# Homework 1.5 <br> CMSC 643 <br> Quantum Computation <br> Dr. Lomonaco 

## 1 Example Problem

Let $\mathcal{Q}$ be a quantum system with state given by the density operator:

$$
\rho=\left(\begin{array}{rrrr}
\frac{1}{4} & -\frac{i}{12} & \frac{1}{12} & \frac{i}{12} \\
\frac{i}{12} & \frac{1}{4} & -\frac{i}{12} & \frac{1}{12} \\
\frac{1}{12} & \frac{i}{12} & \frac{1}{4} & -\frac{i}{12} \\
-\frac{i}{12} & \frac{1}{12} & \frac{i}{12} & \frac{1}{4}
\end{array}\right)
$$

What is the result of measuring $\mathcal{Q}$ with respect to the observable:

$$
\mathcal{O}=\left(\begin{array}{rrrr}
0 & -1 & -i & 0 \\
-1 & 0 & 0 & i \\
i & 0 & 0 & 1 \\
0 & -i & 1 & 0
\end{array}\right)
$$

## Answer to Example Problem

Remark 1 Please note that, since $\operatorname{Tr}\left(\rho^{2}\right)=\frac{1}{3}<1$, it follows that $\rho$ is a mixed ensemble.

The eigenkets and corresponding eigenvalues of $\mathcal{O}$ are:

| Eigenvalue | Orthonormal Eigenkets(s) | Projection Operator |
| :---: | :---: | :---: |
| $a_{1}=2$ | $\left\|w_{1}\right\rangle=\frac{1}{2}(-1,1,-i,-i)^{T}$ | $P_{1}=\left\|w_{1}\right\rangle\left\langle w_{1}\right\|=\frac{1}{4}\left(\begin{array}{rrrr}1 & -1 & -i & -i \\ -1 & 1 & i & i \\ i & -i & 1 & 1 \\ i & -i & 1 & 1\end{array}\right)$ |
|  |  |  |
| $a_{2}=-2$ | $\left\|w_{2}\right\rangle=\frac{1}{2}(1,1,-i, i)^{T}$ | $P_{2}=\left\|w_{2}\right\rangle\left\langle w_{2}\right\|=\frac{1}{4}\left(\begin{array}{rrrr}1 & 1 & i & -i \\ 1 & 1 & i & -i \\ -i & -i & 1 & -1 \\ i & i & 1\end{array}\right)$ |
| $a_{3}=0$ | $\left\|w_{3}\right\rangle=\frac{1}{2}(0, \sqrt{2}, i \sqrt{2}, 0)^{T}$ |  |
|  | $\left\|w_{4}\right\rangle=\frac{1}{2}(i \sqrt{2}, 0,0, \sqrt{2})^{T}$ | $P_{3}=\left\|w_{3}\right\rangle\left\langle w_{3}\right\|+\left\|w_{4}\right\rangle\left\langle w_{4}\right\|=\frac{1}{2}\left(\begin{array}{rrrr}1 & 0 & 0 & i \\ 0 & 1 & -i & 0 \\ 0 & i & 1 & 0 \\ -i & 0 & 0 & 1\end{array}\right)$ |

Remark 2 We have once again made sure that the eigenkets of the observable $\mathcal{O}$ form an orthonormal basis.

Hence,

$$
\mathcal{O}=a_{1} P_{1}+a_{2} P_{2}+a_{3} P_{3}
$$

is the spectral decomposition of the observable $\mathcal{O}$.

Remark 3 As a check, we can verify that

$$
P_{1}+P_{2}+P_{3}=I
$$

is the identity operator, and also that $P_{j}^{2}=P_{j}$ for all $j$.
Hence, if $\rho$ is measured with respect to the observable $\mathcal{O}$, we obtain:

| Probability | Eigenvalue | Resulting State |
| :---: | :---: | :---: |
| $p_{1}=\operatorname{Tr}\left(P_{1} \rho\right)$ | 2 | $\rho_{1}=\frac{P_{1} \rho P_{1}}{\operatorname{Tr}\left(P_{1} \rho\right)}$ |
| $p_{2}=\operatorname{Tr}\left(P_{2} \rho\right)$ | -2 | $\rho_{2}=\frac{P_{2} \rho P_{2}}{\operatorname{Tr}\left(P_{2} \rho\right)}$ |
| $p_{3}=\operatorname{Tr}\left(P_{3} \rho\right)$ | 0 | $\rho_{3}=\frac{P_{3} \rho P_{3}}{\operatorname{Tr}\left(P_{3} \rho\right)}$ |

which when computed is found to be:

| Probability | Eigenvalue | Resulting State |
| :---: | :---: | :---: |
| $\frac{1}{6}$ | 2 | $\frac{1}{4}\left(\begin{array}{rrrr}1 & -1 & -i & -i \\ -1 & 1 & i & i \\ i & -i & 1 & 1 \\ i & -i & 1 & 1\end{array}\right)$ |
| $\frac{1}{6}$ | -2 | $\frac{1}{4}\left(\begin{array}{rrrr}1 & 1 & i & -i \\ 1 & 1 & i & -i \\ -i & -i & 1 & -1 \\ i & i & -1 & 1\end{array}\right)$ |
| $\frac{2}{3}$ | 0 | $\frac{1}{4}\left(\begin{array}{rrrr}1 & 0 & 0 & i \\ 0 & 1 & -i & 0 \\ 0 & i & 1 & 0 \\ -i & 0 & 0 & 1\end{array}\right)$ |

Remark 4 Since $\rho_{1}=P_{1}$ and $\rho_{2}=P_{2}$, it follows that $\rho_{1}^{2}=\rho_{1}$ and $\rho_{2}^{2}=\rho_{2}$. Hence, $\rho_{1}$ and $\rho_{2}$ are pure ensembles. On the other hand, since $\rho_{3}=\frac{1}{2} P_{3}$, it follows that $\rho_{3}^{2}=\frac{1}{2} \rho_{3} \neq \rho_{3}$. Thus, $\rho_{3}$ is a mixed ensemble.

## 2 Problem 1.5

Let $\mathcal{Q}$ be a quantum system with state given by the density operator:

$$
\rho=\left(\begin{array}{rrrr}
\frac{1}{4} & -\frac{i}{12} & \frac{1}{12} & \frac{i}{12} \\
\frac{i}{12} & \frac{1}{4} & -\frac{i}{12} & \frac{1}{12} \\
\frac{1}{12} & \frac{i}{12} & \frac{1}{4} & -\frac{i}{12} \\
-\frac{i}{12} & \frac{1}{12} & \frac{i}{12} & \frac{1}{4}
\end{array}\right)
$$

What is the result of measuring $\mathcal{Q}$ with respect to the following observables:
a)

$$
\mathcal{O}=\left(\begin{array}{rrrr}
0 & 0 & 1 & -i \\
0 & 0 & i & -1 \\
1 & -i & 0 & 0 \\
i & -1 & 0 & 0
\end{array}\right)
$$

b)

$$
\mathcal{O}=\left(\begin{array}{rrrr}
2 & 0 & 0 & i \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
-i & 0 & 0 & 2
\end{array}\right)
$$

c)

$$
\mathcal{O}=\frac{1}{2}\left(\begin{array}{rrrr}
5 & 0 & 0 & 3 i \\
0 & 5 & i & 0 \\
0 & -i & 5 & 0 \\
-3 i & 0 & 0 & 5
\end{array}\right)
$$

