CMSC 442/653
 Spring 2009
 Instructor: Dr. Lomonaco

Homework 3

- Listening Assignment: Listen to Rachmanioff's Piano Concerto No. 4
- Optional Reading assignment: Peterson \& Weldon, "Error-Correcting Codes," MIT Press, (Second Edition), Chapters 2, 3, 6.
- Read
http://www.csee.umbc.edu/~lomonaco/f06/653/handouts/Peterson-Pages22-25.pdf

1UG) Consider the following degree 4 irreducible polynomial $\mathbf{p}(\mathbf{x})$ given in Peterson's Table of Irreducible Polynomials over GF(2)

DEGREE 4 ... 3 37D ...
a) Write down $\mathrm{p}(\mathrm{x})$.
b) Since $p(x)$ is irreducible and of degree 3 , it follows that

$$
G F\left(2^{4}\right)=G F(2)[x] \bmod p(x)
$$

List all the elements of $\operatorname{GF}\left(2^{4}\right)$ in the above representation, i.e., in terms of

$$
\xi=x \bmod p(x)
$$

c) Let $\xi=x \bmod p(x)$. Why is $\left\{\xi^{k}\right\}$ not a complete list of all the non-zero elements of GF($\left.2^{4}\right)$?

2UG) Consider the following matrix over GF(2)

$$
M=\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

a) Prove that the rows of \mathbf{M} are linearly dependent.
b) Prove that the first three rows \mathbf{M} form a basis for the row space of \mathbf{M}.
c) What is the dimension of the row space of \mathbf{M} ? Explain your answer.

3UG) Consider the following matrix S over GF(3)

$$
S=\left(\begin{array}{llllll}
0 & 0 & 2 & 2 & 0 & 2 \\
2 & 2 & 0 & 2 & 1 & 2 \\
1 & 1 & 2 & 0 & 2 & 2 \\
1 & 1 & 0 & 1 & 2 & 1
\end{array}\right)
$$

a) Put the matrix \mathbf{S} into echelon canonical form. (Hint. See section 2.6 of optional text)
b) Use the resulting echelon canonical form to find a basis for the row space of S . Explain your answer.
c) What is the dimension of the row space of S? Explain how you found your answer.

