TWO EXAMPLES OF PROOF BY MATHEMATICAL INDUCTION.

DR. LOMONACO

Proposition: Use the principle of mathematical induction to prove that

$$
P(n): \sum_{j=1}^{n} j^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

for all integers $n \geq 1$.

Proof (by weak induction):

Basis Step:

$P(n)$ is true for $n=1$, for:

$$
\sum_{j=1}^{1} j^{2}=1^{2}=1=\frac{1(1+1)(2 \cdot 1+1)}{6}
$$

Inductive Hypothesis:

Assume for a fixed but arbitrary integer $k \geq 1$ that $P(k)$ is true, i.e., that

$$
\sum_{j=1}^{k} j^{2}=\frac{k(k+1)(2 k+1)}{6}
$$

Inductive Step:

We wish to use the Inductive Hypothesis to show that $P(k+1)$ is true, i.e., that

$$
\sum_{j=1}^{k+1} j^{2}=\frac{(k+1)[(k+1)+1][2(k+1)+1]}{6}
$$

[We start with the left hand side and transform it using the inductive hypothesis into the right hand side.]

$$
\begin{aligned}
\sum_{j=1}^{k+1} j^{2} & =\left(\sum_{j=1}^{k} j^{2}\right)+(k+1)^{2} & & \text { Reason: Basic algebra } \\
& =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} & & \text { Reason: Ind. Hypoth. \&s substitution } \\
& =\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6} & & \text { Reason: Basic algebra } \\
& =\frac{(k+1)}{6}[k(2 k+1)+6(k+1)] & & \text { Reason: Basic algebra } \\
& =\frac{(k+1)}{6}\left[2 k^{2}+k+6 k+6\right] & & \text { Reason: Basic algebra } \\
& =\frac{(k+1)}{6}\left(2 k^{2}+7 k+6\right) & & \text { Reason: Basic algebra } \\
& =\frac{(k+1)}{6}(k+2)(2 k+3) & & \text { Reason: Basic algebra } \\
& =\frac{(k+1)[(k+1)+1][2(k+1)+1]}{6} & & \text { Reason: Basic algebra }
\end{aligned}
$$

Thus, we have used the inductive hypothesis to prove that

$$
\sum_{j=1}^{k+1} j^{2}=\frac{(k+1)[(k+1)+1][2(k+1)+1]}{6}
$$

Magic Wand Step:

By the P.M.I., $P(n)$ for all $n \geq 1$, i.e.,

$$
\sum_{j=1}^{n} j^{2}=\frac{n(n+1)(2 n+1)}{6} \text { for all } n \geq 1
$$

Q.E.D.

Proposition:

Let $d_{1}, d_{2}, d_{3}, \ldots$ be the sequence defined by

$$
d_{j}=d_{j-1} \cdot d_{j-2} \text { for all integers } j \geq 3
$$

and

$$
d_{1}=\frac{9}{10} \quad \text { and } \quad d_{2}=\frac{10}{11}
$$

Use math induction to prove that

$$
P(n): d_{n} \leq 1 \text { for all integers } n \geq 1
$$

Proof (by strong induction):

Basis Step:

Both $P(1)$ and $P(2)$ are true, for:

$$
\left\{\begin{array}{l}
d_{1}=\frac{9}{10} \leq 1 \quad \text { Reason: Definition of } d_{1} \\
d_{2}=\frac{10}{11} \leq 1 \quad \text { Reason: Definition of } d_{2}
\end{array}\right.
$$

Inductive Hypothesis:

Assume for a fixed but arbitrary integer $k>2$ that $P(\ell)$ is true for $1 \leq \ell<k$, i.e., that

$$
d_{\ell} \leq 1 \text { for } 1 \leq \ell<k
$$

Inductive Step:

[We wish to use the Inductive Hypothesis to show that $P(k)$ is true, i.e., that $d_{k} \leq 1$.]

$$
\begin{array}{lll}
& d_{k}=d_{k-1} \cdot d_{k-2} & \text { Reason: Definition of } d_{k} \\
\text { But } & d_{k-1} \leq 1 \text { and } d_{k-2} \leq 1 & \text { Reason: Ind. Hypoth. } \\
\text { thus, } & d_{k} \leq 1 & \text { Reason: Basic algebra }
\end{array}
$$

Magic Wand Step:

Hence, by. the P.M.I., $P(n)$ is true for for $n \geq 1$, i.e.,

$$
d_{n} \leq 1 \text { for } n \geq 1
$$

Q.E.D.

