{VERSION 5 0 "IBM INTEL NT" "5.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 1 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Warning" -1 7 1 {CSTYLE "" -1 -1 "Courier" 1 10 0 0 255 1 2 2 2 2 2 1 1 1 3 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Output" -1 11 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 3 0 0 0 0 1 0 1 0 2 2 0 1 }} {SECT 0 {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 188 "# This spread sheet computes the answers to the example problem\n# of Homework 1.\n\n# P lease do not use the Maple worksheet QC6_Lib.mws for this example\n# \+ This worksheet works without it.\n" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "with(linalg):\n" }}{PARA 7 "" 1 "" {TEXT -1 80 "Warni ng, the protected names norm and trace have been redefined and unprote cted\n" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 234 "# We wish to obs erve the state psi with respect to the observable A\n\npsi:=evalm( (1/ sqrt(3)) * matrix(4,1,[1,I,0,-1]) );\nA:=matrix(4,4, [0, 0,1,-I,\n \+ 0, 0,I,-1,\n 1,-I,0, 0,\n I, -1,0, 0 ] );" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$psiG-%'matrixG6#7 &7#,$*$-%%sqrtG6#\"\"$\"\"\"#F0F/7#*&^#F1F0F,F07#\"\"!7#,$F+#!\"\"F/" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"AG-%'matrixG6#7&7&\"\"!F*\"\"\"^ #!\"\"7&F*F*^#F+F-7&F+F,F*F*7&F/F-F*F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 275 "# We now compute the two eingenvals of A along with \+ their eigenvectors\n\nList:=[eigenvects(A)];\na1:=op(1, op(1,List) ); \nv1:=op(1, op(3, op(1,List) ) );\nv2:=op(2, op(3, op(1,List) ) );\n \na2:=op(1, op(2,List) );\nv3:=op(1, op(3, op(2,List) ) );\nv4:=op(2, op(3, op(2,List) ) );" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%ListG7$7 %*$-%%sqrtG6#\"\"#\"\"\"F+<$-%'vectorG6#7&\"\"!,$F'!\"\"^#F,F,-F/6#7&F ,F5F'F27%F3F+<$-F/6#7&F2F'F5F,-F/6#7&F,F5F3F2" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#a1G*$-%%sqrtG6#\"\"#\"\"\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#v1G-%'vectorG6#7&\"\"\"^#F)*$-%%sqrtG6#\"\"#F)\"\"! " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#v2G-%'vectorG6#7&\"\"!,$*$-%%sq rtG6#\"\"#\"\"\"!\"\"^#F0F0" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#a2G, $*$-%%sqrtG6#\"\"#\"\"\"!\"\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#v3 G-%'vectorG6#7&\"\"!*$-%%sqrtG6#\"\"#\"\"\"^#F/F/" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#v4G-%'vectorG6#7&\"\"\"^#F),$*$-%%sqrtG6#\"\"#F)!\" \"\"\"!" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 255 "# We now you th e GramSchmidt to create orthogonal bases for the two eigenspaces V+ an d V-.\n\nVectorSet1:=GramSchmidt(\{v1,v2\});\nww1:=op(1,VectorSet1); \+ ww2:=op(2,VectorSet1);\nVectorSet2:=GramSchmidt(\{v3,v4\});\nww3:=op( 1,VectorSet2); ww4:=op(2,VectorSet2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%+VectorSet1G<$7&\"\"\"^#F'*$-%%sqrtG6#\"\"#F'\"\"!7&*&^##!\"\" F-F'F*F',$F)F2F.F'" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$ww1G7&\"\"\"^ #F&*$-%%sqrtG6#\"\"#F&\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$ww2G 7&*&^##!\"\"\"\"#\"\"\"-%%sqrtG6#F*F+,$*$F,F+F(\"\"!F+" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%+VectorSet2G<$7&\"\"!*$-%%sqrtG6#\"\"#\"\"\"^#F- F-7&F-F',$F(#!\"\"F,*&^#F1F-F)F-" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>% $ww3G7&\"\"!*$-%%sqrtG6#\"\"#\"\"\"^#F,F," }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$ww4G7&\"\"\"\"\"!,$*$-%%sqrtG6#\"\"#F&#!\"\"F-*&^#F. F&F*F&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 121 "# We now normali ze the eigenkets\n\nfor i from 1 to 4 do\n w||i:=convert(evalm( (1/n orm(ww||i, 2)) * ww||i ), matrix):\nod;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#w1G-%'matrixG6#7&7##\"\"\"\"\"#7#^#F*7#,$*$-%%sqrtG6#F,F+F*7# \"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#w2G-%'matrixG6#7&7#^##!\" \"\"\"#7#F+7#\"\"!7#,$*$-%%sqrtG6#F-\"\"\"#F7F-" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#w3G-%'matrixG6#7&7#\"\"!7#,$*$-%%sqrtG6#\"\"#\"\"\"# F2F17#^#F37#F3" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#w4G-%'matrixG6#7& 7#,$*$-%%sqrtG6#\"\"#\"\"\"#F0F/7#\"\"!7##!\"\"F/7#^#F5" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 383 "# Thus, the eigenvectors for the e igenvalue a1 are w1 and w2.\n# They form an orthonormal basis of the e igenspace V+\n# Also, the eigenvectors for the eigenvalue a2 are w3 a nd w4.\n# They form an orthonormal basis of the eigenspace V- \n# Mor eover, all w1 & w2 are each mutually orthogonal to w3 & w4\n# because \+ eigenvectors corresponding to distinct eigenvectors\n# must be orthogo nal.\n" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 276 "# We can now ver ify that the spectral decomposition theorem is true,\n# which of cours e it is.\n\nProj1:=evalm( w1 &* htranspose(evalm(w1)) );\nProj2:=evalm ( w2 &* htranspose(evalm(w2)) );\nProj3:=evalm( w3 &* htranspose(evalm (w3)) );\nProj4:=evalm( w4 &* htranspose(evalm(w4)) );\n\n" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&Proj1G-%'matrixG6#7&7&#\"\"\"\"\"%^##!\" \"F,,$*$-%%sqrtG6#\"\"#F+F*\"\"!7&^#F*F**&F8F+F2F+F67&F0*&F-F+F2F+#F+F 5F67&F6F6F6F6" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&Proj2G-%'matrixG6# 7&7&#\"\"\"\"\"%^#F*\"\"!*&^##!\"\"F,F+-%%sqrtG6#\"\"#F+7&F0F*F.,$*$F3 F+F17&F.F.F.F.7&*&F-F+F3F+F8F.#F+F6" }}{PARA 11 "" 1 "" {XPPMATH 20 "6 #>%&Proj3G-%'matrixG6#7&7&\"\"!F*F*F*7&F*#\"\"\"\"\"#*&^##!\"\"\"\"%F- -%%sqrtG6#F.F-,$*$F4F-#F-F37&F**&^#F9F-F4F-F9F<7&F*F7F0F9" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&Proj4G-%'matrixG6#7&7&#\"\"\"\"\"#\"\"!,$*$- %%sqrtG6#F,F+#!\"\"\"\"%*&^##F+F5F+F0F+7&F-F-F-F-7&F.F-F8^#F37&*&F;F+F 0F+F-F7F8" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 141 "# So the Proj ection operators for the eigenspace V+ and V- are respectively\nProjPl us:= evalm(Proj1 + Proj2);\nProjMinus:=evalm(Proj3 + Proj4);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%)ProjPlusG-%'matrixG6#7&7&#\"\"\"\"\"#\"\" !,$*$-%%sqrtG6#F,F+#F+\"\"%*&^##!\"\"F4F+F0F+7&F-F**&^#F3F+F0F+,$F/F77 &F.F5F*F-7&F:F%*ProjMinusG-% 'matrixG6#7&7&#\"\"\"\"\"#\"\"!,$*$-%%sqrtG6#F,F+#!\"\"\"\"%*&^##F+F5F +F0F+7&F-F**&^#F3F+F0F+,$F/F87&F.F6F*F-7&F:F " 0 "" {MPLTEXT 1 0 182 "# Since by the spectral decomposition theor em, A = a1* ProjPlus + a2*ProjMinus,\n# we should get A with the follo wing computation\n\nevalm( evalm(a1*ProjPlus) + evalm(a2*ProjMinus) \+ );" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%'matrixG6#7&7&\"\"!F(\"\"\"^#! \"\"7&F(F(^#F)F+7&F)F*F(F(7&F-F+F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 274 "# We now compute the coefficients of the expansion o f psi in\n# the eigenbasis w1, w2, w3, w4\n\nalpha||1:=evalm(htranspos e(w1) &* psi)[1,1];\nalpha||2:=evalm(htranspose(w2) &* psi)[1,1];\nalp ha||3:=evalm(htranspose(w3) &* psi)[1,1];\nalpha||4:=evalm(htranspose( w4) &* psi)[1,1]; " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%'alpha1G,$*$-% %sqrtG6#\"\"$\"\"\"#F+F*" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%'alpha2G ,$*&-%%sqrtG6#\"\"#\"\"\"-F(6#\"\"$F+#!\"\"\"\"'" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%'alpha3G,&*(^##\"\"\"\"\"'F)-%%sqrtG6#\"\"#F)-F,6#\" \"$F)F)*&#F)F*F)*$F/F)F)!\"\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%'al pha4G,&*&-%%sqrtG6#\"\"#\"\"\"-F(6#\"\"$F+#F+\"\"'*&^##!\"\"F0F+F,F+F+ " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 136 "# We now verify that t hese coefficients are correct.\n\nmap(simplify, evalm(evalm(alpha1*w1 \+ + alpha2*w2) + evalm(alpha3*w3 + alpha4*w4)));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%'matrixG6#7&7#,$*$-%%sqrtG6#\"\"$\"\"\"#F.F-7#*&^#F/F .F*F.7#\"\"!7#,$F)#!\"\"F-" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 172 "# Thus, the probability that eigenvalue a1 is read\n# as a result of the measurement is:\n\nProbPlus:= abs(alpha1)^2 + abs(alpha2)^2;\n ProbMinus:=abs(alpha3)^2 + abs(alpha4)^2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%)ProbPlusG#\"\"\"\"\"#" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%*ProbMinusG#\"\"\"\"\"#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 326 "# The respective resulting states are:\n\nStatePlus:= map(sim plify, \n evalm( (1/sqrt(abs(alpha1)^2 + abs(alpha2)^2)) * ev alm(alpha1*w1 + alpha2*w2) )\n );\nStateMinus:=m ap(simplify, \n evalm( (1/sqrt(abs(alpha3)^2 + abs(alpha4)^2) ) * evalm(alpha3*w3 + alpha4*w4) )\n );\n" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%*StatePlusG-%'matrixG6#7&7#,&*&-%%sq rtG6#\"\"#\"\"\"-F-6#\"\"$F0#F0\"\"'*&^#F4F0F1F0F07#,$*(F,F0F1F0,&^#F/ F0*$F,F0F0F0#F0\"#77#,$*$F1F0#F0F37#,$F+#!\"\"F5" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%+StateMinusG-%'matrixG6#7&7#,&*&-%%sqrtG6#\"\"#\"\"\" -F-6#\"\"$F0#F0\"\"'*&^##!\"\"F5F0F1F0F07#,&*(^#F4F0F,F0F1F0F0*&#F0F5F 0*$F1F0F0F97#,$F@#F9F37#,$F+F8" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{MARK "14 0 0" 0 }{VIEWOPTS 1 1 0 3 2 1804 1 1 1 1 } {PAGENUMBERS 0 1 2 33 1 1 }