TWO EXAMPLES OF PROOF BY MATHEMATICAL INDUCTION.

DR. LOMONACO

Proposition: Use the principle of mathematical induction to prove that

$$P(n): \sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}$$

for all integers $n \ge 1$.

Proof (by weak induction):

Basis Step:

P(n) is true for n = 1, for:

$$\sum_{j=1}^{1} j^2 = 1^2 = 1 = \frac{1(1+1)(2 \cdot 1 + 1)}{6}$$

Inductive Hypothesis:

Assume for a fixed but arbitrary integer $k \ge 1$ that P(k) is true, i.e., that

$$\sum_{j=1}^{k} j^2 = \frac{k(k+1)(2k+1)}{6}$$

Inductive Step:

We wish to use the Inductive Hypothesis to show that P(k+1) is true, i.e., that

$$\sum_{j=1}^{k+1} j^2 = \frac{(k+1)\left[(k+1)+1\right]\left[2\left(k+1\right)+1\right]}{6}$$

 $[We \ start \ with \ the \ left \ hand \ side \ and \ transform \ it \ using \ the \ inductive \ hypothesis \ into \ the \ right \ hand \ side.]$

Thus, we have used the inductive hypothesis to prove that

$$\sum_{j=1}^{k+1} j^2 = \frac{(k+1)\left[(k+1)+1\right]\left[2\left(k+1\right)+1\right]}{6}$$

Magic Wand Step:

By the P.M.I., P(n) for all $n \ge 1$, i.e.,

$$\sum_{j=1}^{n} j^{2} = \frac{n(n+1)(2n+1)}{6} \text{ for all } n \ge 1$$

2

Proposition:

Let d_1, d_2, d_3, \ldots be the sequence defined by $d_j = d_{j-1} \cdot d_{j-2}$ for all integers $j \ge 3$

and

$$d_1 = \frac{9}{10}$$
 and $d_2 = \frac{10}{11}$

Use math induction to prove that

 $P(n): d_n \leq 1 \text{ for all integers } n \geq 1.$

Proof (by strong induction):

Basis Step:

Both P(1) and P(2) are true, for: $\begin{cases}
d_1 = \frac{9}{10} \le 1 & \text{Reason: Definition of } d_1 \\
d_2 = \frac{10}{11} \le 1 & \text{Reason: Definition of } d_2
\end{cases}$

Inductive Hypothesis:

Assume for a fixed but arbitrary integer k > 2 that $P(\ell)$ is true for $1 \le \ell < k$, i.e., that

$$d_{\ell} \leq 1 \text{ for } 1 \leq \ell < k$$

Inductive Step:

[We wish to use the Inductive Hypothesis to show that P(k) is true, i.e., that $d_k \leq 1.$]

 $d_k = d_{k-1} \cdot d_{k-2}$ Reason: Definition of d_k But $d_{k-1} \leq 1$ and $d_{k-2} \leq 1$ Reason: Ind. Hypoth. thus, $d_k \leq 1$ Reason: Basic algebra

Magic Wand Step:

Hence, by. the P.M.I., P(n) is true for for $n \ge 1$, i.e., $d_n \le 1 \text{ for } n \ge 1$

Q.E.D.