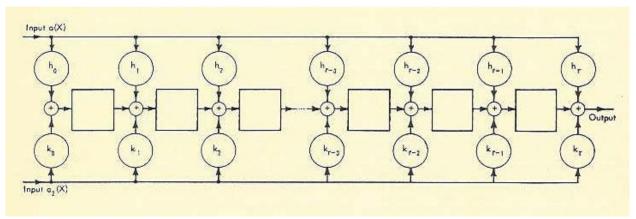
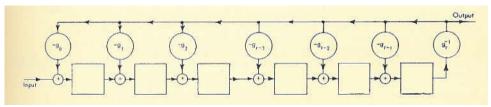
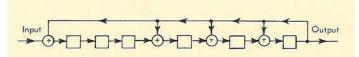
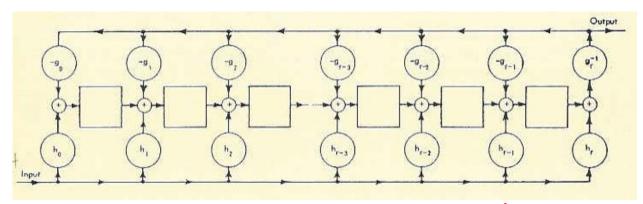
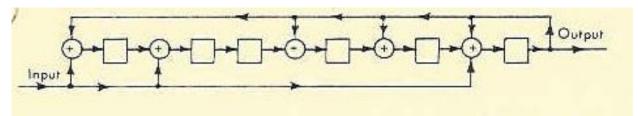

Handout for CMSC 442/653 Introduction to Coding Theory Instructor: Dr. Lomonaco

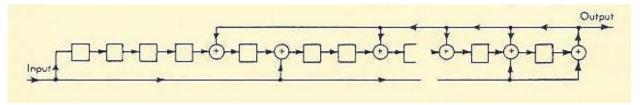

Templates for Linear Sequential Circuits

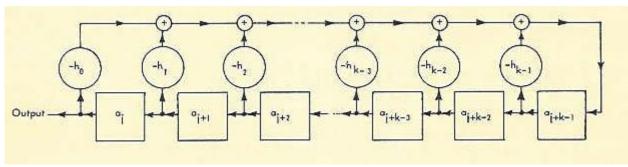

First template for multiplication by $h(x) = h_0 + h_1 x + h_2 x^2 + \dots + h_r x^r$


Second template for multiplication by $h(x) = h_0 + h_1 x + h_2 x^2 + \dots + h_r x^r$


Template for multiplication by h(x) and k(x)


Template for division by $g(x) = g_0 + g_1 x + g_2 x^2 + \dots + g_r x^r$


Example of a LSC that divides by $1+x^3+x^4+x^5+x^6$


A template for a LSC that simultaneauly multiplies by $h(x) = h_0 + h_1 x + h_2 x^2 + \dots + h_r x^r$ and divides by $g(x) = g_0 + g_1 x + g_2 x^2 + \dots + g_r x^r$

An example with $\deg(g) \ge \deg(h)$ of a LSC that simultaneously multiplies by $h(x) = 1 + x + x^5$ and divides by $g(x) = 1 + x^3 + x^4 + x^5 + x^6$. Observation: If $\deg(g) \ge \deg(h)$, then start on left.

An example with $\deg(g) < \deg(h)$ of a LSC that simultaneously multiplies by $h(x) = 1 + x^5 + x^9 + X^{10}$ and divides by $g(x) = 1 + x^3 + x^4 + x^5 + x^6$. Observation: If $\deg(g) < \deg(h)$, then start from right.

A shift register generator based on the polynomial $h(x) = h_0 + h_1 x + h_2 x^2 + \dots + h_k x^k$.