CMSC 643 RESEARCH PROBLEM 1 QUANTUM TOMOGRAPHY FOR A SINGLE QUBIT

DR. LOMONACO

1. Setting up the problem

Problem 1. Given many copies of a qubit in an unknown fixed state

$$
|\psi\rangle=a|0\rangle+b|1\rangle,
$$

where

$$
|a|^{2}+|b|^{2}=1
$$

find a way to estimate the amplitudes a and b to arbitrary accuracy.

Since an overall phase can not be physically determined, we can without loss of generality assume that the amplitude a is a non-negative real number.

We begin by showing how to estimate the amplitudes a and b to arbitray accuracy by measuring many copies of the state $|\psi\rangle$ with respect to the Pauli spin operators $\sigma_{1}, \sigma_{2}, \sigma_{3}$. These observables together with their respective eigenvalues and corresponding eigenkets are given in the table below:

Eigenvalue	$\sigma_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\sigma_{2}=\left(\begin{array}{rr}0 & -i \\ i & 0\end{array}\right)$	$\sigma_{3}=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$
+1	$\frac{1}{\sqrt{2}}\binom{1}{1}=\frac{\|0\rangle+\|1\rangle}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}\binom{1}{i}=\frac{\|0\rangle+i\|1\rangle}{\sqrt{2}}$	$\binom{1}{0}=\|0\rangle$
-1	$\frac{1}{\sqrt{2}}\binom{1}{-1}=\frac{\|0\rangle-\|1\rangle}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}\binom{1}{-i}=\frac{\|0\rangle-i\|1\rangle}{\sqrt{2}}$	$\binom{0}{1}=\|1\rangle$

The algebraic expressions for the ket $|\psi\rangle$, expressed in terms of the eigenstates of each of the operators $\sigma_{1}, \sigma_{2}, \sigma_{3}$, are given respectively by

$$
\left\{\begin{array}{l}
|\psi\rangle=\left(\frac{a+b}{\sqrt{2}}\right)\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)+\left(\frac{a-b}{\sqrt{2}}\right)\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \\
|\psi\rangle=\left(\frac{a-i b}{\sqrt{2}}\right)\left(\frac{|0\rangle+i|1\rangle}{\sqrt{2}}\right)+\left(\frac{a+i b}{\sqrt{2}}\right)\left(\frac{|0\rangle-i|1\rangle}{\sqrt{2}}\right) \\
|\psi\rangle=a|0\rangle+b|1\rangle
\end{array}\right.
$$

Thus, the probabilities $p_{1}^{+}, p_{2}^{+}, p_{3}^{+}$of producing the eigenvalue +1 when measuring $|\psi\rangle$ with respect to each of the observables $\sigma_{1}, \sigma_{2}, \sigma_{3}$ are given respectively by:

$$
\left\{\begin{array}{l}
p_{1}^{+}=\left|\frac{a+b}{\sqrt{2}}\right|^{2}=\frac{1}{2}+\frac{\bar{a} b+a \bar{b}}{2}=\frac{1}{2}+a\left(\frac{b+\bar{b}}{2}\right)=\frac{1}{2}+a \operatorname{Re}(b) \\
p_{2}^{+}=\left|\frac{a-i b}{\sqrt{2}}\right|^{2}=\frac{1}{2}+\frac{\bar{a} b-a \bar{b}}{2 i}=\frac{1}{2}+a\left(\frac{b-\bar{b}}{2 i}\right)=\frac{1}{2}+a \operatorname{Im}(b) \\
p_{3}^{+}=|a|^{2}
\end{array}\right.
$$

It now follows that if the probabilities $p_{1}^{+}, p_{2}^{+}, p_{3}^{+}$are known, then the amplitudes a and b can be computed from the following expressions:

$$
\left\{\begin{array}{l}
a=\sqrt{p_{3}^{+}} \\
\operatorname{Re}(b)=\frac{\left(p_{1}^{+}-\frac{1}{2}\right)}{\sqrt{p_{3}^{+}}} \\
\operatorname{Im}(b)=\frac{\left(p_{2}^{+}-\frac{1}{2}\right)}{\sqrt{p_{3}^{+}}}
\end{array}\right.
$$

Your "Mission Impossible Assignment," should you choose to accept, is to accomplish the following two tasks.

TASK 1:

Write a Maple subroutine

$$
\operatorname{Meas}(\psi, \mathcal{O})
$$

that takes as input an arbitrary unknown 2-qubit ket $|\psi\rangle$ and an arbitrary observable \mathcal{O}, and outputs a random eigenvalue λ of \mathcal{O} and a correpanding eigenket $|\lambda\rangle$ of \mathcal{O} according to the laws of quantum mechanics.

Remark 1. Please note that if the observable \mathcal{O} has only one eigenvalue λ, then the output will simply be that eigenvalue λ and the original ket $|\psi\rangle$.

TASK 2:

Next write a Maple program

$$
Q T o m o g r a p h y ~(\psi, \epsilon)
$$

that takes as input an unkown 2-qubit ket $|\psi\rangle$ and a positive real number ϵ, and then produces as output estimates \widetilde{a} and \widetilde{b} of the amplitudes a and b such that $|a-\widetilde{a}|<\epsilon$ and $|b-\widetilde{b}|<\epsilon$. [This program will make multiple calls to the subroutine MEAs.]

