- Reading assignment: Class handout:"Algorithmics: Theory \& Practice," by Giles Brassard \& Paul Bratley, Prentice-Hall (1988), pages 65-78.

1. Handout, Problem 2.3.7, page 75

Solve the following recurrence exactly for n a power of 2 :

$$
T(n)=2 T(n / 2)+\lg n, \quad n \geq 2
$$

subject to $T(1)=1$.
Express the solution as simply as possible using the Θ notation.

2. Handout, Problem 2.3.8, page 75

Solve the following recurrence exactly for n of the form $2^{2^{k}}$:

$$
T(n)=2 T(\sqrt{n})+\lg n, \quad n \geq 4
$$

subject to $T(2)=1$.
Express your solution as simply as possible using the Θ notation.

3. Handout, Problem 2.3.9, page 76

Solve the following recurrence exactly:

$$
t_{n}=t_{n-1}+t_{n-3}-t_{n-4}, \quad n \geq 4
$$

subject to $t_{n}=n$ for $0 \leq n \leq 3$. Express your answer as simply as possible using the Θ notation.

4. Handout, Problem 2.3.10, page 76

Solve the following recurrence exactly for n a power of 2 :

$$
T(n)=5 T(n / 2)+(n \lg n)^{2}, \quad n \geq 2
$$

subject to $T(1)=1$. Express your answer as simply as possible using the Θ notation.

5. Handout, Problem 2.3.12, page 76

Solve the following recurrence exactly:

$$
t_{n}=t_{n-1}+2 t_{n-2}-2 t_{n-3}, \quad n \geq 3
$$

subject to $t_{n}=9 n^{2}-15 n+106$ for $0 \leq n \leq 2$. Express your answer as simply as possible using the Θ notation.

