SOLUTIONS TO HOMEWORK 3 CMSC 441

DR. LOMONACO

1. Homework 3 Solutions

Below are the solutions to the problems given in Homework 3. These problems can be found in the class handout [1].

2. Problem 2.3.7 on page 75 of Handout

Solve the following recursion using the charateristic equation method:

$$
\left\{\begin{array}{l}
T(n)=2 T(n / 2)+\lg n, \text { for } n \geq 2 \\
T(1)=1
\end{array}\right.
$$

Let $n=2^{m}$. Hence, $m=\lg n$. Thus,

$$
T\left(2^{m}\right)=2 T\left(2^{m-1}\right)+m
$$

Let $S(M)=T\left(2^{m}\right)$. Thus,

$$
S(m)=2 S(m-1)+m
$$

Thus, we need to solve the inhomogeneous recursion

$$
S(m)-2(m-1)=p(m) b^{m}
$$

where $p(m)=m$, and $b=1$. So the charactersitic equation of this inhomogeneous system is

$$
(x-2)(x-1)^{2}=0
$$

with roots

$$
1,1,2
$$

Therefore,

$$
S(m)=c_{1} \cdot 1^{m}+c_{2} \cdot m \cdot 1^{m}+c_{3} \cdot 2^{m}=c_{1}+c_{2} m+c_{3} 2^{m}
$$

We now find the constants c_{1}, c_{2}, c_{3} using the following boundary conditions:

$$
\left\{\begin{array}{l}
S(0)=T\left(2^{0}\right)=T(1)=1 \\
S(1)=2 S(1-1)+1=3 \\
S(2)=2 S(2-1)+2=8
\end{array}\right.
$$

Hence, we need to solve the linear system

$$
\left\{\begin{array}{l}
c_{1} \quad+c_{3}=1=S(0) \\
c_{1}+c_{2}+2 c_{3}=3=S(1) \\
c_{1}+2 c_{2}+4 c_{3}=8=S(2)
\end{array}\right.
$$

The solution to this linear sytem is

$$
c_{1}=-1, c_{2}=-1, c_{3}=3
$$

Thus,

$$
T\left(2^{m}\right)=S(m)=-2-m+3 \cdot 2^{m}
$$

Since $m=\lg n \Longleftrightarrow n=2^{m}$, we have

$$
T(n)=-2-\lg n+3 n=\Theta(n)
$$

3. Problem 2.3.9 on page 76 of Handout

Solve the following recursion using the charateristic equation method:

$$
\left\{\begin{array}{l}
t_{n}=t_{n-1}+t_{n-3}-t_{n-4}, \text { for } n \geq 4 \\
t_{n}=n, \text { for } 0 \leq n \leq 3
\end{array}\right.
$$

The characteristic equation of the homogeneous recursion

$$
t_{n}-t_{n-1}-t_{n-3}+t_{n-4}=0
$$

is

$$
p(x)=x^{4}-x^{3}-x+1=(x-1)^{2}\left(x^{2}+x+1\right)=0 .
$$

The roots of this system are

$$
1,1, \frac{-1+i \sqrt{3}}{2}, \frac{-1-i \sqrt{3}}{2}
$$

From the equilateral triangle

We know that $\cos (\pi / 3)=\frac{1}{2}$ and $\sin (\pi / 3)=\frac{\sqrt{3}}{2}$. Hence, $e^{i \pi / 3}=\frac{1+i \sqrt{3}}{2}$ and $e^{-i \pi / 3}=\frac{1-i \sqrt{3}}{2}$. Thus,

$$
\frac{-1+i \sqrt{3}}{2}=-e^{-i \pi / 3}=e^{i \pi} \cdot e^{-i \pi / 3}=e^{2 \pi i / 3}
$$

and

$$
\frac{-1-i \sqrt{3}}{2}=-e^{i \pi / 3}=e^{i \pi} \cdot e^{i \pi / 3}=e^{4 \pi i / 3}=e^{-2 \pi i / 3}
$$

Thus, $\tau=e^{2 \pi i / 3}=\frac{-1+i \sqrt{3}}{2}$ and $\tau^{2}=e^{-2 \pi i / 3}=\frac{-1-i \sqrt{3}}{2}$ are 3rd roots of unity, and it can be easily verivied that $\tau^{2}+\tau+1=0$.

This the roots of the charateristic equation are

$$
1,1, \tau=e^{2 \pi i / 3}, \tau^{2}=\tau^{-1}=e^{-2 \pi i / 3}
$$

Hence,

$$
t_{n}=c_{1} \cdot 1^{n}+c_{2} \cdot n \cdot 1^{n}+c_{3} \cdot \tau^{n}+c_{4} \cdot \tau^{-n}=c_{1}+c_{2} n+c_{3} \tau^{n}+c_{4} \tau^{-n}
$$

We now determine the constants $c_{1}, c_{2}, c_{3}, c_{4}$ with the boundary conditions by solving the following linear sytem of equations

$$
\left\{\begin{array}{l}
c_{1}+c_{3}+c_{4}=0=t_{0} \\
c_{1}+c_{2}+c_{3} \tau+c_{4} \tau^{2}=1=t_{1} \\
c_{1}+3 c_{2}+c_{3} \tau^{2}+c_{4} \tau=2=t_{2} \\
c_{1}+3 c_{c 2}+c_{3}+c_{4}=3=t_{3}
\end{array}\right.
$$

where we have used the fact that $\tau^{3}=1=\tau^{-3}$. The solution to this system of linear equations is

$$
c_{1}=c_{3}=c_{4}=0 \quad \text { and } \quad c_{2}=1
$$

Thus,

$$
t_{n}=0+1 \cdot n+0 \cdot \tau^{n}+0 \cdot \tau^{-n}=n=\Theta(n) .
$$

4. Problem 2.3.10 on page 76 of Handout

Solve the following recursion using the charateristic equation method:

$$
\left\{\begin{array}{l}
T(n)=5 T(n / 2)+(n \lg n)^{2}, \text { for } n \geq 2 \\
T(1)=1
\end{array}\right.
$$

Let $n=2^{m}$. Hence, $m=\lg n$. Thus,

$$
T\left(2^{m}\right)=5 T\left(2^{m-1}\right)+\left(2^{m} \lg 2^{m}\right)^{2}
$$

Let $S(M)=T\left(2^{m}\right)$. Thus,

$$
S(m)=5 S(m-1)+m^{2} 4^{m}
$$

Thus, we need to solve the inhomogeneous recursion

$$
S(m)-5(m-1)=p(m) b^{m}
$$

where $p(m)=m^{2}$, and $b=4$. So the charactersitic equation of this inhomogeneous system is

$$
(x-5)(x-4)^{3}=0
$$

with roots

$$
4,4,4,5
$$

Hence,

$$
S(m)=c_{1} \cdot 4^{m}+c_{2} \cdot m \cdot 4^{m}+c_{3} \cdot m^{2} \cdot 4^{m}+c_{4} \cdot 5^{m}
$$

We now find the constants $c_{1}, c_{2}, c_{3}, c_{4}$ using the following boundary conditions:

$$
\left\{\begin{array}{l}
S(0)=T\left(2^{0}\right)=T(1)=1 \\
S(1)=5 S(0)+1^{2} \cdot 4^{1}=5+5=9 \\
S(2)=5 S(1)+2^{2} \cdot 4^{2}=5 \cdot 9+64=109 \\
S(3)=5 S(2)+3^{2} \cdot 4^{3}=5 \cdot 109+9 \cdot 64=545+576=1121
\end{array}\right.
$$

Hence, we need to solve the linear system

$$
\left\{\begin{array}{cc}
c_{1} & +c_{4}= \\
4 c_{1}+4 c_{2}+4 c_{3}+5 c_{4}=S(0) \\
16 c_{1}+32 c_{2}+64 c_{3}+25 c_{4}= & 109=S(2) \\
64 c_{1}+192 c_{2}+576 c_{3}+125 c_{4}=1121=S(3)
\end{array}\right.
$$

The solution to this linear sytem is

$$
c_{1}=-180, c_{2}=-40, c_{3}=-4, c_{4}=181
$$

Thus, the solution to the recursion is

$$
S(m)=-180 \cdot 4^{m}-40 \cdot m \cdot 4^{m}-4 \cdot m^{2} \cdot 4^{m}+181 \cdot 5^{m}=\Theta\left(5^{m}\right)
$$

Since

$$
5^{m}=5^{\lg n}=2^{(\lg 5)(\lg n)}=n^{\lg 5},
$$

the solution to the original recursion is

$$
T(n)=\Theta\left(n^{\lg 5}\right)
$$

References

[1] Brassard, Gilles, and Paul Bratley, "Algorithmics" Theory and Practice," Printice Hall, (1988), pages 65-78.

