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Abstract

Hybrid information retrieval (IR) schemes combine di�erent normalization

techniques and similarity functions. Hybrid schemes provide an eÆcient tech-

nique to improve precision and recall (see e.g., [4]). This paper reports a hybrid

clustering scheme that applies a singular value decomposition (SVD) based algo-

rithm followed by a k{means type clustering algorithm. The output of the �rst

algorithm becomes the input of the next one. The second algorithm generates

the �nal partition of the data set. We report results of numerical experiments

performed with three k{means type clustering algorithms. Those are: the classi-

cal k{means (see e.g., [9]), the spherical k{means (see [7]), and the information{

theoretical clustering algorithm introduced recently by [8], and [1]. A comparison

with the results reported by [7] is provided.
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1. Introduction

Clustering is an important, old and very diÆcult problem. While a wide variety of

clustering algorithms are already available in the literature in many cases a single

algorithm is applied to handle a given data set.

We advocate a multistage approach to clustering. We suggest a sequence of two

algorithms to be applied to a data set. The outcome of the �rst algorithm becomes

input to the second one. The �nal partition is generated by the second algorithm. We

call a sequence of two (or more) clustering algorithms applied to a data set a hybrid

scheme.

The second stage of the hybrid scheme described in the paper is a k-means type

algorithm. A number of algorithms similar to the classical k-means algorithm [9] are

available in the literature. Motivated by text mining applications, we focus on the

following three algorithms: a) the classical k-means, b) the spherical k-means [7], and

c) the information theoretical k-means (IT{means) [8]. While the classical k-means

algorithm is capable of handling general vector sets, the spherical k{means is designed

to cluster unit l2 vectors, and the IT-means to cluster unit l1 vectors.

The k{means type algorithms are known to be sensitive to the choice of initial par-

tition. To generate a good initial partition for the second step of the hybrid scheme we

�rst apply the Spherical Principal Directions Divisive Partitioning (sPDDP) algorithm

(see [6]). The SVD type algorithm approximates the unit l2 norm document vectors

by vectors on a one dimensional circle. The circle is the intersection of the unit sphere

and the best 2 dimensional approximation of the data set. The algorithm is motivated

by the Principal Direction Divisive Partitioning algorithm introduced by Boley [3].

The outline of the paper is the following. In Section 2 we brie
y describe the clus-

tering algorithms. Section 3 describes the data set and a feature selection technique we

use in this paper. Section 4 contains results of numerical experiments. Brief conclusions

and further research directions are outlined in Section 5.

2. Clustering algorithms

We start with a brief description of the �rst step of the hybrid scheme (for details we

refer the reader to [6]).
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2.1. SVD based algorithms

Clustering of a vector set is, in general, a diÆcult task. There is, however, an exception.

When all the vectors belong to a one dimensional line, clustering becomes relatively

easy. In many cases a good partition of a one{dimensional set Y into two subsets Y1

and Y2 amounts to a selection of a number, say �, so that

Y1 = fy : y 2 Y; y � �g ; and Y2 = fy : y 2 Y; y > �g

The Principal Direction Divisive Partitioning (PDDP) clustering algorithm introduced

by D. Boley [3] approximates a set of vectors by a line de�ned by a singular vector

of the sparse \term by document" matrix. PDDP projects the vectors on the line,

partitions the projections into two clusters, and builds a two cluster partition of the

original vector set from the one dimensional \approximation" clusters. The algorithm

then recursively partitions each cluster separately until a stopping criterion is met.

PDDP is a clustering algorithm capable of handling a general vector set. Normalized

\document vectors" reside on a unit sphere and may be approximated by vectors on

a one dimensional circle. The circle is de�ned by the intersection of the sphere and

a two dimensional plane de�ned by two singular vectors of the \term by document"

matrix. An eÆcient partitioning of vectors on a one dimensional circle is provided by

the spherical k{means algorithm (see [6]). The partitioning of the original vector set

is induced by the partitioning of the \approximation vectors" on the one dimensional

circle. Like PDDP, the algorithm proceeds recursively until a stopping criterion is met.

The description of the algorithm (which we call the Spherical Principal Directions

Divisive Partitioning, or sPDDP) and clustering results are provided in [6], where it

is shown that sPDDP signi�cantly outperforms PDDP on the data set described in

Section 3.

Partitions generated by sPDDP are fed as input to k{means like algorithms de-

scribed below.

2.2. k{means type algorithms

The following is a basic description of a k{means type clustering algorithm:

Let fx1; : : : ;xmg be a set of vectors in a subset X of the n-dimensional Euclidean

space Rn. Consider a partition � = f�1; : : : ; �kg of the set, i.e.,

�1 [ : : : [ �k = fx1; : : : ;xmg; and �i
\

�j = ; if i 6= j:
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Given a real valued \quality function" q whose domain is the set of subsets of fx1; : : : ;xmg

the quality of the partition is given by Q(�) = q(�1) + : : :+ q(�k). The problem is to

identify an optimal partition f�o

1; : : : ; �
o

k
g, i.e., one that optimizes q(�1) + : : :+ q(�k).

Often the function q is associated with a \dissimilarity measure", or a distance-like

function d(x;y) that satis�es the following basic properties:

d(x;y) � 0; 8(x;y) 2 X and d(x;y) = 0 () x = y

(we will call d(�; �) a distance-like function, since we do not require d to be either

symmetric or to satisfy the triangle inequality). To describe the relation between q and

d we de�ne a centroid c of a cluster � by

c = c(�) = arg opt

(X
x2�

d(y;x); y 2 X

)
; (2.1)

where by arg opt f(x) we denote a point x0 where the function f is optimized. Depend-

ing on the choice of d, \opt" is either \min" or \max." Indeed, to de�ne a centroid one

would like to minimize (2.1) with d(x;y) = kx � yk2. On the other hand one would

like to maximize the same expression when d(x;y) = xTy, and all the vectors are

normalized. To simplify the exposition in what follows we shall primarily address the

case \opt= min" keeping in mind that the inequalities should be reversed in the other

case. If q(�) is de�ned as
X
x2�

d(c(�);x), then centroids and partitions are associated

as follows:

1. For each set of k centroids fc1; : : : ; ckg one can de�ne a partition f�1; : : : ; �kg of

the set fx1; : : : ;xmg by:

�i = fxj : d(ci;xj) � d(cl;xj) for each l 6= ig (2.2)

(we break ties arbitrarily).

2. Given a partition f�1; : : : ; �kg of the set fx1; : : : ;xmg one can de�ne the corre-

sponding centroids fc1; : : : ; ckg by:

ci = argmin

(X
x2�i

d(y;x); y 2 X

)
; (2.3)

A batch k{means type algorithm is the following procedure:
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Algorithm 2.1 Batch k{means like algorithm

Given a user supplied tolerance tolB > 0 do the following:

1. Set t = 0.

2. Start with an initial partitioning �t =
n
�t

1; : : : ; �
t

k

o

3. Apply (2.3) to recompute centroids.

4. Apply (2.2) to compute the partition nextKM
�
�t

�
= �(t+1) =

n
�
(t+1)
1 ; : : : ; �

(t+1)
k

o
.

5. If Q (�t)�Q (nextKM (�t)) < tolB

set t = t + 1

goto Step 3

6. Stop.

We now pause brie
y to display a number of examples of distance-like functions d(x;y),

data domains X, norm constraints imposed on the data, k{means like algorithms, and

centroid formulas (see Table 1 below). For a set of vectors � = fy1; : : : ;ypg we denote

the mean of the set by m(�), i.e., m(�) =
y1 + : : :+ yp

p
. We denote by Sn�1

2 the l2

unit sphere in Rn, i.e.

Sn�1
2 =

n
x : x 2 Rn; (x[1])

2
+ : : :+ (x[n])

2
= 1

o
;

and Sn�1
1 stands for the l1 unit sphere in R

n, i.e.

Sn�1
1 = fx : x 2 Rn; jx[1]j+ : : :+ jx[n]j = 1g ;

here x = (x[1]; : : : ;x[n])T 2 Rn.

While computationally eÆcient the batch k{means often gets trapped at a local

minimum even for simple one dimensional data sets [6]. An incremental version of

k{means may (at least partially) remedy the problem. To describe the algorithm we

need additional de�nitions.

De�nition 2.1 A �rst variation of a partition � = f�1; : : : ; �kg is a partition �0 =

f�01; : : : ; �
0

k
g obtained from � by removing a single vector x from a cluster �i of � and

assigning this vector to an existing cluster �j of �.
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Algorithm 2:1

d(y;x) X constraint \opt" c(�)

becomes

classical

kx� yk2 Rn none min batch k{means m(�)

(see [9])

kxk2 = 1 spherical

xTy Sn�1
2

T
Rn

+ and max batch k{means
m(�)

km(�)k2
x[i] � 0 (see [7])

kxk1 = 1
nX
i=1

x[i] log
x[i]

y[i]
Sn�1
1

T
Rn

+ and min batch IT�means m(�)

x[i] � 0 (see [8])

Table 1: examples of three clustering algorithms

Note that the partition � is a �rst variation of itself. Next we look for the \steepest

descent" �rst variation, i.e., a �rst variation that leads to the maximal decrease of the

objective function. The formal de�nition follows:

De�nition 2.2 The partition nextFV (�) is a �rst variation of a partition � if for

each �rst variation �0 one has

Q (nextFV (�)) � Q (�0) : (2.4)

To bene�t from the speed of batch iterations and the accuracy of the incremental

iterations we apply them in \tandem" as follows.

Algorithm 2.2 Batch-incremental tandem algorithm.

For user supplied tolerances tolB > 0 and tolI > 0 do the following:

1. Set the index of iteration t = 0.

2. Start with an arbitrary partitioning �t =
n
�t

1; : : : ; �
t

k

o
.

3. Generate the partition �(t+1) = nextKM
�
�t
�
.

if
h
Q
�
�t

�
�Q

�
nextKM

�
�t

��
< tolB

i
set t = t + 1

goto Step 3
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4. Generate the partition �(t+1) = nextFV
�
�t

�
.

if
h
Q
�
�t
�
�Q

�
nextFV

�
�t
��

< tolI

i
set t = t + 1

goto Step 3

5. Stop.

Assessment of the eÆciency and computational complexity of Step 4 of Algorithm 2.2

for the classical k{means algorithm as well as the spherical k{means algorithm have

been reported in [10] and [5] respectively. The addition of this step always leads to

improvement of clustering results, and comes at virtually no additional computational

expense.

Computational complexity analysis for the incremental version of the Information{

Theoretical k-means algorithm is provided in [1]. Computational cost of Step 4 is of

the same order as the computational cost of the batch version of the algorithm (i.e., the

tandem version of the Information-Theoretical k-means algorithm is twice as expensive

as its batch version). We shall further discuss eÆciency and computational complexity

of the algorithms in Section 4.

3. Text data and feature selection

Dhillon and Modha [7] have recently used the spherical k{means algorithm for clustering

text data. In one of their experiments the algorithmwas applied to a data set containing

3893 documents [7]. The data set contains the following three document collections

(available from ftp://ftp.cs.cornell.edu/pub/smart):

� DC0 (Medlars Collection, 1033 medical abstracts).

� DC1 (CISI Collection, 1460 information science abstracts).

� DC2 (Cran�eld Collection, 1400 aerodynamics abstracts).

Partitioning the entire collection into three clusters generates the \confusion" matrix

reported in Table 2 (see [7]). The entry ij in Table 2 is the number of documents that

belong to cluster i and document collection j. The \confusion" matrix shows that only

69 documents (i.e., less that 2% of the entire collection) have been \misclassi�ed" by the

algorithm. After removing stopwords Dhillon and Modha [7] reported 24,574 unique
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DC0 DC1 DC2

cluster 0 1004 5 4

cluster 1 18 1440 16

cluster 2 11 15 1380

Table 2: spherical k{means generated \confusion" matrix with 69 \misclassi�ed" doc-

uments using 4099 terms

words, and after eliminating low{frequency and high{frequency words they selected

4,099 words to construct the vector space model.

Our data set is a merger of the same three document collections obtained from

http://www.cs.utk.edu/~lsi/. The Cran�eld collection used by Dhillon and Modha

contained two empty documents. These two documents have been removed from DC2.

The other document collections are identical. In what follows we ignore the di�erence

and keep notations DC0, DC1, and DC2.

We denote the overall collection of 3891 documents by DC. After stopword removal

(see ftp://ftp.cs.cornell.edu/pub/smart/english.stop), and Porter stemming

(see [12]) the data set contains 15,864 unique terms. (No stemming was applied to the

24,574 unique words reported in [7]).

To exploit statistics of term occurrence throughout the corpus we remove terms that

occur in less than r sentences across the collection, and denote the remaining terms by

slice(r) (the experiments in this paper are performed with r = 20). The �rst l best

quality terms that belong to slice(r) de�ne the dimension of the vector space model.

We denote the frequency of a term t in the document dj by fj. Following an

approach outlined in [6] we measure the quality of the term t by

mX
j=1

f 2
j
�

1

m

2
4 mX
j=1

fj

3
5
2

; (3.1)

where m is the total number of documents in the collection. Note that the quality of

a term is proportional to the term frequency variance.

To evaluate the impact of feature selection based on the quality function (3.1) on

clustering we conducted the following experiment. The best quality 600 terms are

selected, and l2 unit norm vectors for the 3891 documents are built (we use the tfn

scheme to construct document vectors, for details see [7]). A two step procedure is

employed to partition the 3891 vectors into three clusters:
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1. the sPDDP algorithm (see [6]) is applied to generate three clusters (the obtained

clusters are used as an initial partition in the next step),

2. the vectors are re{normalized as needed, and the three k{means like algorithms

are applied to the partition obtained in the previous step.

The results of the experiment with tolB = tolI = 0 are provided in the next section.

4. Experimental results

In what follows we display clustering results for the document collection DC described

in Section 3 and compare the results with those reported by [7] and [6]. The confusion

matrix for the three cluster partition generated by sPDDP is given in Table 3 below.

Note that a good clustering procedure should be able to produce a \confusion" matrix

DC0 DC1 DC2

cluster 0 1000 3 1

cluster 1 8 10 1376

cluster 2 25 1447 21

\empty" documents

cluster 3 0 0 0

Table 3: sPDDP generated initial \confusion" matrix with 68 \misclassi�ed" docu-

ments using best 600 terms

with a single \dominant" entry in each row. The \confusion" matrices for the three

clusters provided in Tables 3 and 4, 5 and 6 illustrate this remark.

When the number of terms is relatively small, some documents may contain no

selected terms, and their corresponding vectors are zeros. We always remove these

vectors ahead of clustering and assign the \empty" documents into a special cluster.

This cluster is the last row in the \confusion" matrix (and is empty in the experiment

reported in Tables 3, 4, 5 and 6 below).

While the number of selected terms is only 600 (i.e., only about 15% of the num-

ber of terms reported in [7]) the quality of the sPDDP generated confusion matrix is

comparable with that of the confusion matrix generated by the spherical k{means algo-

rithm (see Table 2). A subsequent application of the three k{means like algorithms to
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the partition generated by sPDDP further improves the confusion matrix (see Tables

4, 5 and 6).

DC0 DC1 DC2

cluster 0 1023 21 10

cluster 1 1 3 1370

cluster 2 9 1436 18

\empty" documents

cluster 3 0 0 0

Table 4: k{means generated �nal \confusion" matrix with 62 \misclassi�ed" docu-

ments.

DC0 DC1 DC2

cluster 0 1010 4 2

cluster 1 5 7 1378

cluster 2 18 1449 18

\empty" documents

cluster 3 0 0 0

Table 5: spherical k{means generated �nal \confusion" matrix with 54 \misclassi�ed"

documents using best 600 terms

DC0 DC1 DC2

cluster 0 1010 6 0

cluster 1 3 4 1387

cluster 2 20 1450 11

\empty" documents

cluster 3 0 0 0

Table 6: IT{means generated �nal \confusion" matrix with 44 \misclassi�ed" docu-

ments using best 600 terms

We pause brie
y to analyze performance of the IT{means algorithm. In the experiment

described above the algorithm performs 30 iterations.
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The �gure shows the values of Q (�t), t = 0; 1; : : : ; 30. The solid line shows changes

in the objective function caused by batch IT-means iterations, and the dotted line

does the same for incremental IT-means iterations. The �gure shows that the lion's

share of the work is done by the �rst three batch IT-means iterations. From iteration

4 to iteration 16 values of the objective function drop due to incremental IT-means

iterations only. At iterations 17, 18 and 19 the batch IT-means kicks in. For the rest

of the run the objective function changes are due to incremental IT-means iterations

only.

An inspection reveals that at iteration 4 a vector x was moved from cluster �3 to

cluster �2, and x was \missed" by the batch IT-means iteration 4 because of the in�nite

distance between x and centroids c1 and c2 of clusters �1 and �2 respectively (for the

very same reason vectors were \missed" by the batch IT-means algorithm at iterations

5 and 19).

We remind the reader that the Information{Theoretical distance between a vector

y and a cluster c is given by (see Table 1)

d(c;y) =
nX
i=1

y[i] log
y[i]

c[i]
; and d(c;y) =1 () 9i such that y[i] > 0 and c[i] = 0:

Due to condition d(c2;x) =1 there is an index i such that x[i] > 0 and c2[i] = 0. Since

the centroid is the average of its vectors the ith coordinate of each vector in cluster �2

is 0. In the framework of the vector space model [2] this means that word i occurs in

the vector document x, and occurs in no document of the cluster �2. The observation

shows that the batch IT-means algorithm tends to generate clusters of documents with
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common words.

On the other hand, if the document x has no words at all in common with other

documents in cluster �3, but has, say, �ve words in common with each document in

cluster �2, then re{assignment of x to �2 may improve the partitioning. While batch

IT{means will not move x from �3 to �2, the incremental step of the algorithm does

rectify this problem (see also [11] where the same idea is used to compute the distance

between a query and a document collection). We believe the logarithmic function

sensitivity to low word frequencies improves performance of the IT-means algorithm.

The numerical results presented next support this claim.

Table 7 summarizes clustering results for the sPDDP algorithm and the combina-

tions of \sPDDP+k{means", \sPDDP+spherical k{means", and \sPDDP+ IT{means"

algorithms for di�erent choices of index terms. Note that zero document vectors are

created when the number of selected terms is less than 300. Table 7 indicates consistent

documents misclassi�ed by sPDDP

# of terms zero vectors alone +k{means +spherical k{means +IT{means

100 12 383 258 229 168

200 3 277 133 143 116

300 0 228 100 104 81

400 0 88 80 78 56

500 0 76 62 57 40

600 0 68 62 54 44

Table 7: Number of documents \misclassi�ed" by sPDDP, \sPDDP+k{means",

\sPDDP+spherical k{means", and \sPDDP+ IT{means".

superiority of the \sPDDP+ IT{means" algorithm.

5. Future research

We advocate an application of a two algorithms sequence for clustering a single dataset,

where output of the �rst algorithm becomes input to the second one. Normalization of

the data set is algorithm dependent. The algorithms presented operate in a relatively

low dimensional vector space and produce clustering results better than or comparable

with results provided in [7]. Experiments reported by [14] with 7 clustering algorithms

and 12 di�erent data sets indicate that the objective function based on cosine similarity
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and used in [7] \leads to the best solutions irrespective of the number of clusters for

most of the data sets." Our immediate goal is to focus on the following two problems:

1. While the �rst step of the sequence is the SVD based sPDDP algorithm that

deals with unit l2 vectors, the second step consists of three k{means like algo-

rithms handling either l2 or l1 unit vectors. Our numerical experiments indicate

superiority of the IT-means algorithm that clusters l1 unit vectors. This pro-

vides a motivation to develop a SVD based algorithm capable of handling l1 unit

vectors.

2. Motivated by success of the IT-means algorithmwe plan to investigate logarithmic

similarity measures for clustering text data sets. The ability to provide fast

computationally eÆcient algorithms for computing centroids (see equation (2.3))

is crucial to the implementation of clustering algorithms. The problem has been

addressed in the optimization literature (see e.g., [13] and references therein).

We plan to run the experiments on a variety of large document collections.
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