CMSC 652

Spring 2006
Homework 4

Due: Wednesday, March 8, 2006

Reading Assignment:

- Douglas R. Stinson, "Cryptography: Theory and Practice," (Third edition), Chapman \& Hall/CRC, (2006). Read chapters 2
- Peterson, W. Wesley, "Error-Correcting Codes, MIT Press, (1961). Read Chapter 2 (The class handout)

Homework:

1) The polynomial $p(x)=x^{2}+x+2$ is primitive (hence, irreducible) over $\boldsymbol{G F}(3)$. Use $p(x)$ to construct a $\log /$ antilog table for $G F\left(3^{2}\right)$.
2) (a) Draw the linear sequential circuit (LSC) that multiplies by the polynomial

$$
h(x)=1+x^{3}+x^{6}
$$

(b) Draw the linear sequential circuit (LSC) that divides by the polynomial

$$
g(x)=1+x^{2}+x^{4}+x^{6}+x^{7}
$$

(c) Draw the linear sequential circuit (LSC) that simultaneously multiplies by $\boldsymbol{h}(\boldsymbol{x})$ and divides by $\boldsymbol{g}(\boldsymbol{x})$.
3) Draw an LSC which takes as inputs polynomials $\boldsymbol{a}(\boldsymbol{x})$ and $\boldsymbol{b}(\boldsymbol{x})$, and then produces the output $\boldsymbol{h}(\boldsymbol{x}) \boldsymbol{a}(\boldsymbol{x})+\boldsymbol{k}(\boldsymbol{x}) \boldsymbol{b}(\boldsymbol{x})$, where $\boldsymbol{h}(\boldsymbol{x})$ and $\boldsymbol{k}(\boldsymbol{x})$ are the polynomials:

$$
h(x)=1+x^{4}+x^{10} \text { and } k(x)=x+x^{2}+x^{4}+x^{7}+x^{9}
$$

