by (2.1) is known as ¢-divergence, and was introduced by Csiszar [6] as a generalized measure
of information, viewed as a “distance” function between probability measures. Note that divergence
measures are not distances in the usual sense, since they need not to be symmetric or satisfy the
triangle inequality. The entropy terminology stems from the fact that by choosing the kernel function
¢(t) = tlogt, the resulting ¢-divergence is nothing else but the Kullback-Leibler relative entropy.
Here we are not concerned with the statistical information theoretic significance of the ¢-divergence.
Rather, we adopt this concept to define a “distance” between vectors in the non negative orthant in
the optimization problem (1.1). Indeed, there are no reasons to require the dataset to belong to the
unit simplex (see discussion at the end of this section). One can consider vectors in the nonnegative
orthant by normalizing the function ¢ so that ¢(1) = ¢'(1) = 0. This can be applied to several
interesting choices of the kernel functions ¢ to produce adequate entropy-like distances. For more

details, properties and applications of entropy-like distances see, for example, [1], [11], [17], and [18].

Here, we concentrate on the entropy kernel, which after normalization (with the convention

0log0 = 0) is defined by

¢(t):{ tlogt —t+1 if t>0, 2.2)

+o00 otherwise.

With the specific choice of the kernel ¢ given above we obtain

which is the (normalized) Kullback-Leibler relative entropy distance. Note that this kernel is also
the link between ¢-divergences and another family of divergence measures, the so-called Bregman
distances Dp, see e.g. [5]. For a strictly convex differentiable function satisfying certain technical
hypotheses (see e.g., [11], [12]), D}, is defined as Dp(x,y) = h(x) — h(y) — (x — y)'Vh(y), where VA
denotes the gradient of h. By taking h(x) = Zx[j] log x[j], we have Dp(x,y) = d(x,y). Moreover,
it can be shown that up to a multiplicative co]n:sltant, Bregman and Csiszar divergences coincide only

for the entropy kernel. For more details see e.g., [11] and references therein.!

After this short recall on entropy-like distances, we are ready to present our algorithm. The follow-
ing basic description of a k—means type clustering algorithm is applicable to a variety of “distance-like”
functions such as ¢-divergences or/and Bregman based divergences, (see [15], and for more general
results and applications see [13]).

Consider a partition IT = {my,..., 7} of the set X, i.e.,
mU...Umg = {x1,...,Xn}, and 7r,~ﬂ7rj =0 ifi+#j.

We define the centroid ¢ = ¢ (7) of a cluster = as a solution of the optimization problem (1.1) with
S = R". The quality of the cluster 7 is defined by
g(m) = Z d(c,x). (2.3)
XET;
The quality of the partition is given by Q(II) = g(m1) + ... + ¢g(7). The problem is to identify an
optimal partition {={,...,n}}, i.e., the one that minimizes g(m) + ... + ¢(mg).

Note that centroids and partitions are associated as follows:

1. For a set of k centroids {cy, ..., ¢} one can define a partition {my, ..., m;} of the set {x1,..., %}
by:
T, = {Xj : d(CZ‘,Xj) < d(Cl,Xj) for each [75 z} (2.4)

(we break ties arbitrarily).

2. Given a partition {7y, ..., 7} of the set {x1,...,%,,} one can define the corresponding centroids

{c1,...,cx} by solving (1.1).

!Note that the ¢-divergence given in (2.1) is jointly convex in (¢, x) for any convex kernel ¢, a property which is not
always shared by a Bregman divergence generated by an arbitrary convex function h.

A batch k—means type algorithm is the following procedure alternating between the two steps described

above:

Algorithm 2.1 Batch k—means type algorithm

Given a user supplied tolerance tol > 0 do the following:
1. Sett=0.
2. Start with an initial partitioning) = {wgt), eee ,7'('1(:)}
3. Apply (1.1) to recompute centroids.
4. Apply (2.4) to compute the partition nextB (H(t)) = [ttD = {7T§t+1), ... ,7r,(ct+1)}.

5. IfQ (H<t>) —Q (H<t+1>) > tol

sett=t+1
goto Step 3
6. Stop.
As noted earlier in the introduction, when d(c,x) = |c — x||?, Algorithm 2.1 becomes the classical

batch k—means clustering algorithm (see [10]).

Computation of a centroid ¢ for a given cluster 7 as prescribed by equation (1.1) is a convex
optimization problem, which can be solved analytically for various choices of d. Indeed, it can be
viewed simply as a formal definition of a mean. Such an approach to generate entropic means, with
¢-divergence or/and Bregman divergences has been introduced and developed in [1] where more details
and examples can be found. The ability to carry out a fast and efficient computation of centroids is
key to successful implementation of k—means like algorithms. For the function d given by (2.10) and

a non empty cluster 7 with p vectors the coordinate c[j] of the centroid ¢ = ¢(n) is

H (x[]])r% if x[j] > 0 for each x € m,
clj]=4 *" (2.5)
0 otherwise.

(for details see Section 5).
While fast and computationally efficient, the batch k—means often gets trapped at local minima

even for simple one dimensional data sets [7]. Next we show that Algorithm 2.1 shares this deficiency.

Example 2.1 Consider a three scalar set X = {x1,Xo,X3} where x; = 1, Xo = e, and x3 = 2. If the

initial partition II = {my, o} where m = {x1}, and w2 = {x9,x3},

INITIAL PARTITIONT OPTIMAL PARTITION®
15 T T 15 T T T T

051 4 051 q

=)
°
o
I
=)
I

-051 4 -051 q

1k 4 ab 4

o
-
®
©
o
-
N
ol
IS
a
o
-
®
©

thency =1, ¢ = e%, and since
d(Cl,Xz) =—-24+e > d(CQ,XQ) = —0.56% +e
d(ci,x3) = —3+¢e? > d(ca,x3) = —1.5e% + €2

a batch iteration of the algorithm does not change the partition. Note that Q(II) =~ 1.1440, and the

quality of the partition 11° = {{x1,x2},{x3}} is approzimately 0.4208. While Q(I1°) < Q(II) the batch

version of the algorithm misses the better partition.

An incremental version of k—means helps remedy the problem. To describe the algorithm we need

additional definitions.

Definition 2.1 A first variation of a partition Il = {m,...,m} is a partition II' = {x},...,m}
obtained from 11 by removing a single vector x from a cluster m; of Il and assigning this vector to an

existing cluster m; of IL.

Note that the partition II is a first variation of itself. Next we look for the “steepest descent” first

variation, i.e., a first variation that leads to the largest decrease of the objective function.

Definition 2.2 The partition nextFV (I) is a first variation of a partition IL if for each first variation

!
II' one has

Q (nextFV (II)) < Q (IT) . (2.6)

We note that for the partition II given by Example 2.1 one has I1° = nextFV (II).
To benefit from the speed of batch iterations and the accuracy of the incremental iterations we

implement the following “ping—pong” strategy.

Algorithm 2.2 The Entropic Geometric Means (EGM) clustering algorithm.

For user supplied tolerances tolg > 0 and toly > 0 do the following:

1. Set the indez of iteration t = 0.
. . e t t
2. Start with an arbitrary partitioning i = {ﬂ'g), ... ,ﬂ,(c)}.

3. Generate the partition ¢+ = nextB (H(t)).
if [Q (H(t)) —Q (nextB <H(t))) > tolB}
sett=1+1
goto Step 3

4. Generate the partition I+ = nextFV (H(t)).
if [Q (H(t)) —Q (nextFV (H@)) > tolI]
sett=1+1
goto Step 3

5. Stop.

A single iteration of Algorithm 2.2 applied to the partitions II of Example 2.1 generates the optimal

partition II°. In the next section we present and discuss partitions generated by the EGM algorithm.

At the end of this section we briefly compare and explain the differences between Algorithm 2.2
with two algorithms introduced recently by [2] and [9]. Both papers consider a set of vectors X in R"
so that each x € X has non—negative coordinates and belongs to the unit simplex, i.e.,

n
x[j] >0,j=1,...,n, and Zx[g] =1. (2.7)
j=1

In both papers the “distance” between a vector x and a centroid c¢ is given by

(for definitions of quantities alog% and OIOgS see Section 5). The Divisive Information Theoretic
clustering algorithm proposed in [9] is the batch version of the classical k-means algorithm with the
squared Euclidean distance substituted by di, and the algorithm proposed in [2] is its incremental
counterpart. With this choice, the resulting centroid ¢(m) of a cluster 7 is the arithmetic mean of the
vectors in the cluster (see e.g., [9]).

However, we note that (as explained in Section 2), the more stringent unit simplex constraint can

be avoided and replaced by the larger non-negative orthant, by simply using the normalized entropy

¢(t) =tlogt — t + 1, and replacing (2.8), with the resultlng

8),
i log —l— Z c[j] — Z x[7] (2.9)

j=1

It is easy to verify that this leads to the same results, namely the resulting centroid ¢(m) of a cluster
7 is the arithmetic mean of the vectors in the cluster (see [15]).
As previously explained the entropy-like distances are not necessarily symmetric, i.e., in general
d(c,x) # d(x,c). The “entropy-like” distance function d we use
n : n n
d(e,x) =Y e[j]log # +) x[] =D el (2.10)
j=1 7] j=1 j=1
can be obtained by switching the roles of x and ¢ in ds. Alternatively, do can also be obtained by using
the kernel ¢(t) = —logt+t—1in (1.1). Note that both choices of ¢, lead to an entropy-like distance.?
This provides the motivation for the entropic part of the name of the EGM clustering algorithm. The
key difference with dy results from the fact that the corresponding optimization problem (1.1) has a
completely different objective function, with resulting minimizer (the centroid of a cluster 7) being
now the geometric mean of the vectors in the cluster, hence the use of the geometric terminology in

EGM.
3. Experimental results

We consider the dataset which is a merger of the three document collections available at

http://www.cs.utk.edu/"1si/:

e DCO (Medlars Collection, 1033 medical abstracts).
e DC1 (CISI Collection, 1460 information science abstracts).

e DC2 (Cranfield Collection, 1398 aerodynamics abstracts).

We select 600 “best” terms and build vectors of dimension 600 for each document (see [7] for selection
procedure details). A two step clustering procedure is applied to the document vectors. The first
step of the procedure is the Spherical Principal Directions Divisive Partitioning (sPDDP) clustering
algorithm recently reported in [7]. The Singular Value Decomposition based algorithm is first applied
to all unit /o document vectors to split the collection into two clusters. The same procedure is then
applied recursively to a largest cluster in the partition. Clustering results for three cluster partition

are reported in Table 1. When the number of terms is relatively small, some documents may contain

2To avoid confusion and controversies (already existing in the related fields of Information Theory, e.g., Shannon
versus Burg entropy), we could also call d(c,z) the “forward” entropy-like distance (in the order of the minimization
variable ¢ — x), and d» the “backward” entropy-like distance (in the order x — ¢), where d is defined by (2.1), and ¢
the normalized entropy as defined in (2.2).

| | DCO | DC1 | DC2 |

cluster 0 1000 3 1
cluster 1 8 10 | 1376
cluster 2 25 | 1447 21
“empty” documents

cluster 3 0 0 0

Table 1: sPDDP generated initial “confusion” matrix with 68 “misclassified” documents using best
600 terms

no selected terms, and their corresponding vectors are zeros. We always remove these vectors ahead of
clustering and assign the “empty” documents into a special cluster. This cluster is the last row in the
“confusion” matrix (and is empty in the experiment reported in Table 1). The entry 7j in Table 1 is
the number of documents that belong to cluster ¢ and document collection j. The “confusion” matrix
shows that only 68 documents (i.e., less that 2% of the entire collection) have been “misclassified” by
the algorithm.

At the second step we would like to use the three cluster partition generated by sPDDP as the
initial partition of the EGM means algorithm. First we look for conditions necessary for successful
implementation of this two step clustering strategy.

Consider a partition IT = {m,..., 7}, and assume that the following condition holds for the
cluster

Vj=1,...,n 3x € m such that x[j] = 0. (3.1)

Note, that in terms of “words and documents” condition (3.1) means that there is no word that occurs
in all the documents of cluster 7. This is typical for large clusters, and this condition holds for all
three clusters of the partition displayed by Table 1. Due to (2.5) one has ¢; = ¢(m;) = 0. If (3.1) holds
for all k clusters of the partition, then ¢; = ... = ¢; = 0, and an application of a batch iteration of the

EGM clustering algorithm does not change II. This observation motivates the following definition.
Definition 3.1 A cluster © is full, if there ezists j such that x[j] > 0 for each x € .

In terms of “words and documents” a cluster is full if there is a word that occurs in every document
of the cluster. Centroids of full clusters are nonzero vectors, and, as discussed above, an application
of a batch iteration of the EGM algorithm may not change a partitions with no full clusters.

We now turn to incremental iterations of the EGM algorithm and consider the following condition
for a cluster .

Vj=1,...,n 3x, x' € 7 such that x[j] = x'[j] = 0. (3.2)

This condition, like condition (3.1), is easily fulfilled by large clusters. Moreover, if one vector is
removed from 7, then the resulting cluster 7' satisfies (3.1). We assume now that condition (3.2)
holds for each cluster of II, and construct a first variation I of II by selecting m;, m; € II, removing

a vector x € m; and assigning x to 7;. Denoting the resulting clusters by «} and 7r§- one gets
Q(I) — Q(I) = [g(m) — g ()] + [a(m;) — g ()] =0.
Next we define a cluster that can be changed by incremental iterations of the EGM.
Definition 3.2 A cluster w is almost full, if there exists j such that x[j] > 0 for all but one x € .

An application of a first variation iteration of the EGM algorithm may not change a partitions with
no almost full clusters. An inspection shows that the partition presented by Table 1 contains no full
clusters, or almost full clusters. Hence an application of EGM to the partition will not change it. To
generate initial partitions that can be modified by the EGM algorithm one should either (a) increase
the number of selected terms, or (b) increase the number of clusters (and thereby reduce cluster size),
or (c) both.

First we increase the vector space dimension to 1600, and apply sPDDP until at least one cluster in
the sSPDDP generated partition becomes almost full. This happens for the first time when the number
of clusters is 39. The number of documents “misclassified” by sPDDP is 45, and application of the
EGM generates 39 clusters (note that k—means like algorithms may decrease number of clusters, but
it does not happen in this experiment) with 49 “misclassifications”. EGM performs 2 batch and 2 first
variation iterations, and “reshuffles” 60 vectors (see Table 2 for confusion matrices and, for example,
compare cluster 37 in both partitions). Note that while 60 vectors change their cluster affiliation
the number of “misclassifications” as reported by the confusion matrix grows by 4 only. The EGM
clustering algorithm tends not to “mix” documents from different collections, and moves most of the
documents between clusters of the same document collection.

We gradually increase the number of clusters and report the results in Table 3. Inspection of the

results reveals the following:

1. The number of full and almost full clusters generated by EGM grows monotonically as the

number of clusters generated by sPDDP increases.
2. As the number of clusters generated by sPDDP reaches 301, EGM empties some of the clusters.

3. As the number of EGM generated clusters grows, the number of “misclassified” documents grows

from 49 to 387, and then falls down to 123.

H Cluster/DocCol ‘ DCO ‘ DC1 ‘ DC2 H H Cluster/DocCol ‘ DCO ‘ DC1 ‘ DC2 ‘
cluster 0 116 0 0 cluster 0 115 0 0
cluster 1 0 0 48 cluster 1 0 0 48
cluster 2 1 0| 123 cluster 2 1 0| 123
cluster 3 1 0 65 cluster 3 1 0 65
cluster 4 0 0| 116 cluster 4 0 0| 116
cluster 5 0 0 88 cluster 5 0 0 88
cluster 6 1 2 87 cluster 6 1 2 87
cluster 7 0 0] 126 cluster 7 0 0] 126
cluster 8 2 0 82 cluster 8 2 0 82
cluster 9 0 0 73 cluster 9 0 0 73
cluster 10 0 1 64 cluster 10 0 1 64
cluster 11 0 1 159 cluster 11 0 1 159
cluster 12 0 0| 146 cluster 12 0 0| 146
cluster 13 0 0 66 cluster 13 0 0 66
cluster 14 1 1| 140 cluster 14 1 1| 140
cluster 15 8 101 1 cluster 15 8| 101 1
cluster 16 0] 121 0 cluster 16 0] 121 0
cluster 17 2| 105 1 cluster 17 2| 105 1
cluster 18 0 51 0 cluster 18 0 51 0
cluster 19 0| 117 1 cluster 19 0 117 1
cluster 20 1 118 4 cluster 20 1 118 4
cluster 21 0 57 0 cluster 21 0 57 0
cluster 22 0| 112 0 cluster 22 0| 112 0
cluster 23 0| 147 0 cluster 23 0| 147 0
cluster 24 0 76 0 cluster 24 0 76 0
cluster 25 1 91 1 cluster 25 1 91 1
cluster 26 1 84 0 cluster 26 1 83 0
cluster 27 1 98 1 cluster 27 1 98 1
cluster 28 1| 114 3 cluster 28 1| 114 3
cluster 29 5 61 1 cluster 29 5 61 1
cluster 30 108 0 0 cluster 30 107 0 0
cluster 31 64 0 0 cluster 31 63 0 0
cluster 32 141 0 0 cluster 32 141 0 0
cluster 33 107 0 0 cluster 33 107 0 0
cluster 34 79 0 0 cluster 34 77 0 0
cluster 35 81 1 1 cluster 35 62 1 1
cluster 36 52 0 0 cluster 36 30 0 0
cluster 37 109 1 0 cluster 37 150 2 0
cluster 38 150 0 1 cluster 38 155 0 1
“empty” documents “empty” documents
cluster 39 0 0 0 cluster 39 0 0 0

10

Table 2: Confusion matrices for partitions generated by sPDDP (left) and sPDDP+EGM (right)

algorithms.

dim sPDDP sPDDP and EGM
full | # almost | misclass # # full | # almost | misclass | # vec
full full

clusts | clusts clusts docs clusts | clusts clusts docs moved
1600 39 0 1 45 39 1 0 49 60
1600 45 0 2 45 45 4 0 49 550
1600 49 0 3 45 45 5 0 53 694
1600 55 0 4 45 55 11 0 387 2434
1600 57 1 4 45 57 14 0 371 2719
1600 | 301 162 116 45 271 262 72 197 4483
1600 | 525 448 369 45 482 480 165 139 3344
1600 | 712 602 541 45 597 596 246 123 3283

11

Table 3: Outcome of sPDDP and sPDDP+EGM algorithms.
4. Future research

The paper introduces a k—means like algorithm that combines features of both batch and incremental
versions of the classical k—means clustering algorithm. The “entropy-like” distance function proposed
in the paper selects the geometric mean of a cluster as the cluster’s centroid. The EGM clustering
algorithm tends to build small clusters of documents that contain the same words.

We believe the algorithm can contribute significantly to clustering large datasets and building high
quality clusters of any size when implemented as a part of a “hybrid scheme” (see [14]), i.e. being
an element of a sequence of clustering algorithms so that the output of algorithm ¢ becomes input
to algorithm 7 + 1. To clarify the potential usefulness of the EGM algorithm consider the following
hybrid scheme:

1. Fast SVD type divisive algorithm (like, for example, PDDP [4], or sPDDP [7]) that generates

small clusters.
2. EGM clustering algorithm that refines clusters generated by Step 1.

3. Treat small high quality clusters generated by Step 2 as a single point with an appropriate weight
(see e.g. [19], [20]). Apply any k—means like algorithm to the “new” dataset.

If Step 1 of the scheme manages to build clusters of average size 10, then the size of the “new” dataset
is of an order of magnitude smaller than the size of the original dataset and the proposed scheme is a
scalable clustering procedure. Good quality small clusters are crucial for building good final partitions

by Step 3.

12

References

[1]

[3]

[4]

8]

A. Ben-Tal, A. Charnes and M. Teboulle. Entropic means. Journal of Mathematical Analysis and
Applications, 139:537-551, 1989.

P. Berkhin and Becher J. D. Learning simple relations: Theory and applications. In Proc. Second

SIAM International Conference on Data Mining, pages 420-436, Arlington, April 2002.

D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.
Prentice-Hall, New Jersey, 1989.

D. L. Boley. Principal direction divisive partitioning. Data Mining and Knowledge Discovery,

2(4):325-344, 1998.

L.M. Bregman. A relaxation method of finding a common point of convex sets and its application
to the solution of problems in convex programming. USSR Comp. Math. and Math Phys., 7:200-
217, 1967.

I. Csiszar. Information-type measures of difference of probability distributions and indirect ob-

servations. Studia Sci. Mat. Hungar., 2:299-318, 1967.

I. S. Dhillon, J. Kogan, and C. Nicholas. Feature selection and document clustering. In M.W.
Berry, editor, A Comprehensive Survey of Text Mining. Springer-Verlag, 2003, to appear.

I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data using clustering.
Machine Learning, 42(1):143-175, January 2001. Also appears as IBM Research Report RJ 10147,
July 1999.

Inderjit S. Dhillon, Subramanyam Mallela, and Rahul Kumar. Enhanced word clustering for
hierarchical text classification. In Proceedings of the The Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining(KDD-2002), pages 191-200, 2002.

E. Forgy. Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications.

Biometrics, 21(3):768, 1965.

B.F. Iusem, A.N. Svaiter and Teboulle M. Entropy-like methods in convex programming. Math-
ematics of Operations Research, 19:790-814, 1994.

K.C. Kiwiel. Proximal minimization methods with generalized bregman functions. SIAM J.

Control and Optimization, 35:1142-1168, 1997.

[13]

[14]

[15]

13

J. Kogan and Teboulle M. A unified framework for clustering data with entropy-like means

algorithms: theory and applications. in preparation.

J. Kogan, C. Nicholas, and V. Volkovich. Text mining with hybrid clustering schemes. In
M.W.Berry and W.M. Pottenger, editors, Proceedings of the Workshop on Text Mining (held
in conjunction with the Third SIAM International Conference on Data Mining), pages 5-16,
2003.

J. Kogan, M. Teboulle, and C. Nicholas. Optimization approach to generating families of k-
means like algorithms. In I. Dhillon and J. Kogan, editors, Proceedings of the Workshop on
Clustering High Dimensional Data and its Applications (held in conjunction with the Third SIAM
International Conference on Data Mining), 2003.

A. L. Peressini, F .E. Sullivan, and J. J. Uhl. The Mathematics of Nonlinear Programming.
Springer—Verlag, New York, 1988.

M. Teboulle. On ¢-divergence and its applications. In F.Y. Phillips and J. Rousseau, editors,
Systems and Management Science by Extremal Methods—Research Honoring Abraham Charnes at

Age 70, pages 255-273, Kluwer Academic Publishers. Nowell, MA, 1992.

M. Teboulle. Convergence of proximal-like algorithms. STAM J. of Optimization, 7:1069-1083,
1997.

G. Zhang, B. Kleyner and M. Hsu. A local search approach to k-clustering. Tech Report HPL-
1999-119, 1999.

T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data clustering method for
very large databases. In Proceedings of the ACM SIGMOD Conference on Management of Data,
Montreal, Canada, 1996.

5. Appendix

In this section we present centroid computations for the EGM clustering algorithm. The general

approach to the optimization problem (1.1) is provided in [15]. For the sake of completeness we

outline briefly centroid computation for the special case when the “distance-like” function is given by

(2.10). Motivated by continuity arguments for each a > 0 and b > 0 we define

Ologg:Olog%:Oand bloggzoo. (5.1)

14

For a cluster 7 = {x1,...,%,} we have to find ¢ € R" that minimizes the convex function in c,
L clj] . .
d_dle,x) = | elillog —= —clj] +x[]
XEm xen | j=1 X[J]
The right hand side of the equation is

é(ZC[J log) péc ‘f‘ZZX[]

= x€m j=1

n
Keeping in mind that Z Z x[7] is independent of ¢, for a fixed j we consider
XEm]:1

~pelj] + (Z clf]log [[g]])

XET

the contribution of the j*" vector component to Z d(c,x). Keeping in mind that c[j] is a scalar, to
Xem
simplify the exposition, we substitute c[j] by s and minimize

—ps + Z slog —= (5.2)

A S
with respect to s. Due to (5.1) the expression is minimized at 0 if x[j] = 0 for at least one x € 7. If

x[j] > 0 for each x € m, then the derivative of (5.2) should vanish at the minimizer, i.e.,

’tSI»—t

> log =0, and s = (Xl[j])% - (xplg]) 7 -

Xem
We remind the reader that s stands for c[j], and the last expression for s is exactly the formula given
by (2.5).

Finally we consider a set of p positive scalars s; > 0, ¢+ = 1,...,p and the geometric mean
1 1

P
1 DRI

s=3s sp . The following elementary properties will be useful for evaluation of @ (II):

=

ST
Vv
o
—~
(@]
w
SN—

si+...+sp—p-s=8s1+...+5,—p-57-...-8

(this is the Arithmetic—-Geometric Mean inequality, see e.g. [16]).

Zslog——s pllogs——ZlogsZ] =s-p[logs —logs] =0. (5.4)
p
i=1 i=1

The quality of a cluster m with p vectors is given by

gr) = Zd(c,x)=zlz [log H elf] + x[j]

= Z(ZC[J]log) pZC[JHZZX[J

15

For a fixed j the nonzero coordinate ¢[j] = xl[j]% xp[]] hence, due to (5.4) one has Z | log [[‘7%
xXem
0, and Z (Z c[j] log H) = 0. The formula for ¢(n) simplifies as follows:
XEm X7
q(m) = —pele + Z el'x, (5.5)

XET

and by definition of ¢ (or by (5.3)), one has g(r) > 0.

