CMSC 441
 Section 0201
 Spring 2008
 Homework 8

Reading Assignment:

1) Listen to Camille Saint-Saens' Danse Macabre
2) Read Chapter 31 of the text, pages 849-861 and the handout on the extended Euclidean algorithm
http://www.csee.umbc.edu/~lomonaco/s08/441/handouts/Extended-Euclidean-
Algorithm.pdf
3) Study ahead by reading Section 5 of Chapter 31 of the text.

Homework:

1) Use the extended Euclidean algorithm to find $g=G C D\left(a_{1}, a_{2}\right)$ integers
S_{1} and S_{2} such that $S_{1} a_{1}+S_{2} a_{2}=g$, where
i) $\left(a_{1}, a_{2}\right)=(99,78)$
ii) $\left(a_{1}, a_{2}\right)=(899,493)$
2) Also find $\lambda=\boldsymbol{L C M}\left(\boldsymbol{a}_{\mathbf{1}}, \boldsymbol{a}_{\mathbf{2}}\right)$ for i) and ii) in 1) above.
3) Find the multiplicative inverse of $7(\bmod 1023)$ using the extended Euclidean algorithm.
4) Let \boldsymbol{a} and \boldsymbol{b} be integers, and let $\boldsymbol{n}=\mathbf{1}+\lfloor\lg (\boldsymbol{b})\rfloor$ denote the number of bits in the binary expansion of \boldsymbol{b}. Moreover, let

$$
b=\sum_{j=0}^{n-1} b_{j} 2^{j}
$$

be the binary expansion of \boldsymbol{b}. The method of repeated squaring is defined by the following formula

$$
a^{b}=a^{\sum_{j=0}^{n-1} b_{j} 2^{j}}=\prod_{j=0}^{n-1}\left(a^{\left(2^{j}\right)}\right)^{b_{j}}
$$

An algorithm implementing this formula is given below:
Repeated_Squaring $(\boldsymbol{a}, \boldsymbol{b})$
Prod $\leftarrow 1$
$\mathrm{Sq} \leftarrow \boldsymbol{a}$
for $\mathrm{j} \leftarrow 0$ to $n-1$
do if $\left(b_{j}=1\right)$
then Prod \leftarrow Prod * Sq
$\mathrm{sq} \leftarrow \mathrm{Sq} * \mathrm{Sq}$
return(Prod)
end
Compute $(73)^{57}(\bmod 101)$ by the method of repeated squaring.

