THE MACWILLIAMS AND PLESS IDENTITIES: A SUMMARY

PROFESSOR SAMUEL J. LOMONACO

Abstract. We give a brief summary of the MacWilliams and Pless Identies

1. Summary

Given the weight distribution of a linear code V, the MacWilliams and Pless identities provide a means of determining the weight distribution of the corresponding dual linear code V^{\perp}. We describe below these identities only for binary linear codes.

Theorem 1 (MacWilliams). Let V be a binary linear $[n, k]$ code, and let V^{\perp} be the corresponding binary linear $[n, n-k]$ orthogonal complement code. Let A_{i} and A_{i}^{\perp} denote the number of vectors of Hamming weight i in V and V^{\perp}, respectively Finally, let $A(x)$ and $A^{\perp}(x)$ be the weight enumerator polynomials respectively defined by

$$
A(x)=\sum_{i=0}^{n} A_{i} x^{i} \quad \text { and } \quad A^{\perp}(x)=\sum_{i=0}^{n} A_{i}^{\perp} x^{i}
$$

Then

$$
2^{k} A^{\perp}(x)=(1+x)^{n} A\left(\frac{1-x}{1+x}\right)
$$

Corollary 1 (Pless). Since

$$
\left(x \frac{d}{d x}\right)^{j} A^{\perp}(x)=\sum_{i=0}^{n} i^{j} A_{i}^{\perp} x^{i}
$$

we have

$$
\left.\left(x \frac{d}{d x}\right)^{j} A^{\perp}(x)\right|_{x=1}=\sum_{i=0}^{n} i^{j} A_{i}^{\perp}
$$

Hence,

$$
\begin{array}{rlcc}
\sum_{i=0}^{n} A_{i}^{\perp} & = & 2^{n-k} \\
\sum_{i=0}^{n} i A_{i}^{\perp} & = & 2^{n-k-1}\left(n-A_{1}\right) \\
\sum_{i=0}^{n} i^{2} A_{i}^{\perp} & = & 2^{n-k-2}\left[n(n+1)-2 n A_{1}+2 A_{2}\right]
\end{array}
$$

[^0]Example 1. Let V be the binary linear [5,3] code given by the generator matrix

$$
G=\left(\begin{array}{cccccc}
1 & 0 & 0 & \vdots & 0 & 1 \\
0 & 1 & 0 & \vdots & 1 & 0 \\
0 & 0 & 1 & \vdots & 1 & 1
\end{array}\right)
$$

Since the orthogonal complement V^{\perp} is of lower dimension $5-3=2$, we will compute the weight enumerator $A^{\perp}(x)$ of V^{\perp}, and use the MacWilliams identity to find the weight enererator of V, and hence the minimum distance d of V.

Since the generator matrix G is of the form $G=(I \mid P)$, we know that the parity check matrix of V is given by

$$
H=\left(-P^{T} \mid I\right)=\left(\begin{array}{cccccc}
0 & 1 & 1 & \vdots & 1 & 0 \\
1 & 0 & 1 & \vdots & 0 & 1
\end{array}\right)
$$

Since the parity check matrix H of V is also the generator matrix of V^{\perp}, we can use H to enumerate the elements of V^{\perp}, i.e.,

$$
V^{\perp}=\left\{u H: u \in G F(2)^{2}\right\}
$$

So with H, we can construct the following table enumerating the weights of V^{\perp}.

InfoWord	CodeWord	Weight
00	00000	0
01	01110	3
10	10101	3
11	11011	4

Let A_{i}^{\perp} be the number of elements of V^{\perp} of weight i. Then from the above table, we see that the values of A_{i}^{\perp} are:

i	A_{i}^{\perp}
0	1
1	0
2	0
3	2
4	1
5	0

Hence, the weight enumerator polynomial $A^{\perp}(x)=\sum_{i=0}^{5} A_{i}^{\perp} x^{i}$ is given by

$$
A^{\perp}(x)=1 \cdot x^{0}+0 \cdot x^{1}+0 \cdot x^{2}+2 \cdot x^{3}+1 \cdot x^{4}+0 \cdot x^{5}=1+2 x^{3}+x^{4}
$$

But from the MacWilliams identity, we know that

$$
2^{2} A(x)=(1+x)^{5} A^{\perp}\left(\frac{1-x}{1+x}\right)
$$

Thus,

$$
\begin{aligned}
4 A(x) & =(1+x)^{5}\left[1+2\left(\frac{1-x}{1+x}\right)^{3}+\left(\frac{1-x}{1+x}\right)^{4}\right] \\
& =(1+x)^{5}+2(1-x)^{3}(1+x)^{2}+(1-x)^{4}(1+x) \\
& =4+8 x^{2}+16 x^{3}+4 x^{4}
\end{aligned}
$$

Thus,

$$
A(x)=1+2 x^{2}+4 x^{3}+x^{4}
$$

Hence, we have

i	A_{i}
0	1
1	0
2	2
3	4
4	1
5	0

where A_{i} denotes the number of elements of V of weight i. Thus, the minimum distance d of V is $d=2$.

A handout for CMSC $442 / 653$

[^0]: Date: October 9, 2006.

