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Abstract

A clustering algorithm that exploits special characteristics of a data set may

lead to superior results. The spherical k{means algorithm introduced recently by

Dhillon and Modha [7] is speci�cally designed to handle unit length document

vectors. A recent contribution by Zhao and Karypis [16] reports results of clus-

tering experiments with 7 clustering algorithms and 12 di�erent text data sets.

Zhao and Karypis conclude that the objective function based on cosine similar-

ity (and used in [7]) \leads to the best solutions irrespective of the number of

clusters for most of the data sets." We describe a general approach to generate

k{means like algorithms, which is based on a family of similarity measures and

optimization tools. To demonstrate the viability of our approach we develop and

apply a particular family of algorithms to a text data set considered in [7] and

report on the derived clustering results.
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1. Introduction

The classical k{means algorithm [10] is probably the most widely known and used gen-

eral clustering technique. A number of k{means like algorithms are available in the

literature (see e.g., [7], [8], [15], [4] to name just a few). While each version of k{means

is a two step \expectation{maximization" procedure, di�erent similarity measures dis-

tinguish between various versions of the algorithm. We argue that the choice of a

particular similarity measure may improve clustering of a speci�c dataset. We call this

choice the \data driven similarity measure". The main contribution of this paper is the

description of an optimization based machinery that generates a variety of k{means

like algorithms via an appropriately chosen similarity measure.

For the proposed speci�c choice of a similarity measure we generate a k{means like

algorithm that depends on two non-negative real parameters � and �. Accordingly we

call this algorithm the (�; �) algorithm. When � = 1 and � = 0 the (�; �) algorithm

becomes the classical k{means algorithm, and when � = 0 and � = 1 the algorithm

generalizes the Information{Theoretical k{means (see [8], [2]). Intermediate values of

the parameters regularize the logarithmic similarity measure by the squared Euclidean

distance.

The outline of the paper is the following. In Section 2 we present general batch

k{means like clustering algorithms, and provide a number of examples. Section 3

describes an optimization approach to the centroid update procedure essential to the

family of k{means like algorithms. The data set is presented and results of clustering

experiments are collected in Section 4. Brief conclusions and further research directions

are outlined in Section 5. Technical results concerning computational complexity of the

algorithm are provided in an Appendix.

2. k{means like algorithms

The following: is a basic description of a k{means type clustering algorithm:

Let fx1; : : : ;xmg be a set of vectors in a subset X of the n-dimensional Euclidean

space Rn. Consider a partition � = f�1; : : : ; �kg of the set, i.e.,

�1 [ : : : [ �k = fx1; : : : ;xmg; and �i
\
�j = ; if i 6= j:

Given a real valued function q whose domain is the set of subsets of fx1; : : : ;xmg the
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quality of the partition is given by Q(�) = q(�1) + : : : + q(�k). The problem is to

identify an optimal partition f�o

1; : : : ; �
o

k
g, i.e., one that optimizes q(�1) + : : :+ q(�k).

Often the function q is associated with a \dissimilarity measure", or a distance-like

function d(x;y) that satis�es the following basic properties:

d(x;y) � 0; 8(x;y) 2 X and d(x;y) = 0 () x = y (2.1)

We call d(�; �) a distance-like function, since we do not require d to be either symmetric

or to satisfy the triangle inequality. Furthermore, when d(x;y) = x
T
y and x and y are

l2 unit norm vectors one has d(x;y) = 1 () x = y.

To describe the relation between q and d we de�ne a centroid c of a cluster � by

c = c(�) = arg opt

(X
x2�

d(y;x); y 2 X

)
; (2.2)

where by arg opt f(x) we denote a point x0 where the function f is optimized. Depend-

ing on the choice of d, \opt" is either \min" or \max." Indeed, to de�ne a centroid one

would like to minimize (2.2) with d(x;y) = kx � yk2. On the other hand one would

like to maximize the same expression when d(x;y) = x
T
y, and all the vectors are

normalized. To simplify the exposition in what follows we shall primarily address the

case \opt= min" keeping in mind that the inequalities should be reversed in the other

case. If q(�) is de�ned as
X
x2�

d(c(�);x), then centroids and partitions are associated

as follows:

1. For a set of k centroids fc1; : : : ; ckg one can de�ne a partition f�1; : : : ; �kg of the

set fx1; : : : ;xmg by:

�i = fxj : d(ci;xj) � d(cl;xj) for each l 6= ig (2.3)

(we break ties arbitrarily).

2. Given a partition f�1; : : : ; �kg of the set fx1; : : : ;xmg one can de�ne the corre-

sponding centroids fc1; : : : ; ckg by:

ci = argmin

(X
x2�i

d(y;x); y 2 X

)
; (2.4)

We now describe a batch k{means type algorithm:



3

Algorithm 2.1 Batch k{means type algorithm

Given a user supplied tolerance tol > 0 do the following:

1. Set t = 0.

2. Start with an initial partitioning �t =
n
�t

1; : : : ; �
t

k

o

3. Apply (2.4) to recompute centroids.

4. Apply (2.3) to compute the partition �(t+1) =
n
�
(t+1)
1 ; : : : ; �

(t+1)
k

o
.

5. If Q
�
�(t)

�
�Q

�
�(t+1)

�
< tol

set t = t + 1

goto Step 3

6. Stop.

Table 1 below displays a number of examples of distance-like functions d(x;y), data

domains X, norm constraints imposed on the data, k{means like algorithms, and cen-

troid formulas. For a set of l vectors � = fy1; : : : ;ylg we denote the mean of the set

by m(�), i.e., m(�) =
y1 + : : :+ yl

l
. We denote by Sn�1

p
the lp unit sphere in R

n, i.e.,

S
n�1
p

= fx : x 2 R
n; jx[1]jp + : : :+ jx[n]jp = 1g ;

(here x = (x[1]; : : : ;x[n])T 2 R
n).

Computation of a centroid c for a given cluster � as described by equation (2.4) is

an optimization problem. The ability to carry out a fast and eÆcient computation of

centroids is key to successful implementation of k{means like algorithms. In the next

section we introduce a family of distance-like functions and an optimization technique

that solves (2.4).

3. Optimization approach

In this section we present centroid computations for the (�; �) algorithm. Motivated by

Text Mining applications we are targeting the data domain X = R
n

+ (i.e., coordinates

of the document vectors are non-negative).

For a set of vectors fx1; : : : ;xmg � R
n

+ and a set of centroids fc1; : : : ; ckg � R
n

+ we

de�ne m vectors di(c1; : : : ; ck) = (d(c1;xi); : : : ; d(ck;xi))
T 2 R

k. The support function
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Algorithm 2:1

d(y;x) X constraint \opt" c(�)

becomes

classical

kx� yk2 R
n none min batch k{means m(�)

(see [10])

kxk2 = 1 spherical

x
T
y S

n�1
2

T
R

n

+ and max batch k{means
m(�)

km(�)k2
x[i] � 0 (see [7])

kxk1 = 1
nX

i=1

x[i] log
x[i]

y[i]
S
n�1
1

T
R

n

+ and min batch IT�means m(�)

x[i] � 0 (see [8])

Table 1: k{means like algorithms

�� of a simplex � � R
k provides a convenient way to cast the clustering problem as

an optimization problem. The support function �S of a closed convex set S 2 R
n is

de�ned by (see e.g., [12]):

�S(v) = sup
n
s
T
v : s 2 S

o
;

and a simplex � � R
k is

� =
n
w : w 2 R

k; wT
e = 1;w[i] � 0; i = 1; : : : ; k

o
;

where e = (1; : : : ; 1)T is a vector of ones. For a set of centroids fc01; : : : ; c
0

k
g and a

vector xi we identify a vector wi 2 � so that wi[l] = 1 if c0
l
is the centroid nearest xi,

and wi[l] = 0 otherwise. Keeping in mind inf
x
f(x) = � sup

x

f�f(x)g we get

wi = argmax�� (�di(c
0

1; : : : ; c
0

k
)) = arg min

w2�
w

T
di(c

0

1; : : : ; c
0

k
): (3.1)

For the sets of vectors fx1; : : : ;xmg and fw1; : : : ;wmg we de�ne \updated centroids"

fc001; : : : ; c
00

k
g as follows:

(c001; : : : ; c
00

k
) = arg min

c1;:::;ck

mX
i=1

w
T

i
di(c1; : : : ; ck) = arg min

c1;:::;ck

tr
�
W TD(c1; : : : ; ck)

�
(3.2)

whereW is the k�mmatrix whose columns arewi, i = 1; : : : ; m, andD(c1; : : : ; ck) = D

is the k�m matrix with Dij = d(cj;xi). Unlike (2.4) equation (3.2) provides a formula

for k updated centroids at once.
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We shall denote the vector of partial derivatives of the function d(c;x) with respect

to the �rst n variables by rcd(c;x). Analogously, for the function  (c1; : : : ; ck) =

tr
�
W TD(c1; : : : ; ck)

�
the vector of n partial derivatives with respect to the n coordi-

nates cj[1]; : : : ; cj[n] is denoted by rcj
 (c1; : : : ; ck). If c

00

j
belongs to the interior of the

domain X, then due to (3.2) one has

rcj
 (c001; : : : ; c

00

k
) = 0: (3.3)

Furthermore, a straightforward computation shows that

rcj
 (c001; : : : ; c

00

k
) =

mX
i=1

wi[j]rcd(c
00

j
;xi): (3.4)

Next we use (3.3) and (3.4) to provide analytic expressions for c00
j
, j = 1; : : : ; k through

fx1; : : : ;xmg and fw1; : : : ;wmg. We shall consider a speci�c \distance{like" function

de�ned through the kernel

�(t) =

(
� ln t + t� 1 if t > 0

+1 otherwise

and non-negative scalars � and �:

d(c;x) =
�

2
kc� xk2 + �

nX
j=1

x[j]�

 
c[j]

x[j]

!
: (3.5)

In what follows, motivated by continuity arguments, we de�ne 0 log
0

a
= 0 log

a

0
= 0 for

each a � 0. It is easy to verify that d(c;x) satis�es the required distance-like properties

(2.1).

Note that when � = 0, the second term in (3.5) is the Kullback-Leibler relative

entropy measure, which is used here to measure the distance between two vectors in

R
n

+, see e.g., [13] and references therein. The choice of the above distance which

combines a squared Euclidean distance with the relative entropy is motivated by the

following rationale: on one hand to keep the standard features of the k-means algorithm

(through the squared distance), while on the other, to handle nonnegative data. This

idea has been recently proposed and successfully used in the development of various

optimization algorithms, see [1].

To justify the application of the gradient equation (3.3), we consider the two cases:

1. � > 0; � = 0.

In this case one can use (3.3) to solve (3.2) over Rn. Due to the convexity of X
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the solution of the unconstrained problem c
00

j
= m(�j) belongs to X. For this

reason in Subsection 3.1 below we shall compute centroids for the case � > 0

only.

2. � > 0.

Consider
mX
i=1

wi[j]d(cj;xi), the contribution due to centroid cj into the expression

(3.2). The expression to be minimized with respect to cj is just

X
x2�j

"
�

2
kcj � xk2 + �

nX
l=1

x[l]�

 
cj[l]

x[l]

!#
: (3.6)

We consider the contribution of each coordinate to (3.6). The contribution of

coordinate l is X
x2�j

�

2
jcj[l]� x[l]j2 + �

X
x2�j

x[l]�

 
cj[l]

x[l]

!
: (3.7)

If there is an index l such that x[l] = 0 for each x 2 �j, then (3.7) becomes

X
x2�j

�

2
(cj[l])

2
+ �

X
x2�j

cj[l]: (3.8)

Since cj[l] must be non-negative, expression (3.8) is minimized when cj[l] = 0.

On the other hand, if there is some x 2 �j so that x[l] > 0, then the lth coordinate

of c00
j
should be positive (recall that here �0(t) = �

1

t
+ 1! �1 as t! 0+), and

one can apply the gradient equation (3.3) to �nd c
00

j
[l].

Next we provide a formula for cj[l] when � > 0 and x[l] > 0 for at least one x 2 �j.

3.1. Centroid computation

A detailed solution to problem (2.4) with d given by (3.5), � > 0 and � > 0 is presented

in this subsection. We assume that x[l] > 0 for at least one x 2 �j and compute the

lth coordinate of the vector rcj
 (c001; : : : ; c

00

k
).

A straightforward computation (see (3.4)) leads to the following:

c
00

j
[l] � �

mX
i=1

wi[j] +

 
�

mX
i=1

wi[j]� �
mX
i=1

wi[j]xi[l]

!
�

1

c00
j
[l]
� �

mX
i=1

wi[j]xi[l] = 0: (3.9)

To simplify the above equation, de�ne (for convenience we omit the indices):

� =
mX
i=1

wi[j]; � =
mX
i=1

wi[j]xi[l]; (3.10)
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then equation (3.9) becomes a (�; �) family of quadratic equations with respect to c00
j
[l]

�� �
�
c
00

j
[l]
�2
� (�� � ��)c00

j
[l]� �� = 0: (3.11)

We remind the reader (see (3.1)) of the following:

wi[j] = 1 if cj is the centroid nearest xi; and wi[j] = 0 otherwise:

Hence
mX
i=1

wi[j] is the number of vectors in cluster �j (and
mX
i=1

wi[j]xi[l] =
X
x2�j

x[l]).

In particular when
mX
i=1

wi[j] = 0, cluster cj is not the nearest centroid for all the

vectors. In this rare (but possible) case cluster �j should become empty, the number

of clusters should be decreased, and cj should not be recomputed. We now assume

that
mX
i=1

wi[j] > 0. Recalling that �� is positive, see (3.10), and since X = R
n

+ we are

interested in the non-negative solution of quadratic equation (3.11)

c
00

j
[l] =

(�� � ��) +
q
(�� � ��)2 + 4����

2��
=
�� � �� + j�� + ��j

2��
=
�

�
;

which after substitution of the expressions (�; �) given in (3.10) leads to the following

simple formula:

c
00

j
[l] =

mX
i=1

wi[j]xi[l]

mX
i=1

wi[j]

: (3.12)

Notice that the derived centroid is thus independent of the parameters (�; �), and thus

in particular, we note that the above derivation recovers also the limit case � = 0; � > 0

and gives through (3.12), the centroid c
00

j
=m(�j).

4. Experimental results

Dhillon and Modha [7] have recently used the spherical k{means algorithm for clus-

tering text data. In one of the experiments of [7] the algorithm was applied to a data

set containing 3893 documents. The data set contains the following three document

collections (available from ftp://ftp.cs.cornell.edu/pub/smart):

� Medlars Collection (1033 medical abstracts),

� CISI Collection (1460 information science abstracts),
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� Cran�eld Collection (1400 aerodynamics abstracts).

Partitioning the entire collection into 3 clusters generates the \confusion" matrix given

by Table 2 and reported in [7] (here the entry ij is the number of documents that belong

Medlars CISI Cran�eld

cluster 0 1004 5 4

cluster 1 18 1440 16

cluster 2 11 15 1380

Table 2: spherical k{means generated \confusion" matrix with 69 \misclassi�ed" doc-

uments using 4,099 words

to cluster i and document collection j). The \confusion" matrix shows that only 69

documents (i.e., less that 2% of the entire collection) have been \misclassi�ed" by the

algorithm. After removing stopwords Dhillon and Modha [7] reported 24,574 unique

words, and after eliminating low{frequency and high{frequency words they selected

4,099 words to construct the vector space model [3].

Our data set is a merger of the three document collections (available from

http://www.cs.utk.edu/~lsi/):

� DC0 (Medlars Collection 1033 medical abstracts)

� DC1 (CISI Collection 1460 information science abstracts)

� DC2 (Cran�eld Collection 1398 aerodynamics abstracts)

The Cran�eld collection tackled by Dhillon and Modha contained two empty docu-

ments. These two documents have been removed from DC2. The other document

collections are identical.

We select 600 \best" terms and build vectors of dimension 600 for each document

(see [6] for details). A two step clustering procedure is applied to the document vectors.

The �rst step of the procedure is the Spherical Principal Directions Divisive Partitioning

(sPDDP) clustering algorithm recently reported by [6]. The Singular Value Decompo-

sition based algorithm is applied to unit l2 document vectors and the clustering results

are reported in Table 3. When the number of terms is relatively small, some documents

may contain no selected terms, and their corresponding vectors are zeros (see Table 7).

We always remove these vectors ahead of clustering and assign the \empty" documents



9

into a special cluster. This cluster is the last row in the \confusion" matrix (and is

empty in the experiment reported in Tables 3, 4, 5 and 6). Note that the clustering

procedures produce \confusion" matrices with a single \dominant" entry in each row.

The �nal partition generated by sPDDP is an input for the (�; �) clustering algo-

rithm, i.e., the k-means like algorithm with the distance function (3.5). Batch k�means

like algorithms are prone to local minima (see e.g., [9], [5], [6]). An iteration of an in-

cremental version of k{means seeks a single vector x whose reassignment leads to the

sharpest decrease of the objective function. Once the vector is identi�ed, the iteration

performs the reassignment. While computationally more accurate, the incremental al-

gorithm is much slower than the batch algorithm. To bene�t from the speed of the

batch algorithm and the accuracy of the incremental algorithm we augment Algorithm

2.1 by the incremental version of k{means. That is, we run the batch version until it

stops, then we run one iteration of the incremental version. The procedure is repeated

until consecutive application of batch and incremental iterations fail to change a par-

tition (see [6] for detailed discussion of the procedure and its eÆciency in the case of

the classical and the spherical k{means algorithms). We address the computational

complexity of this addition in the Appendix.

The document vectors are re-normalized in l1 norm, and the (�; �) algorithm is

applied to the partition generated by sPDDP. The �nal partitions for three selected

values of the (�; �) pair are reported in Tables 4, 5 and 6 respectively. We display

results for the \extreme" values (0; 1), (1; 0), and an intermediate value of (�; �). Since

(0; 1) objective function value of the initial partition is about 100 times more than the

(1; 0) objective function value of the same partition we have decided to choose the

intermediate value (100; 1) to balance the \extreme" values of the objective functions.

DC0 DC1 DC2

cluster 0 1000 3 1

cluster 1 8 10 1376

cluster 2 25 1447 21

\empty" documents

cluster 3 0 0 0

Table 3: sPDDP generated initial \confusion" matrix with 68 \misclassi�ed" docu-

ments using best 600 terms
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While the number of selected terms is only 600 (i.e., only about 15% of the num-

ber of terms reported in [7]) the quality of the sPDDP generated confusion matrix is

comparable with that of the confusion matrix generated by the spherical k{means algo-

rithm (see Table 2). A subsequent application of the (�; �) algorithms to the partition

generated by sPDDP further improves the confusion matrix (see Tables 4, 5 and 6).

DC0 DC1 DC2

cluster 0 1010 6 0

cluster 1 2 4 1387

cluster 2 2 1450 11

\empty" documents

cluster 3 0 0 0

Table 4: � = 0; � = 1 generated �nal \confusion" matrix with 44 \misclassi�ed"

documents.

DC0 DC1 DC2

cluster 0 1010 5 1

cluster 1 3 6 1384

cluster 2 20 1449 13

\empty" documents

cluster 3 0 0 0

Table 5: � = 100; � = 1 generated �nal \confusion" matrix with 48 \misclassi�ed"

documents using best 600 terms

We pause briey to discuss some properties of the (�; �) algorithm.

1. Unlike the Information-Theoretical k{means [8], [2] the data domain X for the

(�; �) algorithm is Rn

+ (and the algorithm does not require l1 normalization of

the data).

2. In the extreme case � = 1, � = 0 the classical k{means algorithm is recovered.

3. When � = 0, � = 1 and the document vectors are normalized in l1 norm the

(�; �) algorithm becomes precisely the algorithm reported in [8], [2].
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DC0 DC1 DC2

cluster 0 1011 6 2

cluster 1 8 12 1386

cluster 2 14 1442 10

\empty" documents

cluster 3 0 0 0

Table 6: � = 1; � = 0 generated �nal \confusion" matrix with 52 \misclassi�ed"

documents using best 600 terms

Table 7 summarizes clustering results for the sPDDP algorithm and the combina-

tions of \sPDDP+(�; �)" algorithm for the three selected values for (�; �) and di�erent

choices of index terms. Note that zero document vectors are created when the num-

ber of selected terms is less than 300. Table 7 indicates consistent superiority of the

documents misclassi�ed by sPDDP

# of terms zero vectors alone +(1; 0) +(100; 1) +(0; 1)

100 12 383 499 269 166

200 3 277 223 129 112

300 0 228 124 80 68

400 0 88 68 58 56

500 0 76 63 40 41

600 0 68 52 48 44

Table 7: Number of documents \misclassi�ed" by sPDDP, and \sPDDP+(�; �)" algo-

rithms.

\sPDDP+(0; 1)" algorithm. We next show by an example that this indication is not

necessarily correct. The graph below shows the number of misclassi�ed documents for

600 selected terms and 25 values of the (�; �) pair. While � is kept 1, � varies from 100

to 2500 with step 100.
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We complete the section with clustering results generated by the \sPDDP+k{

means" and \sPDDP+spherical k{means". The algorithms are applied to the three

document collections DC0, DC1, and DC2. We use the same vector space construction

as for the \sPDDP+(�; �)" algorithm, but do not change the document vectors unit l2

norm at the second stage of the clustering scheme. The results of the experiment are

summarized in Table 8 for di�erent choices of index terms.

documents misclassi�ed by

# of terms zero vectors sPDDP+k{means sPDDP+spherical k{means

100 12 258 229

200 3 133 143

300 0 100 104

400 0 80 78

500 0 62 57

600 0 62 54

Table 8: Number of unit l2 document vectors \misclassi�ed" by \sPDDP+k{means",

and \sPDDP+spherical k{means".

5. Concluding Remarks and Future Work

Optimization tools have been applied to a speci�c \distance{like" function to gen-

erate a two parameter family of k{means like clustering algorithm, and preliminary
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experimental results based on the proposed approach have been described. The \ex-

treme" members of the family recover the classical k{means algorithm [10], and the

Information{Theoretical k{means algorithm [8], [2]. The results of numerical experi-

ments indicate, however, that the best clustering results can be obtained for \interme-

diate" parameter values.

Overall complexity of large data sets motivates application a sequence of algorithms

for clustering a single data set (see e.g., [6]). The output of algorithm i becomes the

input of algorithm i + 1, and the �nal partition is generated by the last algorithm.

We call a sequence of two (or more) clustering algorithms applied to a data set a

hybrid scheme. The results presented in the paper have been generated using a hybrid

scheme consisting of two algorithms: the SVD-based sPDDP, and the k{means like

(�; �) algorithm. We plan to focus on the following problems:

1. While the �rst step of the sequence is the SVD-based sPDDP algorithm that

deals with unit l2 vectors, the experiments indicate that l1 unit vectors may

better �t text mining applications. The sPDDP algorithm is an optimization

procedure that approximates a set of unit l2 vectors by a circle on the l2 sphere in

R
n. We hope the optimization tools will be useful for solving the corresponding

approximation problem when the data set resides on the l1 sphere in R
n.

2. The experiments presented in Section 4 show that the best clustering results

can be achieved at an intermediate value of (�; �). The dependence of the �nal

partition on the parameter values (�; �) will be investigated.

3. Motivated by success of the (�; �) algorithm we plan to investigate additional

classes of '-divergence measures which are a generalization of relative entropy

and have been successfully used in various optimization algorithms (see e.g., [14],

[1] and references therein).

4. We plan to run the experiments on a variety of large document collections.
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6. Appendix

In this section we briey analyze the computational complexity of the incremental step

of the (�; �) algorithm. To simplify the exposition we carry out the computations for

the special case kxik1 = 1, i = 1; : : : ; m only.

For two clusters �i with centroids ci = c(�i) and j�ij vectors each, i = 1; 2 and a

vector x 2 �1 we denote by

1. ��1 a cluster obtained from the cluster �1 be removing x from �1,

2. �+2 a cluster obtained from the cluster �2 by assigning x to �2.

Our goal is to evaluate

Qf�1; �2g � Q
n
��1 ; �

+
2

o
=
h
q(�1)� q(��1 )

i
+
h
q(�2)� q(�+2 )

i
(6.1)

for two extreme cases of the (�; �) algorithm.

6.1. Squared Euclidean norm (� = 0)

The expression for (6.1) is given, for example, in [9] and [11] as follows:

Qf�1; �2g � Q
n
��1 ; �

+
2

o
=

j�1j

j�1j � 1
kx� c(�1)k

2 �
j�2j

j�2j+ 1
kx� c(�2)k

2
: (6.2)
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Evaluation of kx � c(�)k for each vector xi and centroid cj has been carried out by

step 3 of Algorithm 2.1. Contribution of the Euclidean part of the objective function

for incremental iteration of the algorithm comes, therefore, at virtually no additional

computational expense.

6.2. Information{theoretical distance (� = 0)

The computational complexity of the incremental Information{Theoretical k{means is

discussed in [2]. Detailed computations provided below lead us to believe that compu-

tational cost associated with the incremental step may in fact be much lower than the

cost reported in [2].

First we consider cases of vector \removal" and \addition" separately.

� � = fx1; : : : ;xp�1;xg with c = c(�), and �� = fx1; : : : ;xp�1g with c
� = c(��).

Since (p� 1)c� = pc� x one gets the following:

q (�)� q
�
��
�

=
p�1X
i=1

nX
j=1

 
xi[j] log

xi[j]

c[j]
+ c[j]� xi[j]

!

+
nX

j=1

 
x[j] log

x[j]

c[j]
+ c[j]� x[j]

!

�
p�1X
i=1

nX
j=1

 
xi[j] log

xi[j]

c�[j]
+ c

�[j]� xi[j]

!

=
p�1X
i=1

nX
j=1

 
xi[j] log

c
�[j]

c[j]

!
+

nX
j=1

x[j] log
x[j]

c[j]

=
nX

j=1

(pc[j]� x[j]) log

 
p

p� 1
c[j]�

1

p� 1
x[j]

!
+

nX
j=1

x[j] log
x[j]

c[j]
:

Finally,

q (�)�q
�
��
�
=

nX
j=1

(pc[j]� x[j]) log

 
p

p� 1
c[j]�

1

p� 1
x[j]

!
+

nX
j=1

x[j] log
x[j]

c[j]
: (6.3)

� � = fx1; : : : ;xpg with c = c(�), and �+ = fx1; : : : ;xp;xg with c
+ = c(�+).

We use the identity (p+ 1)c+ = pc+ x to obtain:

q (�)� q
�
�+
�

=
pX

i=1

nX
j=1

 
xi[j] log

xi[j]

c[j]
+ c[j]� xi[j]

!

�
pX

i=1

nX
j=1

 
xi[j] log

xi[j]

c+[j]
+ c

+[j]� xi[j]

!
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�
nX

j=1

 
x[j] log

x[j]

c[j]
+ c

+[j]� x[j]

!

=
pX

i=1

nX
j=1

 
xi[j] log

c
+[j]

c[j]

!
+

nX
j=1

x[j] log
c
+[j]

x[j]

= p
nX

j=1

c[j] log

 
p

p + 1
+

1

p + 1

x[j]

c[j]

!
+

nX
j=1

x[j] log

 
p

p+ 1

c[j]

x[j]
+

1

p+ 1

!
;

and q (�)� q (�+) is given by

p
nX

j=1

c[j] log

 
p

p+ 1
+

1

p+ 1

x[j]

c[j]

!
+

nX
j=1

x[j] log

 
p

p+ 1

c[j]

x[j]
+

1

p+ 1

!
: (6.4)

The expression for

Qf�1; �2g � Q
n
��1 ; �

+
2

o
=
h
q(�1)� q(��1 )

i
+
h
q(�2)� q(�+2 )

i

follows straightforward from (6.3) and (6.4):

nX
j=1

(j�1jc1[j]� x[j]) log

 
j�1j

j�1j � 1
c1[j]�

1

j�1j � 1
x[j]

!
+

nX
j=1

x[j] log
x[j]

c1[j]

+j�2j
nX

j=1

c2[j] log

 
j�2j

j�2j+ 1
+

1

j�2j+ 1

x[j]

c2[j]

!
+

nX
j=1

x[j] log

 
j�2j

j�2j+ 1

c2[j]

x[j]
+

1

j�2j+ 1

!
:

The computational complexity associated with evaluation of the above four term ex-

pression is about the same as that of (6.2). Indeed,

1. Provided j�1jc1�x is a dense vector the number of operation required to compute
nX

j=1

(j�1jc1[j]� x[j]) log

 
j�1j

j�1j � 1
c1[j]�

1

j�1j � 1
x[j]

!
is O(n).

2. The term
nX

j=1

x[j] log
x[j]

c[j]
has been already computed by step 3 of Algorithm 2.1,

and comes for \free".

3. Provided c2 is a dense vector the number of operation required to compute

j�2j
nX

j=1

c2[j] log

 
j�2j

j�2j+ 1
+

1

j�2j+ 1

x[j]

c2[j]

!
is O(n).

4. The document vector x is always sparse, hence the number of operation required

to compute
nX

j=1

x[j] log

 
j�2j

j�2j+ 1

c2[j]

x[j]
+

1

j�2j+ 1

!
is much smaller than O(n).
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Our numerical experiments indicate that (perhaps because of logarithmic function sen-

sitivity to low frequencies) the (�; �) algorithm with nontrivial information component

(i.e., � > 0) collects documents containing same words together. In such a case it is

reasonable to expect to obtain sparse centroid vectors, and computations mentioned in

items 1 and 3 above would become much cheaper.


