Homework 1.5 CMSC 643 Quantum Computation Dr. Lomonaco

1 Example Problem

Let \mathcal{Q} be a quantum system with state given by the density operator:

$$\rho = \begin{pmatrix} \frac{1}{4} & -\frac{i}{12} & \frac{1}{12} & \frac{i}{12} \\ \frac{i}{12} & \frac{1}{4} & -\frac{i}{12} & \frac{1}{12} \\ \frac{1}{12} & \frac{i}{12} & \frac{1}{4} & -\frac{i}{12} \\ -\frac{i}{12} & \frac{1}{12} & \frac{i}{12} & \frac{i}{4} \end{pmatrix}$$

What is the result of measuring \mathcal{Q} with respect to the observable:

$$\mathcal{O} = \left(\begin{array}{rrrr} 0 & -1 & -i & 0 \\ -1 & 0 & 0 & i \\ i & 0 & 0 & 1 \\ 0 & -i & 1 & 0 \end{array}\right)$$

Answer to Example Problem

Remark 1 Please note that, since $Tr(\rho^2) = \frac{1}{3} < 1$, it follows that ρ is a mixed ensemble.

The eigenkets and corresponding eigenvalues of \mathcal{O} are:

Eigenvalue	Orthonormal Eigenkets(s)	Projection Operator
$a_1 = 2$	$ w_1\rangle = \frac{1}{2} (-1, 1, -i, -i)^T$	$P_1 = w_1\rangle \langle w_1 = \frac{1}{4} \begin{pmatrix} 1 & -1 & -i & -i \\ -1 & 1 & i & i \\ i & -i & 1 & 1 \\ i & -i & 1 & 1 \end{pmatrix}$
$a_2 = -2$	$ w_2\rangle = \frac{1}{2} (1, 1, -i, i)^T$	$P_2 = w_2\rangle \langle w_2 = \frac{1}{4} \begin{pmatrix} 1 & 1 & i & -i \\ 1 & 1 & i & -i \\ -i & -i & 1 & -1 \\ i & i & -1 & 1 \end{pmatrix}$
$a_3 = 0$	$ w_{3}\rangle = \frac{1}{2} \left(0, \sqrt{2}, i\sqrt{2}, 0\right)^{T}$ $ w_{4}\rangle = \frac{1}{2} \left(i\sqrt{2}, 0, 0, \sqrt{2}\right)^{T}$	$P_{3} = w_{3}\rangle \langle w_{3} + w_{4}\rangle \langle w_{4} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & i \\ 0 & 1 & -i & 0 \\ 0 & i & 1 & 0 \\ -i & 0 & 0 & 1 \end{pmatrix}$

Remark 2 We have once again made sure that the eigenkets of the observable \mathcal{O} form an orthonormal basis.

Hence,

$$\mathcal{O} = a_1 P_1 + a_2 P_2 + a_3 P_3$$

is the spectral decomposition of the observable \mathcal{O} .

Remark 3 As a check, we can verify that

$$P_1 + P_2 + P_3 = I$$

is the identity operator, and also that $P_j^2 = P_j$ for all j.

Hence, if ρ	is measured	with respect	to the	observable	\mathcal{O} , we obtain:

Probability	Eigenvalue	Resulting State]
$p_1 = Tr\left(P_1\rho\right)$	2	$\rho_1 = \frac{P_1 \rho P_1}{Tr(P_1 \rho)}$	
$p_2 = Tr\left(P_2\rho\right)$	-2	$\rho_2 = \frac{P_2 \rho P_2}{Tr(P_2 \rho)}$,
$p_3 = Tr\left(P_3\rho\right)$	0	$\rho_3 = \frac{P_3 \rho P_3}{Tr(P_3 \rho)}$	

which when computed is found to be:

Probability	Eigenvalue	Resulting State
$\frac{1}{6}$	2	$\begin{array}{c ccccc} 1 & -1 & -i & -i \\ \hline 1 & 1 & i & i \\ -1 & 1 & i & i \\ i & -i & 1 & 1 \\ i & -i & 1 & 1 \end{array}$
$\frac{1}{6}$	-2	$\frac{1}{4} \begin{pmatrix} 1 & 1 & i & -i \\ 1 & 1 & i & -i \\ -i & -i & 1 & -1 \\ i & i & -1 & 1 \end{pmatrix}$
$\frac{2}{3}$	0	$\frac{1}{4} \left(\begin{array}{rrrr} 1 & 0 & 0 & i \\ 0 & 1 & -i & 0 \\ 0 & i & 1 & 0 \\ -i & 0 & 0 & 1 \end{array} \right)$

Remark 4 Since $\rho_1 = P_1$ and $\rho_2 = P_2$, it follows that $\rho_1^2 = \rho_1$ and $\rho_2^2 = \rho_2$. Hence, ρ_1 and ρ_2 are pure ensembles. On the other hand, since $\rho_3 = \frac{1}{2}P_3$, it follows that $\rho_3^2 = \frac{1}{2}\rho_3 \neq \rho_3$. Thus, ρ_3 is a mixed ensemble.

2 Problem 1.5

Let \mathcal{Q} be a quantum system with state given by the density operator:

$$\rho = \begin{pmatrix} \frac{1}{4} & -\frac{i}{12} & \frac{1}{12} & \frac{i}{12} \\ \frac{i}{12} & \frac{1}{4} & -\frac{i}{12} & \frac{1}{12} \\ \frac{1}{12} & \frac{i}{12} & \frac{1}{4} & -\frac{i}{12} \\ -\frac{i}{12} & \frac{1}{12} & \frac{i}{12} & \frac{1}{4} \end{pmatrix}$$

What is the result of measuring \mathcal{Q} with respect to the following observables:

a)

$$\mathcal{O} = \left(egin{array}{ccccc} 0 & 0 & 1 & -i \ 0 & 0 & i & -1 \ 1 & -i & 0 & 0 \ i & -1 & 0 & 0 \ \end{array}
ight)$$

b)

$$\mathcal{O} = \left(\begin{array}{ccccc} 2 & 0 & 0 & i \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ -i & 0 & 0 & 2 \end{array}\right)$$

c)

$$\mathcal{O} = \frac{1}{2} \left(\begin{array}{cccc} 5 & 0 & 0 & 3i \\ 0 & 5 & i & 0 \\ 0 & -i & 5 & 0 \\ -3i & 0 & 0 & 5 \end{array} \right)$$