CMSC 652
 Spring 2006 Answers to Homework 4

1) The polynomial $p(x)=x^{2}+x+2$ is primitive (hence, irreducible) over $G F(3)$. Use $p(x)$ to construct a log/antilog table for $\boldsymbol{G F}\left(\mathbf{3}^{2}\right)$.

Log	AntiLog $a_{1} a_{0}$
$-\infty$	00
0	01
1	10
2	21
3	22
4	02
5	20
6	12
7	11

2) (a) Draw the linear sequential circuit (LSC) that multiplies by the polynomial

$$
h(x)=1+x^{3}+x^{6}
$$

Anwer:

or

(b) Draw the linear sequential circuit (LSC) that divides by the polynomial

$$
g(x)=1+x^{2}+x^{4}+x^{6}+x^{7}
$$

(c) Draw the linear sequential circuit (LSC) that simultaneously multiplies by $\boldsymbol{h}(\boldsymbol{x})$ and divides by $g(x)$.

3) Draw an LSC which takes as inputs polynomials $\boldsymbol{a}(\boldsymbol{x})$ and $\boldsymbol{b}(\boldsymbol{x})$, and then produces the output $h(x) a(x)+\boldsymbol{k}(\boldsymbol{x}) \boldsymbol{b}(\boldsymbol{x})$, where $\boldsymbol{h}(\boldsymbol{x})$ and $\boldsymbol{k}(\boldsymbol{x})$ are the polynomials:

$$
h(x)=1+x^{4}+x^{10} \text { and } k(x)=x+x^{2}+x^{4}+x^{7}+x^{9}
$$

