CMSC 691Q
 EXERCISES WITH BRAS ANSD KETS

DR. LOMONACO

Let \mathcal{H} be a Hilbert space with othonormal basis

$$
\{|0\rangle,|1\rangle,|2\rangle,|3\rangle\}
$$

and let \mathcal{K} be a Hilbert space with othonormal basis

$$
\{|a\rangle,|b\rangle,|c\rangle\}
$$

(1) Represent each basis element of \mathcal{H} as a column vector.
(2) Represent each basis element of \mathcal{K} as a column vector
(3) Represent

$$
|\psi\rangle=2|0\rangle+3 i|2\rangle-5|3\rangle
$$

as a column vector
(4) Write $|1\rangle\langle 2|$ as a matrix
(5) Express

$$
\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{array}\right)
$$

as a sum of $|i\rangle\langle j|$'s
(6) If

$$
\left\{\begin{array}{l}
\left|\psi_{1}\right\rangle=i|0\rangle-2|2\rangle+4|3\rangle \\
\left|\psi_{2}\right\rangle=2|0\rangle-5|1\rangle-7 i|3\rangle
\end{array}\right.
$$

then compute
(a) $\left(\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle\right)$
(b) $\left\langle\psi_{1} \mid \psi_{2}\right\rangle$
(7) Let $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ as in \#7. Express $\left|\psi_{1}\right\rangle\left\langle\psi_{2}\right|$
(a) In terms of the bra's $\{\langle 0|,\langle 1|,\langle 2|,\langle 3|\}$ and the ket's $\{|0\rangle,|1\rangle,|2\rangle,|3\rangle\}$
(b) As a matrix
(8) Let

$$
\left\{\begin{aligned}
\left|\varphi_{1}\right\rangle & =-2|a\rangle-3 i|b\rangle+i|c\rangle \\
\left|\varphi_{2}\right\rangle & =5|a\rangle+7|b\rangle+6 i|c\rangle
\end{aligned}\right.
$$

Express

$$
\left|\psi_{1}\right\rangle\left\langle\psi_{2}\right| \otimes\left|\varphi_{1}\right\rangle\left\langle\varphi_{2}\right|
$$

as a 12×12 matrix.

