CMSC 442/653
 Spring 2009
 Instructor: Dr. Lomonaco

Homework 2
 *** Corrected Version ***

- Listening Assignment: Listen to Rosini's Il barbiere di Siviglia (The Barber of Seville)
- Optional Reading assignment: Peterson \& Weldon, "Error-Correcting Codes," MIT Press, (Second Edition), Chapter 6.

1U) Let

$$
p(x)=x^{12}+x^{9}+x^{8}+x^{6}+x^{4}+x+1
$$

and

$$
q(x)=x^{11}+x^{10}+x^{6}+x^{5}+x^{4}+x^{3}+1
$$

a) Compute by hand $G C D((p(x), q(x))$ over the ring $G F(2)[x]$
b) Use Gcd mod 2 in MAPLE to check your answer. (You can access MAPLE on any xwindowing workstation at UMBC by typing "xmaple" followed by a carriage return.)

2U) Create a $\log /$ AntiLog table for $\boldsymbol{G F}\left(\mathbf{2}^{5}\right)$ using the primitive (hence, irreducible) polynomial $p(x)=x^{5}+x^{2}+1$.

3U) Create a $\log /$ AntiLog table for $\boldsymbol{G F}\left(\mathbf{3}^{2}\right)$ using the primitive (hence,
irreducible) polynomial $p(x)=x^{2}+x+2$.
4G) The polynomial $\boldsymbol{p}(\boldsymbol{x})=\boldsymbol{x}^{4}+\boldsymbol{x}^{3}+\boldsymbol{x}^{2}+\boldsymbol{x}+1$ is irreducible over $\boldsymbol{G F}$ (2). Let

$$
\xi=x \bmod p(x)
$$

Show that ξ is not a primitive element, and therefore $p(x)$ is not a primitive polynomial. Moreover, show that

$$
\alpha=1+\xi
$$

is primitive, i.e., show that the smallest positive integer k such that $\alpha^{k}=1$ is $k=2^{4}-\mathbf{1}$.

