CMSC 441

Homework 3

Reading Assignment:

- Listen to Camille Saint-Saens' Danse Macabre.
- Read Chapter 4 Section 5 of text, and read the Brassard/Bratley (BB) handout

Homework:

1) Problem 2.3.7, page 75 of BB handout
2) Problem 2.3.9, page 76 of $B B$ handout
3) Problem 2.3.10, page 76 of BB handout
4) Problem 2.3.12, page 76 of BB handout
5) Exercise 4.5-1, page 96 of text
6) The n-th Fibonacci number $\mathrm{F}(\mathrm{n})$ is defined by the following recursion

$$
\left\{\begin{array}{l}
F(n)=F(n-1)+F(n-2) \quad \text { for } n \geq 2 \\
F(0)=0, \quad F(1)=1
\end{array}\right.
$$

Given that the Fibonacci numbers satisfy the following equality

$$
\left[\begin{array}{cc}
F(n-1) & F(n) \\
F(n) & F(n+1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]^{n} \quad \text { for } n \geq 2
$$

construct (in pseudo code) an algorithm that computes the n-th Fibonacci number in time complexity $\Theta(\log n)$. Then explain why your algorithm is of time complexity $\Theta(\log n)$.

Hint. Use the method of repeated squares for computing matrix powers.
7) Determine the asymptotic time efficiency of the following algorithm:

```
Algorithm \(G E\) ( \(\mathbf{A}[\mathbf{0 . . n}-\mathbf{1}, \mathbf{0} . . \mathrm{n}])\)
    //Input: An \(n \times(n+1)\) matrix \(\mathrm{A}[\mathbf{0} . . \mathrm{n}-1,0 . . \mathrm{n}]\) of reals
    for \(i \leftarrow 0\) to \(n-2\) do
        for \(\mathrm{j} \leftarrow \mathrm{i}+1\) to \(\mathrm{n}-1\) do
            for \(\mathrm{k} \leftarrow \mathrm{i}\) to n do
            \(\mathrm{A}[\mathrm{j}, \mathrm{k}] \leftarrow \mathrm{A}[\mathrm{j}, \mathrm{k}]-\mathrm{A}[\mathrm{i}, \mathrm{k}] * \mathrm{~A}[\mathrm{j}, \mathrm{i}] / \mathrm{A}[\mathrm{i}, \mathrm{i}]\)
```

Be sure to explain how you got your answer.

