Answers to Homework 1.5

Example:

$\text { Measure } \operatorname{ket} \psi=\left(\begin{array}{c} \frac{1}{\sqrt{3}} \\ \frac{\dot{i}}{\sqrt{3}} \\ 0 \\ -\frac{1}{\sqrt{3}} \end{array}\right)$		w.r.t. the observable $\Omega=\left(\begin{array}{cccc}0 & 0 & 1 & -\dot{i} \\ 0 & 0 & \dot{i} & -1 \\ 1 & -\dot{i} & 0 & 0 \\ \dot{i} & -1 & 0 & 0\end{array}\right)$		
Eigenvalue	Basis	Projector	Prob	Resulting State
$\sqrt{2}$	$\left(\begin{array}{c}-\frac{i}{2} \\ -\frac{1}{2} \\ 0 \\ \frac{1}{\sqrt{2}}\end{array}\right),\left(\begin{array}{c}\frac{1}{2} \\ \frac{i}{2} \\ \frac{1}{2} \\ \frac{\sqrt{2}}{} \\ 0\end{array}\right)$	$\left(\begin{array}{cccc}\frac{1}{2} & 0 & \frac{1}{2 \sqrt{2}} & -\frac{\dot{i}}{2 \sqrt{2}} \\ 0 & \frac{1}{2} & \frac{\dot{i}}{2 \sqrt{2}} & -\frac{1}{2 \sqrt{2}} \\ \frac{1}{2 \sqrt{2}} & -\frac{\dot{i}}{2 \sqrt{2}} & \frac{1}{2} & 0 \\ \frac{\dot{i}}{2 \sqrt{2}} & -\frac{1}{2 \sqrt{2}} & 0 & \frac{1}{2}\end{array}\right)$	$\frac{1}{2}$	$\left(\begin{array}{c}\frac{i+\sqrt{2}}{2 \sqrt{3}} \\ \frac{2 i+\sqrt{2}}{2 \sqrt{6}} \\ \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{6}}\end{array}\right)$
$-\sqrt{2}$	$\left(\begin{array}{c}\frac{\dot{i}}{2} \\ \frac{1}{2} \\ 0 \\ \frac{1}{\sqrt{2}}\end{array}\right),\left(\begin{array}{c}-\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{\sqrt{2}} \\ 0\end{array}\right)$	$\left(\begin{array}{cccc}\frac{1}{2} & 0 & -\frac{1}{2 \sqrt{2}} & \frac{\text { i }}{2 \sqrt{2}} \\ 0 & \frac{1}{2} & -\frac{1}{2 \sqrt{2}} & \frac{1}{2 \sqrt{2}} \\ -\frac{1}{2 \sqrt{2}} & \frac{\dot{i}}{2 \sqrt{2}} & \frac{1}{2} & 0 \\ -\frac{\dot{i}}{2 \sqrt{2}} & \frac{1}{2 \sqrt{2}} & 0 & \frac{1}{2}\end{array}\right)$	$\frac{1}{2}$	$\left(\begin{array}{c}\frac{-i+\sqrt{2}}{2 \sqrt{3}} \\ -\frac{-2 \dot{1}+\sqrt{2}}{2 \sqrt{6}} \\ -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{6}}\end{array}\right)$

Exercise 1.1:

Measure $\operatorname{ket} \psi=\left(\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2}\end{array}\right)$		w.r.t.the observable $\Omega=\left(\begin{array}{cccc}2 & 0 & 0 & \text { i } \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ -\dot{\text { i }} & 0 & 0 & 2\end{array}\right)$		
Eigenvalue	Basis	Projector	Prob	Resulting State
1	$\left(\begin{array}{c}-\frac{\dot{i}}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}}\end{array}\right)$	$\left(\begin{array}{cccc}\frac{1}{2} & 0 & 0 & -\frac{\dot{1}}{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{i 1}{2} & 0 & 0 & \frac{1}{2}\end{array}\right)$	$\frac{1}{4}$	$\left(\begin{array}{c}\frac{1}{2}-\frac{\dot{i}}{2} \\ 0 \\ 0 \\ \frac{1}{2}+\frac{\dot{i}}{2}\end{array}\right)$
2	$\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$	$\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$	$\frac{1}{2}$	$\left(\begin{array}{c}0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0\end{array}\right)$
3	$\left(\begin{array}{c}\frac{\text { it }}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}}\end{array}\right)$	$\left(\begin{array}{cccc}\frac{1}{2} & 0 & 0 & \frac{\dot{1}}{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{\dot{i}}{2} & 0 & 0 & \frac{1}{2}\end{array}\right)$	$\frac{1}{4}$	$\left(\begin{array}{c}\frac{1}{2}+\frac{i}{2} \\ 0 \\ 0 \\ \frac{1}{2}-\frac{i}{2}\end{array}\right)$

Exercise 1.2:

