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2.3 SOLVING RECURRENCES USING
THE CHARACTERISTIC EQUATION

We have seen that the indispensable last step when analysing an algorithm is often to
solve a system of recurrences. With a little experience and intuition such recurrences
can often be solved by intelligent guesswork. This approach, which we do not illus-
trate here, generally proceeds in four stages: calculate the first few values of the
recurrence, look for regularity, guess a suitable general form, and finally, prove by
mathematical induction that this form is correct. Fortunately there exists a technique
that can be used to solve certain classes of recurrence almost automatically.

2.3.1 Homogeneous Recurrences
Our starting point is the resolution of homogeneous linear recurrences with constant
coefficients, that is, recurrences of the form
aoty +aity_1+ ~ + gty =0 (*)
where
i. the # are the values we are looking for. The recurrence is linear because it does
not contain terms of the form ¢, ¢;,; , ¢;%, and so on;

ii. the coefficients @; are constants ; and

iii. the recurrence is homogeneous because the linear combination of the #; is equal
to zero.

After a while intuition may suggest we look for a solution of the form

where x is a constant as yet unknown. If we try this solution in (*), we obtain
aox” +ax® 1+ o ko xt =0,
This equation is satisfied if x = 0, a trivial solution of no interest, or else if
agxt* +apx 1+ - +4,=0.

This equation of degree k in x is called the characteristic equation of the recurrence
*).

Suppose for the time being that the & roots r, ry, ..., r; of this characteristic
equation are all distinct (they could be complex numbers). It is then easy to verify that
any linear combination
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of terms r;" is a solution of the recurrence (*), where the k constants ¢, ¢y, ..., Ci
are determined by the initial conditions. (We need exactly k initial conditions to deter-
mine the values of these k constants.) The remarkable fact, which we do not prove
here, is that (*) has only solutions of this form.

Example 2.3.1.  Consider the recurrence

tn—3fn,1—4l‘,,_2:0 n=2

subjectto tg=0, ¢ = 1.

The characteristic equation of the recurrence is

x2-3x-4=0
whose roots are —1 and 4. The general solution therefore has the form
t, =c (=" +c,4".

The initial conditions give

c1+ ¢c,=0

=
Il
= S

—;+4cy=1 n=

thatiS,Clz—%,szé.

We finally obtain
tn =514 ~ D" O

Example 2.3.2. Fibonacci.  Consider the recurrence
Ly =ttty 22
subject to 1o =0, t{ = 1.
(This is the definition of the Fibonacci sequence; see Section 1.7.5.)

The recurrence can be rewritten in the form ¢, —t,_; — ¢, = 0, so the charac-
teristic equation is

x2— ==
whose roots are

145 15

and r,= =

Fi=
The general solution is therefore of the form
t, =cir{ +cors.

The initial conditions give
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c1+ ¢,=0 n=0
I’1C1+I‘2C2:1 n=1

from which it is easy to obtain

L Sl

V5’ V5

Thus ¢, = L(r?—r%). To show that this is the same as the result obtained by De
\/g y

Moivre mentioned in Section 1.7.5, we need to note only that 7| =¢ and rp =— gL, O

C1= C2:

* Problem 2.3.1.  Consider the recurrence
Iy = 204 — 2t n=?2

subject to £y =0, ;= 1.
Prove that f, = 2"/%sin(n7/4), not by mathematical induction but by using the
characteristic equation. o

Now suppose that the roots of the characteristic equation are not all distinct. Let
p)=agxt +axt -+ -+

be the polynomial in the characteristic equation, and let r be a multiple root. For every
n =k, consider the nth degree polynomial defined by

h)=xx"*p@] =aonx" +a(n—1x"""+ - + ap(n—k)x"*.
Let g (x) be the polynomial such that p (x) = (x—r Y2q (x). We have that

h ) = x[(x—r 2xm* g (0] = x [20—rx"* g () + (c—r[x"* g (@11
In particular, A () = 0. This shows that

aognr” +a(n —Drt e e ain=k* =0,
that is, #, = nr" is also a solution of (*). More generally, if m is the multiplicity of the
rootr,thent, =r", t, =nr", t, = % ..., t, =n™"r" are all possible solutions

of (*). The general solution is a linear combination of these terms and of the terms
contributed by the other roots of the characteristic equation. Once again there are k
constants to be determined by the initial conditions.
Example 2.3.3.  Consider the recurrence
t, =5t,_1— 8ty + 4ty 3 n=3
subject to £g=0,1;=1,1,=2.

The recurrence can be written
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t, —5t,_1+8t,,—4t,3=0
and so the characteristic equation is
x3-5x2+8x -4=0
or (x—1)(x-2)*=0.

The roots are 1 (of multiplicity 1) and 2 (of multiplicity 2). The general solution
is therefore

t, =ci1" +¢,2" +c3n2".

The initial conditions give

€1+ C» =0 n=0

ci1+2cy+2c35=1 n=1

C1+462+8c3=2 n=2

from which we find ¢; =-2, ¢ =2, c3 =— . Therefore
t, =21 _por-l_9, m

2.3.2 Inhomogeneous Recurrences

We now consider recurrences of a slightly more general form.
aoply, tajt,_1+ +aktn~k:bnp(n) (**)
The left-hand side is the same as (*), but on the right-hand side we have b" p (n),

where

i. b is a constant; and
ii. p(n) is a polynomial in #n of degree d.

For example, the recurrence might be
tn = 2[,,_1 =0

In this case b =3 and p(n) =1, a polynomial of degree 0. A little manipulation
allows us to reduce this example to the form (*). To see this, we first multiply the
recurrence by 3, obtaining

3t, — 61, =3
If we replace n by n+1 in the original recurrence, we get
R,

Finally, subtracting these two equations, we have
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tye1 =Sty +068,_1=0,
which can be solved by the method of Section 2.3.1. The characteristic equation is
x2-5x+6=0
that is, (x—2)(x-3) = 0.
Intuitively we can see that the factor (x—2) corresponds to the left-hand side of

the original recurrence, whereas the factor (x—3) has appeared as a result of our mani-
pulation to get rid of the right-hand side.

Here is a second example.
t, — 2t,_1 = (n+5)3"

The necessary manipulation is a little more complicated: we must

a. multiply the recurrence by 9
b. replace n in the recurrence by n+2, and
¢. replace n in the recurrence by n + 1 and then multiply by -6,

obtaining respectively

9r) 18, =" (4537 .
tesa = 2lyp1 = (473"
—6t,41 + 121, = —6(n+6)3"*!.

Adding these three equations, we obtain
tyoo — 8tyi1 + 218, — 18,1, =0.
The characteristic equation of this new recurrence is
x3—-8x%2+21x —18=0
that is, (x—2)(x—3)* = 0.

Once again, we can see that the factor (x—2) comes from the left-hand side of the ori-
ginal recurrence, whereas the factor (x —3)? is the result of our manipulation.

Generalizing this approach, we can show that to solve (**) it is sufficient to take
the following characteristic equation :

(@ox* +ax*=1+ - +a)x-b)*'=0.

Once this equation is obtained, proceed as in the homogeneous case.

Example 2.3.4.  The number of movements of a ring required in the Towers of
Hanoi problem (see Example 2.2.11) is given by
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Lok =2 i w2
subject to ro = 0.
The recurrence can be written
ty =2t =1,
which is of the form (**) with b =1 and p(n) = 1, a polynomial of degree 0. The
characteristic equation is therefore
x2)x-1)=0

where the factor (x—2) comes from the left-hand side and the factor (x—1) comes from
the right-hand side. The roots of this equation are 1 and 2, so the general solution of
the recurrence is

I, =¢il" +¢,2".
We need two initial conditions. We know that 75 = 0; to find a second initial condition
we use the recurrence itself to calculate
ti=2tg+ 1 =1.
We finally have
c1+ C=0 n=0
c1+2c,=1 n=1
from which we obtain the solution

t, =2" — 1. =]

If all we want is the order of 7, , there is no need to calculate the constants in the gen-
eral solution. In the previous example, once we know that

l, = C]l” + ('22”

we can already conclude that 7, € ®(2"). For this it is sufficient to notice that 7, , the
number of movements of a ring required, is certainly neither negative nor a constant,
since clearly ¢, = n. Therefore ¢, > 0, and the conclusion follows.

In fact we can obtain a little more. Substituting the general solution back into
the original recurrence, we find
1 =1y _2tr1—l
=G + C22” = 2(('1 = ('22”*1)
=i 45 [
Whatever the initial condition, it is therefore always the case that ¢ must be equal
to —1.
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Problem 2.3.2.  There is nothing surprising in the fact that we can determine
one of the constants in the general solution without looking at the initial condition ; on
the contrary! Why ? o

Example 2.3.5.  Consider the recurrence

t, = 2t,1_1 +.1.
This can be written
b —2t,_1=n,

which is of the form (**) with b =1 and p (n) = n, a polynomial of degree 1. The
characteristic equation is therefore

(x-2)(x-1*=0
with roots 2 (multiplicity 1) and 1 (multiplicity 2). The general solution is
ty =c 2" 51" +c3nl”.

In the problems that interest us, we are always looking for a solution where ¢, > 0 for
every n. If this is so, we can conclude immediately that ¢, must be in O (2"). a

Problem 2.3.3. By substituting the general solution back into the recurrence,
prove that in the preceding example ¢, =—2 and ¢3 = —1 whatever the initial condition.
Conclude that all the interesting solutions of the recurrence must have c¢; > 0, and
hence that they are all in ®(2"). a

A further generalization of the same type of argument allows us finally to solve
recurrences of the form
Aoty +a ity gt Sncishag g = b pi(n) + bng(n) an (%)

where the b; are distinct constants and the p; (n) are polynomials in n respectively of
degree d; . It suffices to write the characteristic equation

(x=b>2)

which contains one factor corresponding to the left-hand side and one factor
corresponding to each term on the right-hand side, and to solve the problem as before.

+1 dytl

. d
(@px* +ax* '+ - +a.)x=b)) =0

Example 2.3.6.  Solve
t, =2t,_1+n +2" n =1

subject to t5 = 0.

The recurrence can be written
t, —2t,_1=n +2",
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which is of the form (***) with b, =1, pi(n) =n, by =2, py(n) = 1. The degree of
pi1(n) is 1, and py(n) is of degree 0. The characteristic equation is

x-2)(x-1*(-2) =0,
which has roots 1 and 2, both of multiplicity 2. The general solution of the recurrence
is therefore of the form
t, =c11” +conl" + 32" +c4n2".

Using the recurrence, we can calculate ¢ = 3, t, = 12, 3 = 35. We can now determine
ci,Ca, c3and c4 from

Ci THLCR — 0]
3
c1+2cy+4c3+ 8cy=12

S 3 O S
Il
W N = O

c1+ Ccr+2c3+ 2¢4

c1+3cy+8c3+24c4=35
arriving finally at
th==2-n+2""' 4+ 2",
We could obviously have concluded that z, € O (n2") without calculating the con-

stants. O

Problem 2.3.4. Prove that all the solutions of this recurrence are in fact in
O 2"), regardless of the initial condition. a

Problem 2.3.5. If the characteristic equation of the recurrence (***) is of
degree

m=k+d+1)+dy1)+ -,

then the general solution contains m constants ¢y, ¢ ,..., ¢, . How many con-
straints on these constants can be obtained without using the initial conditions? (See
Problems 2.3.3 and 2.3.4.) |

2.3.3 Change of Variable

It is sometimes possible to solve more complicated recurrences by making a change of
variable. In the following examples we write 7T (n) for the term of a general
recurrence, and #; for the term of a new recurrence obtained by a change of variable.

Example 2.3.7. Here is how we can find the order of T (n) if n is a power of 2
and if

T(n)=4T(n/2)+n n>1.

Replace n by 2¢ (so that k =lgn) to obtain T(2¥)=4T (2*~1)+2*. This can be
written
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e =4t + ok

if 4 =T Q%) = T (n). We know how to solve this new recurrence: the characteristic
equation is

x-4Hx-2)=0
and hence #, = ¢ 4% + ¢,2*.
Putting n back instead of &, we find
Tl =can” + Con.
T (n) is therefore in O (n? | n is a power of 2). 0O
Example 2.3.8.  Here is how to find the order of T(n) if n is a power of 2 and
if
T(n)=4T (n/2)+n?> n > 1.
Proceeding in the same way, we obtain successively
PN = aprh gt
tk =4tk—l +4k.
The characteristic equation is (x —4)2 =0, and so
tk = Cl4k =t C2k4k
T(n)=cn*+cyn’lgn.
Thus 7'(n) € O (n*logn | n is a power of 2). O
Example 2.3.9.  Here is how to find the order of T (n) if n is a power of 2 and
if
T(n)=2T(n/2)+nlgn n>1.
As before, we obtain
T =2T (2% Yy + k 2k
b =28 + k 2k
The characteristic equation is (x-2)* =0, and so
e =128 + ¢k 2% + ¢4k 22k
T(n)y=c\n +cynlgn +cynlgin.

Hence, T'(n) € O (n log?n | n is a power of 2). o
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Example 2.3.10. We want to find the order of T (n) if n is a power of 2 and if
T(n)=3T(n/2)+cn  (c is constant, n = 2% > 1).
We obtain successively
TN =3T )+ 2t
fo = Bp 2,
The characteristic equation is (x—-3)(x—2) = 0, and so

Iy =C13k +C22k

T(n)=c,3%" +cyn
and hence since a'8? = p's?

T(n)=cn'8 +con.

Finally, T (n)€ O (n'®? | n is a power of 2). O

Remark. In Examples 2.3.7 to 2.3.10 the recurrence given for T (n) only applies
when 7 is a power of 2. It is therefore inevitable that the solution obtained should be
in conditional asymptotic notation. In each of these four cases, however, it is sufficient
to add the condition that 7' (r) is eventually nondecreasing to be able to conclude that
the asymptotic results obtained apply unconditionally for all values of n. This follows
from problem 2.1.20 since the functions n2, n%logn, n logn and n'¢? are smooth.

*Problem 2.3.6.  The constants ny > 1, b > 2 and k > 0 are integers, whereas a
and c are positive real numbers. Let T :IN — IR" be an eventually nondecreasing
function such that

T(n)=al (n/b) + cn* n>ny

when 7 /n is a power of b. Show that the exact order of T (n) is given by

On*) ifa < bt
T(n) € { ©(n*logn) ifa =b*
O™ ) ifg > bt
Rather than proving this result by constructive induction, obtain it using the techniques

of the characteristic equation and change of variable. This result is generalized in
Problem 2.3.13. O
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Problem 2.3.7.  Solve the following recurrence exactly for n a power of 2:
T(n)=2T(n/2)+I1gn n =2
subject to T(1) = 1.
Express your solution as simply as possible using the ©® notation. 0

Problem 2.3.8.  Solve the following recurrence exactly for n of the form 9% ¢
T(n):2T(\/ﬁ)+lgn n=4
subject to T(2) = 1.
Express your solution as simply as possible using the © notation. ]

2.3.4 Range Transformations

When we make a change of variable, we transform the domain of the recurrence. It is
sometimes useful to transform the range instead in order to obtain something of the
form (***). We give just one example of this approach. We want to solve

T)y=nT*n/2) n>1
subject to T (1) = 6 for the case when »n is a power of 2. The first step is a change of
variable: put #, = T (2%), which gives
o= 4 k>0
subject to £y = 6.

At first glance, none of the techniques we have seen applies to this recurrence
since it is not linear, and furthermore, one of the coefficients is not constant. To
transform the range, we create a new recurrence by putting V, = lg . , which yields

Vie =k + 2V 4 k>0
subject to Vj =1g6.
The characteristic equation is (x -2)(x=1)? =0, and so
WV =P Ll Bk e BTE
From Vo=1+1g3, V;=3+2lg3, and V,=8+4lg3 we obtain ¢;=3+1g3,
¢y =-2,and c3 =—1, and hence
Vi =(+1g3)2k —k - 2.
Y+ and T (n) = t)5, , we obtain

23n —D 3n
_——I’l r

Finally, using #; =2

T(n)=
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2.3.5 Supplementary Problems

Problem 2.3.9.  Solve the following recurrence exactly :
L =t 1+ tia =1 g n=4

subject to ¢, =n for 0 < n < 3. Express your answer as simply as possible using the
® notation. O

Problem 2.3.10.  Solve the following recurrence exactly for n a power of 2:
T(n)=5T®/2)+(nlgn)?* n=2

subject to T (1) = 1. Express your answer as simply as possible using the © notation. O

Problem 2.3.11.  (Multiplication of large integers: see Sections 1.7.2, 4.1,
and 4.7) Consider any constants c € RT and nyeIN. Let T :IN — R* be an eventu-
ally nondecreasing function such that

Tw)<T(n/2)+T(n2)+TA+[ni2ly+cn  n > ny.

Prove that T'(n) €O (n'83). Hint: observe that T (n) < 3T (1 + [n/21) +cn forn >n 0>
make the change of variable T '(n) = T'(n+2), use Example 2.3.10 to solve for T '(n)
when n is a power of 2, and use problem 2.1.20 to conclude for T (n). ]

Problem 2.3.12.  Solve the following recurrence exactly :
t, =t 1+ 2 05— 28,3 n=3

subject to t, = 9n% — 151 + 106 for 0 < n < 2. Express your answer as simply as pos-
sible using the © notation. m|

*Problem 2.3.13.  Recurrences arising from the analysis of divide-and-conquer
algorithms (Chapter 4) can usually be handled by Problem 2.3.6. In some cases, how-
ever, a more general result is required (and the technique of the characteristic equation
does not always apply).

The constants ng>1 and b 22 are integers, whereas a and d are real positive
constants. Define

X ={neN|log,(n/ng)eN}={nelN|@ieN)[n=n¢b']}.

Let f:X — R* be an arbitrary function. Define the function T : X — R* by the
recurrence

if n=ngy
TO0= Y T /by+f)  iEneX,n>ng .
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Let p =log,a. It turns out that the simplest way to express T (n) in asymptotic nota-
tion depends on how f(n) compares to n”. In what follows, all asymptotic notation is
implicitly conditional on n € X. Prove that

i. If we set f(ng)=d (which is of no consequence for the definition of T ), the
value of T (n) is given by a simple summation when n €X :

log, (n /n,)

ITrmy= Y a' f(n/b") .

i=0

ii. Let g be any strictly positive real constant; then

On?) if f(n) € O (n?/(logn)'*?)
T(n) e O(f(n)logn loglogn) if f(n) € B(n’/logn)

O(f(n)logn) if f(n) € O(n” (logn)?™ 1

O(f(n)) if f(n) € O(P*7) .

Note that the third alternative includes f(n) € ©(n”) by choosing g =1.

iii. As a special case of the first alternative, T (n) € ©(n”) whenever f(n)€ O (n") for
some real constant ¥ <p.

iv. The last alternative can be generalized to include cases such as
f(n) € ®nP* logn) or f(n) € O(n”*/logn); we also get T (n)e®(f(n)) if
there exist a function g:X — R* and a real constant a>a such that
f(n)eBO(g(n)) and g(bn)>0g(n) for all neX.

** vy, Prove or disprove that the third alternative can be generalized as follows:
T (n)€©O(f(n)logn) whenever there exist two strictly positive real constants
q15q, such that f(n) € O (n? (log n)qz_l) and f(n) € Q(n? (log n)q'_l). If you
disprove it, find the simplest but most general additional constraint on f(n) that
suffices to imply T (n) € O( f(n)logn). o

Problem 2.3.14.  Solve the following recurrence exactly :
t, =1/(4—t,_1) n>1
subject to ¢ = Ya. m|
Problem 2.3.15.  Solve the following recurrence exactly as a function of the
initial conditions a and b :
Tn+2)=1+Tn+1)/T(n) n=2
subject to T(0) =a,T(1)=b. O
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Problem 2.3.16.  Solve the following recurrence exactly :
T(n):%T(/7/2)7%T(11/4)— 1/n =il

subject to T(1) =1 and T (2) = 3/2. a

2.4 REFERENCES AND FURTHER READING

The asymptotic notation has existed for some while in mathematics: see Bachmann
(1894) and de Bruijn (1961). Knuth (1976) gives an account of its history and pro-
poses a standard form for it. Conditional asymptotic notation and its use in Problem
2.1.20 are introduced by Brassard (1985), who also suggests that “one-way inequali-
ties” should be abandoned in favour of a notation based on sets. For information on
calculating limits and on de 1'Hopital’s rule, consult any book on mathematical
analysis, Rudin (1953), for instance.

The book by Purdom and Brown (1985) presents a number of techniques for ana-
lysing algorithms. The main mathematical aspects of the analysis of algorithms can
also be found in Greene and Knuth (1981).

Example 2.1.1 corresponds to the algorithm of Dixon (1981). Problem 2.2.3
comes from Williams (1964). The analysis of disjoint set structures given in Example
2.2.10 is adapted from Hopcroft and Ullman (1973). The more precise analysis
making use of Ackermann’s function can be found in Tarjan (1975, 1983). Buneman
and Levy (1980) and Dewdney (1984) give a solution to Problem 2.2.15.

Several techniques for solving recurrences, including the characteristic equation
and change of variable, arc explained in Lueker (1980). For a more rigorous
mathematical treatment see Knuth (1968) or Purdom and Brown (1985). The paper by
Bentley, Haken, and Saxe (1980) is particularly relevant for recurrences occurring from
the analysis of divide-and-conquer algorithms (see Chapter 4).



