CLASS HANDOUT FOR THE EXTENDED EUCLIDEAN ALGORITHM

SAMUEL J. LOMONACO, JR.

1. Extended Euclidean Alghorithm

The extended Euclidean algorithm is as follows:
Procedure EEA $(a, b ; s, t)$
\# Given a and bin a Euclidean domain D, compute
$\# g=\operatorname{gcd}(a, b)$ and also compute elements $s, t \in D$
\# such that $g=s a+t b$.
$c \longleftarrow|a| ; \quad d \longleftarrow|b|$
$c_{1} \longleftarrow 1 ; \quad d_{1} \longleftarrow 0$
$c_{2} \longleftarrow 0 ; \quad d_{2} \longleftarrow 1$
while $d \neq 0$ do $\{$
$q \longleftarrow q u o(c, d) ; \quad r \longleftarrow c-q \cdot d$
$r_{1} \longleftarrow c_{1}-q \cdot d_{1} ; \quad r_{2} \longleftarrow c_{2}-q \cdot d_{2}$
$c \longleftarrow d ; \quad c_{1} \longleftarrow d_{1} ; \quad c_{2} \longleftarrow d_{2}$
$\left.d \longleftarrow r ; \quad d_{1} \longleftarrow r_{1} ; \quad d_{2} \longleftarrow r_{2} \quad\right\}$
\# Normalize GCD
$g \longleftarrow c$
$s \longleftarrow c_{1} /(u(a) \cdot u(c)) ; \quad t \longleftarrow c_{2} /(u(b) \cdot u(c))$
$\operatorname{return}(g)$
end

Example 1. In the Euclidean domain Z if $a=18$ and $b=30$, then the sequence of values computed for $q, c, c_{1}, c_{2}, d, d_{1}, d_{2}$ in the above algorithm is as follows:

Iteration No.	q	c	c_{1}	c_{2}	d	d_{1}	d_{2}
-	-	18	1	0	30	0	1
1	0	30	0	1	18	1	0
2	1	18	1	0	12	-1	1
3	1	12	-1	1	6	2	-1
r	2	6	2	-1	0	-5	3

Thus, $g=6, s=2$, and $t=-1$; i.e., $G C D(18,30)=6=2(18)-1(30)$ as noted in the above example.

University of Maryland Baltimore County, Baltimore, MD 21250
E-mail address: lomonaco@umbc.edu

[^0]
[^0]: Date: February 8, 2006.

