Handout
 for
 CMSC 442/653 Introduction to Coding Theory Instructor: Dr. Lomonaco

Templates for Linear Sequential Circuits

First template for multiplication by $\boldsymbol{h}(\boldsymbol{x})=h_{0}+h_{1} x+h_{2} x^{2}+\cdots+h_{r} x^{r}$

Second template for multiplication by $\boldsymbol{h}(\boldsymbol{x})=h_{0}+h_{1} x+h_{2} x^{2}+\cdots+h_{r} x^{r}$

Template for multiplication by $\boldsymbol{h}(\boldsymbol{x})$ and $\boldsymbol{k}(\boldsymbol{x})$

Template for division by $g(x)=g_{0}+g_{1} x+g_{2} x^{2}+\cdots+g_{r} x^{r}$

Example of a LSC that divides by $1+x^{3}+x^{4}+x^{5}+x^{6}$

A template for a LSC that simultaneauly multiplies by $h(x)=h_{0}+h_{1} x+h_{2} x^{2}+\cdots+h_{r} x^{r}$ and divides by $g(x)=g_{0}+g_{1} x+g_{2} x^{2}+\cdots+g_{r} x^{r}$

An example with $\operatorname{deg}(g) \geq \operatorname{deg}(h)$ of a LSC that simultaneously multiplies by $h(x)=1+x+x^{5}$ and divides by $g(x)=1+x^{3}+x^{4}+x^{5}+x^{6}$. Observation: If $\operatorname{deg}(g) \geq \operatorname{deg}(h)$, then start on left.

An example with $\operatorname{deg}(g)<\operatorname{deg}(h)$ of a LSC that simultaneously multiplies by $h(x)=1+x^{5}+x^{9}+X^{10}$ and divides by $g(x)=1+x^{3}+x^{4}+x^{5}+x^{6}$. Observation: If $\operatorname{deg}(g)<\operatorname{deg}(h)$, then start from right.

A shift register generator based on the polynomial $\boldsymbol{h}(\boldsymbol{x})=h_{0}+h_{1} x+h_{2} x^{2}+\cdots+h_{k} x^{k}$.

